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SMOOTHNESS OF HARMONIC MAPS FOR
HYPOELLIPTIC DIFFUSIONS

By Jean Picard

Université Blaise Pascal and CNRS

Harmonic maps are viewed as maps sending a fixed diffusion to
manifold-valued martingales. Under a convexity condition, we prove that
the continuity of real-valued harmonic functions implies the continuity of
harmonic maps. Then we prove with a probabilistic method that contin-
uous harmonic maps are smooth under Hörmander’s condition; the proof
relies on the study of martingales with values in the tangent bundle.

1. Introduction. Harmonic maps between two Riemannian manifoldsM
and N are maps satisfying some partial differential equation linked with the
Laplacian onM and the Riemannian metric onN. This notion can be extended
to the case where the Laplacian is replaced by the generator of a diffusion Xt
on M, and the Riemannian metric on N is replaced by a connection; then
harmonic maps can be defined as maps sending Xt to N-valued martingales.

The simplest problem involving harmonic maps is the Dirichlet problem.
Suppose that M is a manifold with boundary ∂M, and let g be a N-valued
map defined on ∂M; then the Dirichlet problem consists in finding a map h
which is harmonic on the interior of M and which converges to g on ∂M; in
the stochastic framework, we consider the diffusion Xt on M stopped when
it hits the boundary, and we look for a map h such that h�Xt� is a martin-
gale and h = g on ∂M. In the classical Riemannian case, solutions of the
Dirichlet problem are generally obtained by solving a parabolic equation (the
heat equation), or by looking for energy minimizing maps (harmonic maps are
the critical points of an energy functional); see for instance [8, 14], and [15]
for the sub-Riemannian case. It appears that these methods have probabilis-
tic counterparts. The analogue of the heat equation is the following problem:
if G is an N-valued random variable, we want to know whether there exists
an N-valued martingale converging to G; if this problem has a solution, we
can apply it to the variable G = g�X∞� and obtain a solution of the Dirichlet
problem. Actually, the existence can be proved under convexity assumptions
on the image of g; see [16, 24, 2]. On the other hand, if the diffusion Xt is
symmetric on the interior of M and if N is Riemannian, we can associate
to Xt a reflected Dirichlet space, we define an energy functional for maps
h� M → N in this space and the Dirichlet problem can be solved by looking
for an energy minimizing map as in the classical case; see [26]. This approach
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does not require convexity conditions, but it can be worked out only in the
symmetric case.

The aim of this work is to study the smoothness of harmonic maps. First
we consider their continuity. In the classical Riemannian case, it is known
that weakly harmonic maps which are the harmonic maps with finite energy
(see [26]) are continuous when M has dimension 2 [13], but there may exist
noncontinuous harmonic maps with infinite energy; when the dimension of
M is greater, harmonic maps can be nowhere continuous [27] and one only
has estimates on the Haussdorff dimension of singular points for energy mini-
mizing maps [28]. However, the continuity can be obtained under convexity
assumptions onN; see [16] for a stochastic proof. Here, under our more general
framework, we consider a weaker convexity assumption on N and check that
it is also sufficient; our condition on the diffusion is that harmonic real-valued
functions are continuous (this is a nondegeneracy condition replacing the ellip-
ticity of the classical Laplacian).

Then we study the C∞ smoothness of harmonic maps under Hörmander’s
condition. In the symmetric case, the answer is well known in the elliptic case,
and is extended to the hypoelliptic case in [15] by using the sub-Riemannian
geometry and the results of [29] concerning quasilinear partial differential
equations; it appears that h is C∞ provided that it is continuous. In the ellip-
tic case, probabilistic proofs have been given in [19] (coupling method) and
in [3] (change of probability), but these proofs seem difficult to extend to the
hypoelliptic case. Here we use another method based on a calculus in a local
chart and which works under the general Hörmander condition; if we compare
with [15], we notice that the operator is not necessarily symmetric (there is a
drift which is involved in the Hörmander condition). Our method relies on a
calculus on the tangent bundle T�N�, and the basic tool consists of estimates
on real-valued solutions of the heat equation; these estimates can be obtained
from Malliavin’s calculus; see [22, 5, 20, 6].

By combining our smoothness results with previous existence results, we
can deduce the existence of a C∞ solution to the Dirichlet problem under
Hörmander’s condition and under a convexity assumption on the subset of N
in which the boundary condition g takes its values; however this assumption is
weaker when the diffusion is symmetric andN is Riemannian. For instance, if
N = Sd ⊂ �d+1
 d ≥ 2, is the d-dimensional sphere and if g takes its values in

Sdε =
{
z = �z1
 � � � 
 zd+1� ∈ Sd� zd+1 > ε

}

(1)

then, by applying [16, 24, 2], we obtain the existence of a smooth Sdε -valued
solution when 0 < ε < 1. In the symmetric case, by applying [26], this
existence also holds for ε = 0 and under some regularity on g (when g is
continuous and ε > 0, the result is also obtained with the analytical method
of [15]).

We first introduce the framework and give the main definitions in Section 2.
The continuity of harmonic maps is studied in Section 3, and the result con-
cerning their C∞ smoothness is stated in Section 4. To prove this result, we



SMOOTHNESS OF HARMONIC MAPS 645

work out in Section 5 a study of the martingales with values in the tangent
bundle T�N�, and we complete the proof in Section 6.

2. The framework. Let N be a d-dimensional C∞ manifold endowed
with a C∞ connection. Then a real-valued function defined on N is said to be
convex on a subset of N if it is convex on the geodesic curves of this subset.
We will use the following convexity conditions on the subsets of N which are
taken from [2].

Definition 1. Let K be a compact subset of N.
(i) We say that K is convex if two points of K are joined by one and only

one geodesic in K, and if this geodesic depends smoothly on the two points.
(ii) We say thatK has convex geometry if there exist an open neighborhood

N0 of K and a convex function γ on N0 × N0 (endowed with the product
connection) which is zero on the diagonal and positive outside the diagonal;
we say that K has 2-convex geometry if, moreover, cδ2 ≤ γ ≤ Cδ2 on K for
some (or equivalently any) Riemannian distance δ.

The connection also enables us to define the notion ofN-valued continuous
martingales (we will rely on [10] for the stochastic calculus on manifolds); they
are the continuous semimartingales Yt such that

F�Yt� − 1
2

∫ t
0

HessF�Ys��dYs
dYs�
is a local martingale for any C2 real-valued function F; here Hess F denotes
the Hessian of F relative to the connection, and HessF�y� is therefore a
bilinear form on Ty�N� × Ty�N�. The N-valued continuous martingales can
also be characterized locally as the continuous adapted processes which are
transformed into submartingales by real-valued convex C2 functions; actually,
convex functions transform martingales into local submartingales even when
they are not C2 [12]. Subsequently, since we do not use noncontinuous martin-
gales, we will omit the word “continuous.” The definition of martingales can
also be extended to processes �Yt�t>0 indexed by positive times; such a process
is a martingale if �Yt+ε� is a martingale for any ε > 0; if, moreover, �Yt�t>0
converges almost surely as t ↓ 0, then its extension �Yt�t≥0 is a martingale
(apply the characterization with convex functions).

Since the Hessian only uses the torsion free part of the connection, it will
not be a restriction to suppose that the connection is torsion free.

When N is not compact, we denote by N = N ∪ �∞� the one-point com-
pactification of N (otherwise N =N).

Now let us give the assumptions about the state spaceM and the operator
L. The space M is assumed to be a metric separable space which can be
decomposed as M = M0 ∪ ∂M0 for a dense open subset M0. Let � be the
space of continuous functions from �+ into M stopped when they quit M0;
let Xt be the canonical process with filtration �t, and let ��x�x ∈ M� be
a family of probabilities on � such that X0 = x almost surely under �x.
We suppose that ��
�t
Xt��x
 x ∈M� is a diffusion with generator L, with
infinite lifetime.
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Definition 2. Consider a map h�M→N.

(i) The map h is said to be harmonic (with respect to L) if �h�Xt�� t ≥ 0�
is an N-valued (continuous) martingale under �x, for any x inM0.

(ii) The map h is said to be quasi-harmonic if �h�Xt�� t > 0� is a
�x-martingale, for any x inM0.

(iii) The map h is said to be finely continuous at x if h�Xt� converges �x

almost surely to h�x� as t ↓ 0.
(iv) A map f � �0
 r� ×M→N is said to be a solution of the heat equation

if the process �f�r− t
Xt��0 ≤ t ≤ r� is a �x-martingale, for any x inM0.

Our notion of harmonic map corresponds to the notion of finely harmonic
map introduced by [16]; these maps can be obtained by solving the Dirichlet
problem with values in a convex compact subset of N with convex geometry;
see [16, 24, 2]. The motivation for the more general notion of quasi-harmonic
map is [26], where we have checked that the weakly harmonic maps of the
classical theory are the quasi-harmonic maps with finite energy; thus quasi-
harmonic maps are obtained when one looks for energy minimizing maps.
Notice that quasi-harmonic maps can be modified on a polar set. Of course, the
distinction between the two definitions disappears for continuous functions;
actually, h is harmonic if and only if it is quasi-harmonic and finely continuous
onM0 (apply the above discussion about the extension at t = 0 of martingales
indexed by t > 0).

3. The continuity of harmonic maps. The aim of this section is to
obtain a continuity result for harmonic maps onM; the same technique will be
applied for the continuity on the interiorM0 (Theorem 1) and on the boundary
∂M0 (Theorem 2). In the classical case of maps between Riemannian mani-
folds, one knows that weakly harmonic maps are not necessarily continuous
when the dimensionm ofM is greater than 2. The Hausdorff dimension of the
set of singularities of energy minimizing maps is at most m− 3; see [28]. The
theory of [28] also shows that energy minimizing maps are continuous under
some conditions on their image, for instance, when they support a strictly con-
vex function. On the other hand, weakly harmonic maps which are nowhere
continuous have been found in [27]. If m = 2, then all the weakly harmonic
maps are continuous [13]; notice, however, that quasi-harmonic maps with
infinite energy are not necessarily continuous; consider for instance the func-
tion h�x� = x/�x� from �2 to the circle S1 (with any value at 0). If Xt is
the Brownian motion on �2, then �h�Xt��t>0 is a �x-martingale on the circle
because 0 is polar, so h is quasi-harmonic but not continuous. Here, the con-
tinuity will be obtained under a convexity assumption on N. If the harmonic
map takes its values in a compact convex subset with convex geometry (for
instance, in a regular geodesic ball) and if the diffusion is elliptic, the conti-
nuity onM0 has been proved with a stochastic method (coupling of diffusions)
in [16]. Here, we extend the result to nonelliptic diffusions, and the convex-
ity assumption of the following theorem is weaker than the convex geometry
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(see Proposition 1 below); the method will be applied in Theorem 2 to study
the continuity on the boundary ∂M0.

Theorem 1. Suppose that bounded real-valued functions which are har-
monic on an open subset of M0 are continuous on this subset. Suppose that
there exists a bounded negative convex function γ0 on N which converges to 0
at infinity; suppose moreover that, for any points y �= z in N, there exists a
bounded convex function γyz on N satisfying γyz�y� < γyx�z�. Let h� M→ N
be a quasi-harmonic map. Then there exists a function which is continuous
on M0 and which is equal to h except on a polar set; in particular, if h is
harmonic, then h is continuous onM0.

Let us first discuss the assumptions. The continuity of bounded real-valued
harmonic functions holds, for instance, under theHörmander condition (defined
in Section 4). The existence of the functions γyz implies thatN is not geodesi-
cally complete (an infinite geodesic curve cannot support a bounded noncon-
stant convex function); thus N is generally defined as an open subset of a
larger manifold. If γ0 is a continuous function on a compact manifold, and if
N is defined by N = �γ0 < 0�, then γ0 satisfies the required assumptions
provided it is convex on N. For instance, N can be the subset Sdε 
 0 ≤ ε < 1,
of the sphere defined in (1); in this case, one can choose for γ0 the function

γ0�z� = δ�z� + arcsin ε− π/2 = arcsin ε− arcsin zd


where δ is the distance to the north pole. In the terminology of [11], the
assumption about the existence of γyz can also be stated by saying that the
convex barycentre of a Dirac mass at a point y is reduced to the singleton
�y�; it has been used in [1] in order to prove the continuity of � -martingales
(processes which are transformed by convex functions into submartingales).
This assumption is satisfied if N has convex geometry; however, Theorem 1
can also be applied to sets which do not have convex geometry, as can be shown
from Proposition 1 below. For instance, the manifolds N = Sdε 
 ε > 0, have
convex geometry and satisfy therefore the assumption; on the other hand, it is
clear that there exist noncontinuous harmonic maps with values in the closed
hemisphere Sd0 ; here we consider the intermediate case of the open hemisphere
Sd0 which does not have convex geometry (see [17]), and we can deduce from
the following proposition that the condition of Theorem 1 holds in this case.

Proposition 1. Suppose that N supports a function γ0 satisfying the con-
ditions of Theorem 1. If the subsets �γ0 < a�
 a < 0, satisfy the assumption of
Theorem 1 about the existence of γyz, then N also satisfies it.

Remark. We are going to construct the convex functions γyz of Theorem 1
by a probabilistic method; this type of construction has been used in [18] to
study the probabilistic interpretation of convex geometry, and we have taken
our inspiration from this work.
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Proof of Proposition 1. Let us fix y in N; we are going to prove the
existence of a convex function γ on N such that γ�y� = 0 and γ�z� > 0 for
z �= y; then the assumption of the theorem is clearly satisfied by putting
γyz = γ for any z. Let us define

γ�z� = inf �W�σy = ∞�
(2)

where the infimum is taken onN-valued martingales Zt on the Wiener space
W = C��+
�� such that Z0 = z, and

σy = inf
{
t ≥ 0� Zt = y

}
�

Let �g�v�� 0 ≤ v ≤ 1� be a geodesic curve in N, denote by wt the canonical
process ofW, and for v ∈ �0
1�, consider the process g�v+wt� stopped at time

σ = inf
{
t ≥ 0� v+wt �∈ �0
1�}�

This is a martingale and it hits the two points g�0� or g�1� with respective
probabilities 1−v and v; then, in (2), by restricting the infimum to martingales
coinciding with g�v+wt� up to σ , we obtain

γ�g�v�� ≤ inf
{
�W�σy = ∞�� Zt = g�v+wt� for t ≤ σ}

≤ inf
{
�W

[
inf�t ≥ σ � Zt = y� = ∞]� Zt = g�v+wt� for t ≤ σ}

= �1 − v�γ�g�0�� + vγ�g�1���
Thus γ is convex. It is clear that γ�y� = 0. Let z �= y be another point such that
γ�z� = 0, and let us look for a contradiction. The condition γ�z� = 0 means
that we can find martingales Zkt such that Zk0 = z and �W�σky <∞� converges
to 1; we can suppose that these martingales are stopped at σky . Let us use
the convex function γ0; the process γ0�Zkt � is a uniformly bounded negative
submartingale, and its limit as t → ∞ is equal to γ0�y� with a probability
converging to 1 as k → ∞; we deduce that Zkt quits N1 = �γ0 < γ0�y�/2�
with a probability converging to 0. Thus, by stopping Zkt at the exit time of
N1, we obtainN1-valued martingales which hit y with probability converging
to 1, and which will be again denoted by Zkt . But γ0 is convex and therefore
continuous on N, so N1 is included in N2 = �γ0 < γ0�y�/3� which satisfies
the condition of Theorem 1, and we have a convex function γyx on this subset;
then Ukt = γyz�Zkt � are uniformly bounded submartingales such that

lim
k→∞

�
[
Uk∞ = γyz�y� < γyz�z� = Uk0

]
= 1�

This is not possible. ✷

Theorem 1 will be proved in two steps. First, we will find a finely continuous
modification of h; in this step, we will only need the existence of γyz or γzy (the
existence of a strictly convex function on N is therefore sufficient); thus we
will obtain an harmonic modification of h. Second, we will prove that harmonic
maps are continuous; in this step, we will need the full assumption on γyz.
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Lemma 1. There exists a function which is finely continuous on M0 and
which is equal to h except on a polar set.

Proof. We have to prove that h�Xt� has a �x-almost sure limit as t ↓ 0;
then this limit will satisfy the required properties. Recall that N is the one-
point compactification of N, and let H be the set of accumulation points of
h�Xt� as t → 0; this is a random subset of N. If δ is a distance compatible
with the topology of N, then

δH�y� = δ�y
H� = lim
t→0

inf
0<s≤t

δ�y
h�Xs��

uniformly in y ∈ N, so δH is a measurable random variable with values
in continuous functions on N (this means that H is measurable when one
puts the Hausdorff topology on closed sets); it is therefore �x-almost surely
deterministic from the zero–one law. The closed set H (the points where this
function is 0) is also deterministic; it is not empty (from the compactness
of N). The process �γ0 ◦ h��Xt� is a bounded negative submartingale, so its
limit as t ↓ 0 is also negative, and therefore H is included in N. Suppose
that H contains two different points y and z; then �γyz ◦ h��Xt� is a bounded
submartingale admitting two limit points as t ↓ 0 (the function γyz is convex
and therefore continuous on N); this is not possible, so H has exactly one
point, and we can conclude. ✷

Proof of Theorem 1. We can suppose from Lemma 1 that h is finely con-
tinuous, so h is harmonic; we want to prove that h is continuous. Consider a
sequence xk converging to x in M0, and let us prove that h�xk� converges to
h�x�. Let γ be a bounded convex function onN, let ε > 0, let Br be a family of
open neighborhoods of x decreasing to �x� as r ↓ 0, and let τr be the first exit
time of Br. Either τr = ∞ for any r (this means that x is a trap), or τr ↓ 0 as
r ↓ 0. The continuity of γ on N and the fine continuity of h imply that

Ɛx
[(
γ ◦ h)(Xτr)] ≤ �γ ◦ h��x� + ε

in both cases for r small enough, where the variable in the expectation should
be understood as the limit of �γ ◦ h��Xt� on �τr = ∞�. The function

G� z �→ Ɛz
[(
γ ◦ h)(Xτr)](3)

is real-valued, bounded, and harmonic on Br, so we deduce from our assump-
tion that G is continuous at x, and therefore

Ɛxk
[(
γ ◦ h)(Xτr)] ≤ �γ ◦ h��x� + 2ε

for k large enough. Since γ is convex,

�γ ◦ h��xk� ≤ �γ ◦ h��x� + 2ε�

Thus

lim sup�γ ◦ h��xk� ≤ �γ ◦ h��x�
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for any bounded convex function γ on N. If we apply this property to the
function γ = γ0, we see that the accumulation points in N of h�xk� are in N;
on the other hand, if we apply it to γ = γyz for y = h�x� and z �= h�x�, we see
that z cannot be an accumulation point; thus h�xk� converges to h�x�. ✷

The method of Theorem 1 can also be applied to the behavior at the bound-
ary; for instance, one can obtain nontangential convergence as in [16]. In the
following result, we study the continuity on M when the value on ∂M0 is
continuous.

Theorem 2. Suppose thatN satisfies the conditions of Theorem 1. Suppose
also that for any open subset B ofM, if a bounded real-valued function is har-
monic on B and if its restriction to B∩∂M0 is continuous, then it is continuous
on B. Let h� M → N be a harmonic map, the restriction of which to ∂M0 is
continuous; then h is continuous onM.

Proof. Let x be a point of the boundary ∂M0, and let xk be a sequence
of points of M0 which converges to x; we have to prove that h�xk� converges
to h�x�. This is done with the method of Theorem 1 by considering again a
family of open neighborhoods Br decreasing to �x�; notice that τr = 0 under
�x. The function G of (3) is harmonic on Br, coincides on Br ∩ ∂M0 with the
restriction of γ ◦h which is continuous, so it is continuous at x. Thus the proof
can be worked out similarly. ✷

4. The smoothness of harmonic maps. We now want to study the C∞

smoothness on M0 of continuous harmonic maps; to this end, we have to
suppose that the spaceM and the generator L are smooth. Thus we suppose
that M = M0 ∪ ∂M0 is a C∞ manifold with boundary, and that L is written
onM0 in Hörmander’s form

L = .0 + 1
2

q∑
i=1

.2
i(4)

for C∞ vector fields .0
.1
 � � � 
 .q on M; in this formula, the vector field .i
is identified with the Lie derivative in the direction .i. The law of the process
�Xt� under �x can be realized on the Wiener space as the solution of the
Stratonovich equation

dXxt = .0�Xxt �dt+
q∑
i=1

.i�Xxt � ◦ dWit
 Xx0 = x�(5)

Let h� M → N be a map which is C2 on a neighborhood of a point x of M0;
we can use on N the exponential map and its inverse, and the map

hx� z �→ exp−1
h�x� h�z�
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is defined and C2 on a neighborhood of x; it takes its values in the tangent
space Th�x��N�, so L acts on it and we can define

LNh�x� = Lhx�x� ∈ Th�x��N��(6)

This map is classically called the tension field of h. For instance, if N is a
submanifold of �n, it can be endowed with the induced Riemannian metric,
and in this case LNh�x� is the orthogonal projection of the vector Lh�x� ∈ �n

on the tangent space Th�x��N�. Itô’s stochastic calculus shows that

�F◦h��Xt�− 1
2

∫ t
0
Hess F◦h�Xs��dh�Xs�
dh�Xs��−

∫ t
0
F′ ◦h�Xs�LNh�Xs�ds

is a local martingale for any C2 function F, so h is harmonic if and only
if LNh = 0 on M0. Thus a consequence of the C2 smoothness of harmonic
maps will be that these maps are classical solutions of the partial differential
equation LNh = 0 onM0.

If L is symmetric and elliptic, the C∞ smoothness of continuous weakly
harmonic maps is classical; see, for instance, Theorem 8.5.1 of [14]; the result
has been extended to the symmetric hypoelliptic case in [15] by using the
sub-Riemannian metric associated with L and estimates of [29]. In our prob-
abilistic framework and in the elliptic case, the Lipschitz continuity has been
obtained in [19] by a coupling method, and in [3] by a change of probability;
moreover, theC∞ smoothness is deduced in [19] by an analytical argument and
in [3] by a probabilistic argument. Here, we consider the general Hörmander
condition defined as follows.

Definition 3. Let � be the Lie algebra of vector fields on M0 generated
by �.i� 0 ≤ i ≤ q�. We say that the Hörmander condition, or condition �H�,
holds at x ∈ M0 if the space of vector fields of � taken at x is the whole
tangent space Tx�M0�; we say that the restricted Hörmander condition, or
condition �H′�, holds if the same property holds for the Lie algebra generated
by �.i
 �.0
.i�
 1 ≤ i ≤ q�.

The set of points x where �H� or �H′� holds is an open subset of M0. The
restricted condition �H′� means that the space–time operator L + ∂/∂t on
�×M satisfies �H�. We are now ready to state the main result.

Theorem 3. Suppose that M is a smooth manifold and that L can be
written in a Hörmander form (4) satisfying �H� on M0. If h is a continuous
harmonic map, then h is C∞ onM0.

As a corollary, continuous solutions of the heat equation are smooth
under �H′�.

Theorem 3 will be proved in several steps. The idea is first to localize the
problem, so that one can suppose that h takes its values in a small sub-
set of N. Then we approximate h by differentiable solutions of the heat
equation, and we obtain an a priori bound on the first-order derivatives of
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these approximations; an induction argument shows that higher order deriva-
tives also satisfy a priori bounds, so we can deduce that h is smooth. The
derivative of h involves the tangent bundle of N, so the aim of next section is
to study martingales on this manifold; results for these martingales can also
be found in [23, 2, 4].

5. Martingales on the tangent bundle. We will have to use the exis-
tence of N-valued martingales with prescribed limit in a small subset of N.
When the probability space is the Wiener space, this problem has been stud-
ied in [16, 24] (at least when N is a Riemannian manifold; see also [25] for
more general connections and martingales with jumps on the Wiener–Poisson
space). It appears that the existence holds on more general probability spaces;
it is sufficient to suppose that the real martingales are continuous; this result
is much more difficult and is due to [2]; let us recall it. The notions of convexity
have been introduced in Definition 1.

Theorem 4. Suppose that all the real martingales are continuous. Let K
be a compact convex subset of N with convex geometry. Let Y∞ be a random
variable with values in K. Then there exists a unique martingale Yt with
values in K and converging to Y∞.

If nowK is not compact but is the increasing limit of compact sets satisfying
the conditions of Theorem 4, then the existence can be obtained under some
conditions by the results of [7]; for instance, if K =N is a Cartan–Hadamard
manifold with uniformly negative curvature, the condition is the integrability
on �τ < ∞� of the distance of Y∞ to a fixed point of N (as in the Euclidean
case).

The noncompact manifold which is needed in our study is the tangent bun-
dle T�N� endowed with the complete lift of the connection of N, and this
manifold apparently does not satisfy the conditions of [7]; thus we work out
another proof for the existence of martingales. Let N′ be a finite-dimensional
vector bundle over the manifold N [we will choose N′ = T�N� later], and
denote by π the projection of N′ onto N; we suppose that the manifolds N
and N′ are endowed with connections so that π is affine (it maps geodesic
curves of N′ to geodesic curves of N); in particular,

N′
�2� =

{�z1
 z2� ∈N′ ×N′� π�z1� = π�z2�
}

is a totally geodesic submanifold ofN′×N′ (geodesic curves which are tangent
to N′

�2� lie in N′
�2�), and each fiber π−1�y� is totally geodesic in N; we also

suppose that the maps

2α
β� N′
�2� →N′
 �z1
 z2� �→ αz1 + βz2

are affine; in particular, the set of zero vectors of N′ (which can be identified
with N) is totally geodesic in N′, and π−1�y� is endowed with its canoni-
cal flat connection. Let K be a compact subset of N, and let K′ = π−1�K�.
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Consider a continuous map �·� fromN′ into �+ which is a norm on each π−1�y�;
one has several choices for this map, but all these norms are equivalent on
K′. A K′-valued variable Z is said to be in Lr if �Z�r is integrable; this notion
does not depend on the choice of the norm, nor does the following one.

Definition 4. A K′-valued martingale Zt is said to be in �r
 r ≥ 1, if
the set of variables �Zσ �r, as σ ranges over all optional times, is uniformly
integrable.

We now prove an existence result on the vector bundle N′ under some
convexity assumptions.

Lemma 2. Suppose that all the real martingales are continuous (as in
Theorem 4). Suppose that there exists a choice of the norm �·� such that �·�r
is convex on K′ for some r ≥ 1. Suppose also that the subsets �z ∈K′; �z� ≤ C�
ofN′ are convex and have convex geometry. If Z∞ is a variable in Lr with val-
ues inK′, then there exists a uniqueK′-valued martingale Zt of�

r converging
to Z∞.

Remark. The map �·�p is also convex for p > r. Thus, if Z∞ is in Lp for
some p > r, then the martingale Zt is in �p; by applying the Doob inequality
to the submartingale �Zt�r, we also deduce that supt �Zt� is in Lp.

Proof of Lemma 2. Let Y∞ = π�Z∞�; from Theorem 4, there exists a
uniqueK-valued martingale Yt converging to Y∞, and Zt has to be above Yt.
If Z∞ is bounded, then the existence of a bounded Zt also follows from our
assumptions and Theorem 4. If now Z∞ is only in Lr, one considers bounded
variablesZk∞ aboveY∞ such thatZk∞ converges inLr toZ∞; then the bounded
martingales Zkt are above Yt, the process Zkt − Zjt is also a martingale, so
�Zkt −Zji �r is a submartingale and

�
[
sup
t

�Zkt −Zjt �r ≥ λ
]
≤ 1
λ
Ɛ�Zk∞ −Zj∞�r�

Thus �Zkt � 0 ≤ t ≤ ∞� is a Cauchy sequence for the uniform convergence
in probability, and has a limit �Zt� 0 ≤ t ≤ ∞�; this process is a martingale
(Theorem (4.43) of [10]) with limit Z∞. On the other hand, for t fixed in �0
∞�,
the variables Zkt are a Cauchy sequence in Lr, so Zkt converges to Zt in Lr,
and therefore �Zkt �r converges to �Zt�r in L1; this implies that the process
�Zt�r� 0 ≤ t ≤ ∞ is a nonnegative submartingale, so the variables �Zσ �r, σ
optional time, are uniformly integrable. Thus Zt is a martingale of �r. The
uniqueness of this martingale follows from the uniqueness of Yt = π�Zt� and
from the convexity of �·�r; if indeed Z′

t is another solution, then �Zt − Z′
t�r

should be a uniformly integrable submartingale converging to 0. ✷

We now consider the particular case whereN′ is the tangent bundle T�N�.
It will be sufficient for us to consider the case where N is �d is endowed with
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a non-Euclidean connection (this means that N can be described with only
one chart); thenN′ can be identified with �d×�d. On the manifold T�N� one
can define the complete lift of the connection ofN (described in [23, 2, 4]. It is
called the geodesic connection in [23]); the geodesic curves for this connection
are given by the Jacobi fields along geodesic curves of N. If K is a compact
subset of N, we consider as previously K′ = T�K� = π−1�K� which is identi-
fied with K×�d. If φ is a C2 function on T�K�, its Hessian at a point can be
viewed as a symmetric bilinear form on ��d × �d�2, and φ is said to be uni-
formly convex if its Hessian is uniformly elliptic; this notion does not depend
on the choice of the coordinates (since K is compact). If y0 is a point of N, we
now obtain some geometrical properties of the small neighborhoods of y0.

Lemma 3. Fix y0 in N = �d. There exists a smooth function ψ on N such
that ψ�y0� = 0
 ψ�y� > 0 for y �= y0, and for η small enough, K = �ψ ≤ η� is
a compact neighborhood of y0 satisfying the following properties:

(i) The set K is convex and has a 2-convex geometry given by a C2 func-
tion γ.

(ii) Compact subsets of T�K� have 2-convex geometry.
(iii) There exist nonnegative quadratic forms Qy on Ty�N� such that

φ�z� = Qπ�z��z�
 φ1�z� = φ�z� + �ψ ◦ π��z�
are, respectively, convex and uniformly convex C∞ functions on T�K�.

Remark. The uniform convexity of φ1 implies that ψ is strictly convex and
that Qy is uniformly elliptic.

Proof. By using coordinates �y
y′� ∈ �d ×�d for T�N� such that y0 = 0,
we introduce the functions

ψ�y� = �y�2/2
 φ�y
y′� = �ε+ �y�2��y′�2/2
 φ1�y
y′� = ψ�y� +φ�y
y′�
(the definition of φ is adapted from the function used in Lemma 4.59 of [10]).
We are going to prove that K = �ψ ≤ η� satisfies the conditions of the lemma
for η ≤ ε2/2 and ε small enough. The convexity of K will follow from the
strict convexity of ψ (for ε small); the 2-convexity for ε small is a consequence
of Lemma 4.59 of [10]. The zero vector of Ty0�N� has a neighborhood with
2-convex geometry, so if ε is small, the set of zero vectors of T�K� also has a
neighborhood with 2-convex geometry; since all the compact subsets of T�K�
can be embedded in this neighborhood with an affine map �y
y′� �→ �y
 ρy′�
(for ρ small), we deduce that these compact subsets also have 2-convex geom-
etry. Thus we only have to study the convexity of φ and φ1. The connection on
T�N� can be defined by Christoffel symbols =ijk, 1 ≤ i
 j
 k ≤ d, which are sym-
metric in �j
 k� (the connection is torsion free). On T�N� = �d×�d, we index
the first d components by letters i
 j
 � � �, and the subsequent corresponding
d components by the same letter with a bar (so that for instance i = i + d).
Let us recall the Christoffel symbols on the tangent space (the connection is
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also torsion free) at a point �y
y′� (see for instance [2]). They are obtained
by writing the equation satisfied by the Jacobi fields, which are the geodesic
curves for this connection. The symbols =ijk�y
y′� are the original symbols
=ijk�y�, and the other symbols are given by

=ijk =
∑
l

y′l∂l=
i
jk
 =i

jk
= =ijk
 =i

jk
= =i

jk
= =i

jk
= 0
(7)

where ∂l denotes the derivative with respect to the lth component of y. If now
we consider a C2 function on the tangent bundle, its Hessian can be expressed
in terms of its first- and second-order derivatives Di and Dij computed in the
Euclidean space; we have

Hessjk = Djk −
∑
i

=ijkDi −
∑
i

=ijkDi

= Djk −
∑
i

=ijkDi −
∑
i
 l

y′l∂l=
i
jkDi


Hessjk = Djk −
∑
i

=i
jk
Di = Djk −

∑
i

=ijkDi


Hessjk = Djk�

Thus easy calculations yield

Hessjk φ�y
y′� = �y′�2
(
δjk −

∑
i

yi=
i
jk�y�

)
−∑
i
 l

y′ly
′
i�ε+ �y�2�∂l=ijk�y�


Hessjk φ�y
y′� = 2yky
′
j −

∑
i

=ijk�y�y′i�ε+ �y�2�


Hessjk φ�y
y′� = �ε+ �y�2�δjk�

We deduce on T�K� the estimates on the symmetric submatrices(
Hessjk φ�y
y′�

)
≥ �1 −Cε��y′�2I
(

Hessjk φ�y
y′�
)
≥ εI

and the other terms of the matrix are estimated by∣∣∣Hessjk φ�y
y′�
∣∣∣ ≤ Cε�y′��

If U = �y
y′
 u
 u′� is a vector of T�T�K��, we have(
Hessφ�y
y′�

)
�U
U� ≥ �1 −Cε��y′�2�u�2 + ε�u′�2 −Cε�y′� �u� �u′�

≥ �1 −Cε−C2ε/2��y′�2�u�2 + ε�u′�2/2�
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If we choose ε small enough, this Hessian is positive semidefinite, so φ is
convex. The Hessian of φ1 is obtained by adding(

Hessjk ψ�y�
) = (

δjk −
∑
i

yi=
i
jk�y�

) ≥ �1 −Cε�I


so (
Hessφ1�y
y′�

)�U
U� ≥ (
Hessφ�y
y′�)�U
U� + �1 −Cε��u�2

≥ �1 −Cε��u�2 + ε�u′�2/2�
We deduce that Hessφ1 is uniformly elliptic. ✷

In particular, the subset K′ = T�K� of T�N� and the norm �z� = φ�z�1/2
satisfy the assumptions of Lemma 2 for r ≥ 2, so we deduce the existence of
martingales of �r (Definition 4) converging to a variable of Lr.

Lemma 4. Let K = �ψ ≤ η� be a set satisfying the properties of Lemma 3.

(i) There exist positive constants c and C such that for any K-valued mar-
tingale �Yt�0 ≤ t ≤ ∞�,

Ɛ exp c�Y�∞ ≤ C

where �Y� is the quadratic variation of Y computed in �d (or for another
Riemannian metric on K). In particular, the moments of �Y�∞ are uniformly
dominated.

(ii) Let Z∞ be a T�K�-valued variable of Lr
 r ≥ 2. Then there exists a
unique T�K�-valued martingale �Zt
0 ≤ t ≤ ∞� of �r with limit Z∞. More-
over, the quadratic variation �Z�∞ computed in �d × �d is integrable.

Proof. Suppose η ≤ 1/2 so that 1 − ψ takes values in �1/2
1�. It follows
from the strict convexity of ψ that the process �1−ψ�Y�� exp c�Y� is for c small
a positive supermartingale; thus its expectation is bounded and we obtain the
first part of the lemma (this proof is taken from Proposition 2.1.2 of [24]).
In the second part, the existence and uniqueness of Zt are a consequence of
Lemma 2. Finally, it follows from the strict convexity of φ1 that the expectation
of �Z�∞ is dominated by the expectation of φ1�Z∞�. ✷

Remark. We have proved that if a martingale is in �2, then its quadratic
variation is integrable. The converse is probably false, and the integrability of
the quadratic variation depends on the choice of the coordinates on K.

Let Tm�N� be the vector bundle with fibers Tmy �N� which are the spaces of
linear maps from �m into Ty�N�. By considering the canonical basis of �m,
the space Tmy �N� becomes isomorphic to the product �Ty�N��m, so Tm�N� can
be identified with the totally geodesic submanifold of �T�N��m consisting of
�z1
 � � � 
 zm� having the same projection on N. Since K is a part of N = �d,
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elements of Tm�K� are represented by a point of K and a d×m matrix. The
properties of T�K� can be extended to Tm�K�. The functions

φm�z1
 � � � 
 zm� =
m∑
i=1

φ�zi�
 φm1 �z1
 � � � 
 zm� =
m∑
i=1

φ1�zi�(8)

are, respectively, convex and uniformly convex on Tm�K�; the compact sub-
sets of Tm�K� have 2-convex geometry, and one can construct Tm�K�-valued
martingales of �r as in Lemma 4. The linear group GL�m� acts on the right
on each fiber Tmy �N�. If f is a C1 map from �m into N, then its derivative f′

can be viewed as a Tm�N�-valued function.

6. Proof of Theorem 3. Since we want to prove a local condition and h is
continuous, we can suppose thatM0 is a small open subset of �m, that the vec-
tor fields .i are C∞ with compact support in �m and that N = �d endowed
with a non-Euclidean connection. We now give two preliminary results linked
with theHörmander andMalliavin calculus.We first verify that theHörmander
condition (H) can be reduced to the restricted condition (H′), so that we can
assume (H′) subsequently; this result is due to [5], and we adopt here the
presentation of [6].

Lemma 5. Let ρ be a smooth positive function on �, and define on �m × �
the operator

L̃f�x
u� = ρ2�u�Lf�x
u� + 1
2
ρ2�u�∂

2f

∂u2
�x
u� + 1

2
ρρ′�u�∂f

∂u
�x
u�


where L acts on the x component; it is associated with the vector fields

.̃0�x
u� = ρ2�u�.0�x�
 .̃i�x
u� = ρ�u�.i�x�
 .̃q+1�x
u� = ρ�u�∂/∂u�

If L satisfies (H) at x and if ρ′�u� �= 0, then L̃ satisfies (H′) at �x
u�. Moreover,

the function h is harmonic for L if and only �x
u� �→ h�x� is harmonic for L̃.

The first part of this result is simply proved by computing the Lie brackets of
the vector fields .̃i; the second part comes from the probabilistic interpretation
ofL→ L̃ as a change of time on the diffusionXt. We will also use the following
gradient estimate for real-valued solutions of the heat equation.

Lemma 6. Suppose that the condition �H′� holds on an open subset M1 of

�m and let M2 be a compact subset of M1. Consider a real-valued bounded
function f which is a solution of the heat equation with initial value f0. Then
f�t
 ·� is C∞ on M1, and there exist a C and an l which do not depend on

0 < t ≤ 1
 f and x inM2 such that

�f′�t
 x�� ≤ C
tl

sup
{�f0�z��� z ∈M1

}
�
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This lemma is of course the fundamental smoothness result on which
Theorem 3 is based. The smoothness of f is classical from Hörmander’s theo-
rem, and a probabilistic proof can be worked out from Malliavin’s calculus (see
[5, 20, 6]); the estimate on the derivative of f can be obtained from estimates
on the derivative of the probability transition density as they can also be found
in [20] (see Theorem 2.18 of [21] when �H′� holds uniformly onM1 = �m).

Let us now enter the proof of Theorem 3. Fix x0 inM0 ⊂ �m and y0 = h�x0�
in N = �d; for any J, we want to prove that h is CJ in a small neighborhood
of x0. Since h is continuous andM0 can be taken small, we can suppose that
the image h�M0� is in a small compact neighborhood K of y0.

Let Xt =Xxt be the solution of the Stratonovich equation (5) (we will often
omit the superscript x). One can choose a version which is a C∞ diffeomor-
phism with respect to x, and we denote byX′

t the Jacobian matrix ofXxt with
respect to x; then X′

t takes its values in the linear group GL�m�, and the
derivative of f�Xt� is f′�Xt�X′

t. We also know that the moments of X′
t and of

higher order derivatives are bounded for t ≤ 1.

Lemma 7. Choose K = �ψ ≤ η� so that K0 = �ψ ≤ 2η� satisfies the
conditions of Lemma 3. Let f1 be a K-valued C∞ function on �m which is
constant outside a compact set. Then there exist a uniqueK-valued continuous
martingale Yt = f�t
Xt�
0 ≤ t ≤ 1, with terminal value f1�X1�, so f�1− t
 x�
is solution of the heat equation with initial value f1. Moreover, the map f is
differentiable with respect to x and its derivative f′ is bounded. For any r ≥ 2,
the process f′�t
Xt�X′

t is the unique Tm�K�-valued martingale of �r with
final value f′1�X1�X′

1.

Proof. The assumptions which were required in Lemma 3 imply that
any K-valued variable is the limit of a unique K-valued martingale (see
Theorem 4). Thus we obtain Yt and we deduce from a standard argument
using the Markov property (see for instance [16]) that it is of the form Yt =
f�t
Xt� [let f�t
 x� be the initial value of the martingale with terminal value
f1�X1−t�]. Moreover, if γ is a function describing the 2-convex geometry of K
and by using the coordinates of N = �d,

�f�0
 x� − f�0
 x̄�� ≤ Cγ�f�0
 x�
 f�0
 x̄��1/2 ≤ C(Ɛγ�f1�Xx1�
 f1�Xx̄1��
)1/2

≤ C′ f1�Xx1� − f1�Xx̄1� 2 ≤ C′′�x̄− x�


so f�0
 ·� is Lipschitz; by considering the diffusion �Xs� s ≥ t� with initial
value x at time t, one proves similarly that f�t
 x� is uniformly Lipschitz with
respect to x. On the other hand, from Lemma 4, there also exists a unique
martingale Zt of �r above Yt with final value Z1 = f′1�X1�X′

1. Suppose
that we have proved that Y0 = Yx0 is differentiable with respect to x with
derivative

∂Yx0/∂x = Zx0(9)
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Then we obtain the differentiability of f�0
 ·�; by considering the diffusion
�Xs� s ≥ t�, one proves similarly that f�t
 ·� is differentiable, and the bounded-
ness of f′�t
 ·� follows from the Lipschitz continuity of f�t
 ·�. By working con-
ditionally on �t, one also checks from (9) that the derivative of Yxt is Zxt ; thus
the derivative of Yxt = f�t
Xxt � is Zt for the left-hand side and f′�t
Xt�X′

t for
the right-hand side, so these two processes are equal and the lemma is proved.
So we only have to differentiate Yx0 at a fixed x. The calculus has been worked
out in [2] in the case when Z is bounded and x real; we propose here another
method. By using the coordinates on Tm�K�, the process Zt is written as
�Yt
Yt�, and Yt is a matrix; by considering the columns Ypt 
1 ≤ p ≤ m,
each process �Yt
Ypt � is a T�K�-valued martingale, and this property can be
characterized by means of the coordinates; from the form (7) of the Christoffel
symbols and by using the convention of summation over repeated indices, we
obtain the relations

dYit
�m�= − 1

2=
i
jk�Yt�d�Yj
Yk�t


(10)
dY

ip
t

�m�= − 1
2∂l=

i
jk�Yt�Ylpt d�Yj
yk�t − =ijk�Yt�d�Yj
Ykp�t


where
�m�= means equality modulo a local martingale. Let 2 be a smooth map

from T�K� ⊂ �d × �d into K0 ⊂ �d such that 2�y
y′� = y+ y′ when �y′� ≤ c
(c small enough). We consider the process Yρt = 2�Yt
Ytρ� where ρ is a small
vector of �m; let

σ = σ�x
 ρ� = inf
{
t ≥ 0� �Yt� ≥ �ρ�−1/4 or

∣∣Xx+ρt −Xxt
∣∣ ≥ �ρ�3/4

}
∧ 1�

The martingale Z is in �2, so Yσ is bounded in L2 uniformly in ρ, and since∥∥∥∥ sup
t≤1

�Xx+ρt −Xxt �
∥∥∥∥
2
= O��ρ��


we deduce

��σ < 1� = O(�ρ�1/2)�(11)

In particular, one has σ > 0 for ρ small enough. Up to σ , one has Yρt =
Yt +Ytρ, so

dY
ρ
 i
t

�m�= − 1
2=
i
jk�Yt�d�Yj
Yk�t − 1

2ρp∂l=
i
jk�Yt�Ylpt d�Yj
Yk�t

− ρp=ijk�Yt�d�Yj
Ykp�t(12)

�m�= − 1
2=
i
jk

(
Y
ρ
t

)
d�Yρ
j
Yρ
k�t + dVit

with∫ σ
0

�dVt� ≤ C
(
�ρ�2 sup

t≤σ
�Yt�2�Y�1 + �ρ�2 sup

t≤σ
�Yt��Y�1/21 �Y�1/21 + �ρ�2�Y�1

)

≤ C
(
�ρ�3/2�Y�1 + �ρ�7/4�Y�1/21 �Y�1/21 + �ρ�2�Y�1

)
�
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Since �Y�1 and �Y�1 are integrable (Lemma 4),

Ɛ
∫ σ
0

�dVt� = O��ρ�3/2��(13)

The interpretation of the decomposition (12) is that the infinitesimal incre-
ment dVt can be viewed as the finite variation part of the K0-valued semi-
martingale Yρt ; it is the term which prevents Yρt from being a martingale.
Now we compare this process Yρt = Yx
ρt with the martingale Yx+ρt ; the pro-
cess �Yx
ρt 
Yx+ρt � is a semimartingale on N×N; if γ�y1
 y2� is a C2 function
describing the 2-convex geometry ofK0 and if γ′1 is its derivative with respect
to y1, then

γ
(
Y
x
ρ
t 
Y

x+ρ
t

) = ∫ t
0
γ′1

(
Y
x
ρ
t 
Y

x+ρ
t

)
dVs + a submartingale

up to σ . On �t ≤ σ�, one has∣∣γ′1(Yx
ρt 
Yx+ρt )∣∣ ≤ C∣∣Yx
ρt −Yx+ρt
∣∣ ≤ C(∣∣Yx
ρt −Yxt

∣∣+ ∣∣Yx+ρt −Yxt
∣∣)

≤ C
(
�Yxt � �ρ� + �f�t
Xx+ρt � − f�t
Xxt ��

)
≤ C′�ρ�3/4

from the definition of σ and the Lipschitz continuity of f. Thus, from (13)
and (11),

γ
(
Y
x
ρ
0 
Y

x+ρ
0

) ≤ Ɛ
[
γ
(
Yx
ρσ 
Y

x+ρ
σ

)]+O��ρ�9/4�

≤ Ɛ
[
γ
(
Yx
ρσ 
Y

x+ρ
σ

)2]1/2
��σ < 1�1/2

+ Ɛ
[
γ
(
Y
x
ρ
1 
Y

x+ρ
1

)
1�σ=1�

]
+O��ρ�9/4�

≤ Ɛ
[∣∣Yx+ρσ −Yxσ −Yxσρ

∣∣4]1/2O��ρ�1/4�
+ Ɛ

∣∣f1�Xx+ρ1 � − f1�Xx1� − f′1�Xx1��Xx1�′ρ
∣∣2 +O��ρ�9/4�

≤ Ɛ
[�f�σ
Xx+ρσ � − f�σ
Xxσ�

∣∣4]1/2O��ρ�1/4�
+ Ɛ

[�Yxσ �4]1/2O��ρ�9/4�
+ Ɛ

∣∣f1�Xx+ρ1 � − f1�Xx1� − f′1�Xx1��Xx1�′ρ
∣∣2 +O��ρ�9/4��

The function f�t
 x� is Lipschitz continuous with respect to x, and the process
�Xxt � is also Lipschitz continuous for the norm  supt �·� 4, so the first expec-
tation of the last expression is O��ρ�4�; the derivatives of f1 are bounded, and
the derivatives of x �→ Xx1 have bounded moments, so the last expectation is
also O��ρ�4�; finally, the martingale �Zt� is in �4, so the expectation of �Yxσ �4
is bounded. Thus∣∣f�0
 x+ ρ� − f�0
 x� −Yx0ρ∣∣ ≤ Cγ(Yx
ρ0 
Y

x+ρ
0

)1/2 = O��ρ�9/8��
This proves that Yx0 is the derivative of f�0
 ·� at x. ✷
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Lemma 8. Consider the maps f of Lemma 7 with values in K = �ψ ≤ η�.
Suppose that �H′� holds at any x of an open M1 and let M2 be a compact
subset of M1. Then, for η ≤ η0 small enough, the derivative satisfies for any
f and x ∈M2 an a priori bound �f′�0
 x�� ≤ C; the bound η0 depends only on
the geometry of N.

Proof. We know from Lemma 7 that f′ is a bounded function and we are
looking for an upper bound onM2 which does not depend on f. Let ξ ∈M2 be
a point where we want to estimate f′. We consider the processXxt with initial
value x = ξ, and the martingale

�Yt
Yt� =
(
f�t
Xt�
 f′�t
Xt�X′

t

)
with values in Tm�K�. By writing Yt as a matrix, we obtain as in (10) the
real local martingales

2
ip
t = Yipt + 1

2

∫ t
0
∂l=

i
jk�Ys�Ylps d�Yj
Yk�s +

∫ t
0
=ijk�Ys�d

〈
Yj
Ykp

〉
s

(14)

which are actually martingales. The interesting fact is that the right-hand
side is linear in Y. Consider the time

σ = σr = inf
{
t ≥ 0� �Xt − ξ� ≥ r1/4/2

} ∧ r
for r small. We deduce from the martingale property of 2t in (14) that

Y0 = f′�0
X0�X′
0 = f′�0
 ξ�

is the linear expectation of 2σ . We choose a localization function φ; this is a
C∞ function from �m into �0
1� such that φ�x� = 1 for �x� ≤ 1/2 and φ�x� = 0
for �x� ≥ 1; we define φr�x� = φ��x− ξ�/r1/4�. We have

�ƐYσ � ≤
∣∣Ɛ[φr�Xr�Yr1�σ=r�]∣∣+ ∣∣Ɛ[Yσ1�σ<r�

]∣∣
≤ ∣∣Ɛ[φr�Xr�Yr]∣∣+ Ɛ

[(∣∣Yσ � + �φr�Xr�Yr
∣∣)1�σ<r�

]
≤

∣∣∣∣ ∂∂xƐ[φr(Xxr)f(r
Xxr)]
∣∣∣∣+ Ɛ

[�Yr� �φ′
r�Xr�X′

r�
]

+
∥∥∥ sup
t≤r

�X′
t�
∥∥∥
2
��σ < r�1/2 sup

{�f′�t
 x��� t ≤ r
 �x− ξ� ≤ r1/4}

where the first derivative is taken at x = ξ. This is also the derivative at
�t
 x� = �r
 ξ� of the function

�t
 x� �→ Ɛ
[
φr

(
Xxt

)
f
(
t
Xxt

)]
�

The components of this function are real-valued solutions of the heat equation,
so Lemma 6 shows that its derivative is bounded by C/rl for some l. The
second term involves the derivative of φr which is O�r−1/4�. The probability
of �σ < r� is

��σ < r� = �

[
sup
t<r

�Xxt − ξ� ≥ r1/4/2
]
≤ C exp�−cr−1/2�
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at x = ξ, so

∣∣ƐYσ ∣∣ ≤ Crl + 1
4

sup
{�f′�t
 x��� t ≤ r
 �x− ξ� ≤ r1/4}(15)

for r small. By applying also the boundedness of = and its derivative, we
deduce from (14) that

�f′�0
 ξ�� ≤ �ƐYσ � +CƐ
[
sup
t≤σ

�Yt��Y�σ
]
+CƐ[�Y�1/2σ �Y�1/2σ

]

≤ �ƐYσ � +CƐ
[
sup
t≤σ

�Yt�2
]1/2

Ɛ
[�Y�2σ

]1/2(16)

+C(Ɛ�Y�σ
)1/2(

Ɛ�Y�σ
)1/2



where �·� is the quadratic variation computed in �d or �m⊗�d. The quadratic
variation of Y is estimated by using the strictly convex function ψ of Lemma 3
on K; we have

Ɛ�Y�σ ≤ CƐ
[
sup
t≤σ
ψ�Yt�

]
≤ Cη


and the moments of �Y�σ are uniformly dominated from Lemma 4, so

Ɛ�Y�2σ ≤ (
Ɛ�Y�σ

)1/2(
Ɛ�Y�3σ

)1/2 ≤ C√η�
On the other hand, from the strict convexity of φm1 and since it is quadratic
[see (8) and Lemma 3],

(
Ɛ�Y�σ

)1/2 ≤ CƐ
[
sup
t≤σ
φm1 �Yt
Yt�

]1/2

≤ C′
(
1 + Ɛ

[
sup
t≤σ

�Yt�2
]1/2)

and since Yt = f′�t
Xt�X′
t and X′

t has bounded moments,

Ɛ

[
sup
t≤σ

�Yt�2
]1/2

≤ C sup
{�f′�t
 x��� t ≤ r
 �x− ξ� ≤ r1/4}�

Thus by applying these estimates, (16) and (15) become

�f′�0
 ξ�� ≤ C
rl

+ 1
2

sup
{�f′�t
 x��� t ≤ r
 �x− ξ� ≤ r1/4}

if η is chosen small enough. Then we iterate this procedure to estimate the
right-hand side; we estimate the derivative f′�t
 x� like f′�0
 ξ�, but we replace
r by λr, for some 2−1/l < λ < 1; thus

�f′�0
 ξ�� ≤ C
rl

(
1 + 1

2λl

)

+ 1
4

sup
{
�f′�t
 x��� t ≤ r�1 + λ�
 �x− ξ� ≤ r1/4�1 + λ1/4�

}
�
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Similarly, at the jth step, we replace r by λjr, and we obtain at the limit

�f′�0
 ξ�� ≤ C
rl

∞∑
j=0

�1/2λl�j

if r is small enough so that r/�1 − λ� ≤ 1 and r1/4/�1 − λ1/4� is less than the
distance betweenM2 andMc

1. ✷

We have proved that the solution f�1−t
 x� of the heat equation is differen-
tiable with respect to x, that its derivative satisfies an a priori estimate and
that if

F: �0
1� × �m ×GL�m� → Tm�K�
 �t
 x
 x′� �→ F�t
 x
 x′� = f′�t
 x�x′

then F�1−t
 x
 x′� is a solution of the heat equation for the diffusion �Xt
X′

t�.
We now want to consider derivatives of higher order by an induction argument;
for instance, in order to study the second-order derivatives of f, we want to
apply the previous study to F instead of f. The problem is that the diffu-
sion �Xt
X′

t� does not satisfy the Hörmander condition. Thus we are going to
modify it by modifying the derivative X′

t. In the literature, modifications of
X′
t have been used to study the stability of the stochastic flow; in some cases,

one can filter out the redundant noise [9]. Here, on the contrary, we add extra
noise; another induction argument is given for the elliptic case in [3].

Lemma 9. Under the framework of Lemma 7, the map F�1 − t
 x
 x′� is a
solution of the heat equation for a diffusion �Xt
Xt� satisfying �H′� at �x
 x′�
as soon as Xt satisfies it at x.

Proof. We introduce an independent auxiliary process Ut which is a left
invariant Brownian motion on the linear group GL�m�; if Wt = �Wijt � is
the standard Brownian motion on the set �m ⊗ �m of matrices (independent
from W), we let Ut be the solution of

dUt = Ut dWt = Ut ◦ dWt −Ut dt/2�(17)

ThenUt can be viewed as an elliptic diffusion onGL�m�; if we denote by .̃0�u�
and .̃ij�u� the m2 + 1 vector fields associated with (17), then .̃ij are the left
invariant vector fields associated with the canonical basis of the Lie algebra
�m ⊗ �m of GL�m�. If we define Xt = X′

tUt, we verify now that �Xt
Xt�
is a diffusion satisfying the requirements of the lemma. It is the solution of
a stochastic differential equation driven by the �q+m2�-dimensional Wiener
process �Wt
Wt�; the corresponding vector fields on �m × GL�m� are q + 1
vector fields of the form �.i�x�
.i�x
 x′�� and the m2 vector fields �0
 .̃ij�x′��.
Suppose that Xt satisfies �H′� at x, and let x′ be a point of GL�m�; at �x
 x′�,
the Lie algebra corresponding to the fields �.i
.i� generate a subspace of
the tangent space �m × Tx′ �GL�m�� which, when projected on �m, has full
dimension m. On the other hand, the fields .̃ij generate the Tx′ �GL�m�� part
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of the tangent space, so we can deduce the Hörmander condition at �x
 x′�. In
order to conclude the proof, we have to check that F�t
Xt
Xt� is a martin-
gale. This relies on the following property: if zt is a T�K�-valued integrable
martingale, and if ut is an independent real-valued martingale, then utzt is
a T�K�-valued martingale (this can be viewed with the characterization of
martingales in local coordinates). If Zt = f′�t
Xt�X′

t = �Z1
t 
 � � � 
Z

m
t �, we can

apply this property to Zit (which is a martingale from Lemma 7) and the com-
ponents Uijt of Ut; thus

∑
i Z

i
tU
ij
t is a T�K�-valued martingale, and therefore

F�t
Xt
Xt� = ZtUt is a Tm�K�-valued martingale. ✷

Lemma 10. Consider the maps f of Lemma 7, and subsets M1 and M2
satisfying the conditions of Lemma 8. Let J be a positive integer. If η is chosen
small enough, then f�0
 ·� is J times differentiable on �m and the derivatives

satisfy a priori estimates onM2.

Proof. This is proved by induction on J. We have checked in Lemma 8 the
case J = 1, so suppose that the lemma holds at rank J. The derivative f′ is
given by f′�t
 x� = F�t
 x
 I�, andF�1−t
 x
 x′� is a locally bounded map which
is a solution of the heat equation for an operator satisfying the Hörmander
condition onM1 ×GL�m� (Lemma 9); moreover, its initial value F�1
 x
 x′� =
f′1�x�x′ is smooth. We consider the domainM1 ×G1, where G1 is a relatively
compact neighborhood of I; then F is bounded on this domain. Consider the
function η′F and the process �Xt
Xt�; if η and η′ are small enough, then
the image of this function is small, so it satisfies the conditions of Lemma 8.
Thus we can apply the induction assumption to it; we deduce estimates on
the derivatives of F up to order J, and therefore on the derivatives of f up to
order J+ 1. ✷

Proof of Theorem 3. For x0 ∈ M0 and any integer J, we have found a
neighborhoodK = �ψ ≤ η� of y0 = h�x0� satisfying the property of Lemma 10.
As has been said previously, we can choose M0 small so that h�M0� ⊂ K; let
M1 andM2 be other open neighborhoods such that

M2 ⊂M1 ⊂M1 ⊂M0�

By a change of time, we transform the diffusion Xt into a diffusion X̃t which
lives inM0 and which satisfies the original equation (5) onM1; the generator
of X̃t can be written in a Hörmander form satisfying �H′� on M1, and h
is harmonic for X̃t. Let hk�1
 ·� be C∞ functions on M0 with values in K,
which converge to h on M0; we solve the heat equation and obtain solutions
hk�t
 x�
 t ≤ 1, with values in K. The 2-convex geometry of K implies the
convergence of these martingales to h�X̃t�, so hk�0
 ·� converges to h on M0.
If we apply Lemma 10 to the diffusion X̃t, we obtain onM2 a priori estimates
on the derivatives of hk�0
 ·� up to order J. These estimates do not depend
on k, so h is CJ−1 on M2 with Lipschitz derivatives. Thus we have found a
neighborhood of x0 on which h is CJ−1, and J is arbitrary. ✷
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Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56 469–505.

[6] Cattiaux, P. (1990). Calcul stochastique et opérateurs dégénérés du second ordre. I.
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