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FINDING LONG PERIOD CYCLES
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A method is developed for finding the period of cycles in statis-
tical data of longer period than can be found by ordinary periodogram
method. It consists of computing the progressive summations of the
deviations of the observed data from normal. (As a first approxima-
tion normal is taken as the mean of the observed data.) Then the
progressive summations of these accumulated discrepancies are found,
and so on to the third or fourth integration. This process rapidly
“irons out” all chance and short period variations and leaves a smooth
cicle whose approximate period is obvious. The objection that this
is but an extension of the “quadrature” method. which makes cycles
appear in data where none are present, is discussed and methods are
presented for determining whether the cycle found is real or fictitious.

StCCESSIVE INTEGRATION As A METHOD FOrR FiNDING
Loxc Per1op CycLEs

The question of the search for hidden periodicities in statistical
data is important for the civil engineer interested in stream flow, the
meteorologist and agriculturist interested in rainfall or temperature,
the business statistician and probably many others. The ordinary
method of periodogram analysis as developed by Schuster' and dis-
cussed by Whittaker and Robinson? requires a period of record several
times as long as the longest cycle considered. A century’s record of
annual rainfall at any given station or group of stations will enable
us to test for the presence of cycles with periods of say from eight to
twenty years, and possibly even to 33 or 50 years, but could not reveal
a cycle of period of say between fifty and one hundred hfty years if
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124 SUCCESSIVE INTEGRATION

one were present. For the latter purpose the following method has
been developed.

Suppose the given data is of the form y =g +bcos Iﬁ‘—‘p;c’ +d
where

y=any value of the dependent variable, as for example, the
total inches of rainfall at a given station in any given year.

a=a constant, the normal value about which y fluctuates, as
the normal rainfall in inches per year for the given station.
If the data contains a straight line trend this term would
be replaced by ( 2 + mx ), where m measures the rate
or slope of the trend.

b =a constant, the amplitude of the cycle.

4 =360, to give the angle in degrees, or 2m, to give the angle
in radians.

z =the independent variable or serial number of the patticular
value y , as for example the date A. D. of the year whose
rainfall is y.

¢ =a constant specifying the phase of the cycle, as for example
the earliest date A. D. when the rainfall is known to have
been a maximum.

p =the period of the cycle (in years, in this example).

d =a variable—the deviation of each observed value from the
value given by the rest of the equation. This term takes
care of all variations due to cycles of other periods, or to
the form of this cycle not being that of the cosine curve,
or the other variations which for want of further knowl-
edge we must consider to be purely fortuitous.

if we subtract & , the normal value, from each of these values
an d take the progressive totals or first integral of the dii’Scren;ces, we
get a series of the form 2”# 3in i%—‘-"—‘N Zd or becos ig—“f—'—£’+£d

The term 2 d will in general be small, since the plus chance varia-

tions tend to balance the minus, as do the variations due to short period

cycles which may be’prcsen;:( Th&) second inte%ration \;i!lrgive a series
f the form-4( -2 2-0) kz-c-Z» if

0 or: 6(2”) cos Z52E) or é(}%) cos >

we neglect the sums of the J & terms, which will, of course, tend\to

cancel out. The third integral will be of the form A(gr)’cos —‘:(‘t"pj
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and the fourth integral of the form b(gr)‘ cos &;c_—p)' That
is, each integration gives a cycle of the same period as existed in the
original data, but advanced a quarter period in phase and with the
amplitude multiplied by 2_’9_7 .

The way in which this method “irons out” chance variations and
short period fluctuations is most amazing to one who has not tried it.
Table T and Plate I illustrate the method as applied to the annual
rainfall at Boston, Mass., for the years 1818-1928. Although this
has been carried to the third integration to illustrate the method, it was
unnecessary in this case, as the second integration gives a smooth curve.
The first integration changed from minus to plus in 1865 (fractions
of a year being neglected) and from plus to minus in 1912, giving a
half period of 47 years. DBut by producing the first integration curve
backward we see that it would pass through zero in 1814, which gives
a whole period of 98 years. As a compromise, 96 years was taken as
the value of p.

The Weather Bureau gives the rainfall to the hundredth of an
inch, but it was found that the results were practically the same if the
rainfall were taken to the nearest inch, which was done in this table.
The mean rainfall for the 111 years was 43.45 and there seems to be
no trend. (From a priori grounds, such as the relative constancy of
tlora, lake levels, etc., we are quite sure that the rainfall of New Eng-
land has changed very slightly in the last few centuries, so that for a
period of only 111 years we can assume the normal rainfall as constant.
The matter could also be tested statistically by fitting a straight line to
the data by least squares, but this was not done.) But the normal
rainfall is not necessarily equal to the mean for the period. In fact,
a preliminary trial indicated that the period of the most important
cycle was a little less than 100 years, and that of the 111 years the
portion in excess of a full cvcle was below normal, therefore that the
vbserved mean would be helow normal. So 44 inches per 'year was
taken as the first approximation to normal.

A second point in Table I which needs explanation is the initial
vilue m each of the summation columns. A preliminary computation
wits made starting from zero. ‘This was found to give a series of num-
bers averaging quite a little above zero. But the average of these
values cannot be taken as their normal any more than in the case of
the observed rainfall themselves.  Averaging the maximum and min-
imum values gave + 40, therefore it was assumed that all values should
be reduced 46 (accumulated inches) and a second trial was made
using —46 as the value of the first integration for 1817. When the
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TABLE I
Search for a Long Period Cycle in the Precipitation Records of Boston, Mass.
Excess or Summations
Inches of | Deficiency

Year Rainfall From 44" First Second Third

- 26 1580 10400
1818 43 -1 - 27 1553 1i953
1819 35 -9 - 36 1517 13470
1820 4 0 - 36 1481 14951
1821 37 -7 - 43 1438 16389
1822 27 -17 - 60 1378 17767
1823 47 3 - 57 1321 19088
1824 36 -8 - 65 1256 20344
1825 35 -9 - 74 1182 21526
1826 41 -3 - 77 1105 21526
1827 49 5 - 72 1033 23664
1828 32 -12 - 84 949 24613
1829 47 3 - 81 868 25481
1830 43 -1 - 8 786 26267
1831 52 8 - 74 712 26979
1832 47 3 - 71 641 27620
1833 38 -6 - 77 564 28184
1834 40 -4 - 81 483 28667
1835 38 -6 - 8 39% 29063
1836 41 -3 - 9 306 29369
1837 34 -10 - 100 206 29575
1838 43 -1 - 101 105 29680
1839 41 -3 - 104 1 29681
1840 49 5 - 9 - 98 29583
1841 47 3 - 9% - 194 29389
1842 39 -5 - 101 - 295 29094
1843 47 3 - 98 - 393 28701
1844 38 -6 -1 - 497 28204
1845 46 2 - 102 - 599 27605
1846 30 ~14 - 116 - 715 26890
1847 47 3 - 113 -~ 828 26062
1848 41 -3 - 116 - 944 25118
1849 40 -4 - 120 -1064 24054
1850 54 10 - 110 ~1174 22880
1851 44 0 - 110 -1284 21596
1852 48 4 - 106 ~-1390 20206
1853 49 5 - 101 -1491 18715
1854 46 2 - 99 -1590 17125
1855 44 0 - 9 -1689 15436
1856 52 8 - 91 -1780 13656
1857 51 7 - 84 -1864 11792
1858 53 9 - 75 -1939 9853
1859 57 13 + 62 -2001 7852
1860 51 7 - 55 -2056 5796
1861 50 6 - 49 -2105 3691
1862 61 17 - 32 -2137 1554
1863 68 24 - 8 -2145 - 591
1864 49 S - 3 -2148 - 2739
1865 48 4 1 -2147 - 4886
1866 51 7 8 -2139 - 7025
1867 56 12 20 -2119 - 9144
1868 64 20 40 -2079 -11223
1869 66 22 62 -2017 -13240
1870 60 16 78 ~-1939 -15179
1871 45 1 79 -1860 -17039
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Excess or Summations
Inches of Deﬁcienc! 2

Year Rainfali From 44/ First Second Third
1872 50 6 85 -1775 -
193 55 0 % Ti6m 20453
1874 43 -1 95 -1584 ~22077
1875 50 6 101 ~-1483 -23560
1876 49 5 106 -1377 -24937
1877 51 7 113 -1264 -26201
1878 66 22 135 -1129 ~27330
1879 45 1 136 - 993 -28323
1880 37 -7 129 - 864 -29187
1881 S3 9 138 - 726 -29913
1882 44 0 138 - 588 -30501
1883 35 -9 129 -~ 459 ~30960
1884 49 S 134 - 325 -31285
1885 45 1 135 - 190 -31475
1886 42 -2 133 - 57 -31532
1887 34 -10 123 66 -31466
1888 46 2 125 191 -31275
1889 40 -4 121 312 -30963
1890 39 -5 116 428 -30535
1891 40 -4 112 540 ~29995
1892 37 -7 105 645 -29350
1893 42 -2 103 748 ~28602
1894 37 -7 96 844 27758
1895 40 -4 92 936 -26822
1896 38 -6 86 1022 ~25800
1897 41 -3 83 1105 -24695
1898 () 6 89 1194 -23501
1899 35 -9 80 1274 22227
1900 4 0 80 1354 ~20873
1901 49 S 85 1439 -19434
1902 M -10 75 1514 -17920
1903 42 -2 73 1587 -16333
1904 40 -4 69 1656 -14677
1905 32 -12 57 1713 ~12964
1906 41 -3 54 1767 -11197
1907 38 -6 48 1815 - 9382
1908 30 -14 34 1849 ~ 7533
1909 41 -3 31 1880 -~ 5653
1910 28 -16 15 1895 - 3758
1911 36 -8 7 1902 - 1856
1912 35 -9 - 2 1900 44
1913 38 -6 - 8 1892 1936
1914 k23 -10 - 18 1874 3810
1915 39 -5 - 23 1851 5661
1916 37 -7 - 3 1821 7482
1917 39 -5 ~ 35 1786 9268
1918 34 -10 - 45 1741 11009
1919 43 -1 - 46 1695 12704
1920 46 2 - 4 1651 14355
1921 43 -1 - 45 1606 15961
1922 41 -3 - 48 1558 17519
1923 35 -9 - 57 1501 19020
1924 35 -9 - 66 1435 20455
1925 41 -3 - 69 1366 21821
1926 40 -4 - 73 1293 23114
1927 41 -3 - 76 1217 24331
1928 8, 26 e 2 1135 23460
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second integration was made from these figures it was found that the
curve had a general downward slope, and from its slope a correction
was estimated for the initial term of the first integration. The initial
terms of the other columns were found in a similar manner. The
values given are the result of several successive approximations. It
is probable that by using a different combination of values for these
initial numbers an equally good cycle of a slightly different period
might be developed. Tt is claimed only that this is a method of finding
the approximate period of long cycles. If the exact period were im-
portant we could, by least square methods, fit cycles of periods slightly
less and slightly greater than that found, and see which gave the best fit.

The minimum value of the second summation was ~2148 in 1864
and the maximum was +1902 in 1911. Therefore the double amplitude
was 4050 and the single amplitude was 2025. Therefore b ( g =2025
and b= _2_02_:;_6)%__4_7_7 #-8.67. A similar use of the values of the
third integration gave an amplitude of @L;M = 30606.5 and
b= 30606.5 x8m? = 8.60.

967

As rhown above the maxima of the second integration occur at
about 1¢15 and 1911, therefore maxima of the rainfall itself should
have occurred in 1767 and 1863 and ¢ may be taken as 1767. Values
of the term 8.60 cos ﬁ%ﬁ—nwere computed for each year. The
first 96 terms will, of course, add to zero, but the last 15 terms add to
—98.35. so that this will shift the 111-year average 0.89 inches below
normal. As the average of the original data was 43.45, this indicates
that the normal should be 43.45+0.89 =44.34 and our equation be-

comes y = 44.34+8.52 cos ﬂ‘%ﬂpiq’.‘

* It is not claimed that this equation as it stands can be used to forecast rainfalls

at Bo:t m. The rlata when examined by the periodogram method reveal several
cycles ¢f shorter periods, and even when corresponding terms are added to the
formula the fortuitous variations average several inches per year. After this
comprtation was made [ found that C. F. Marvin had discussed this particular
case (Monthly Weather Review, Aug.. 1923, Vol. 51, pp. 383-390, “Concern-
ing Normals, Secular Trends and Climatic Changes). By using data for
Bostoun running back to 1750 (some actual and some “manufactured™) he finds
that +t:aight line trends, rather than a cosine curve, best fit the data. He finds
a normal annual rainfall of 40.06 from 1759 to 1849 and of 44.71 from 1849
to 1904, at which date the normal suddenly dropped again. The average rain-
fall from 1904 to 1928 inclusive was 37.80. Taking this as the normal for
that jeriod and the normals for the other two periods as given by Marvin, the
average deviation from the normal for the 111 years was 5.46. The average
deviation {rom the mean for the 111 years was 6.36. The average deviation
from the formula derived ahove was 4.65. Adding four shorter cycles, we
get thc formula:
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It will probably be urged against this method that the process of
progressive summation often gives very misleading results, as has been
pointed out by Bullock, Persons and Crum' and Simon Kuznets®. The
latter gives, for example, 50 digits drawn at random, and the progres-
sive totals of the deviations from the average, from which he deduces
a pseudo cycle. Plate IT shows that an even more striking cycle can
be derived from this same random data by getting the second and third
integrations. By following the same method as outlined above, a curve
was deduced and drawn. The original data fit this curve with a mean
deviation of 2.40, while they fit the average line with a mean deviation
of 2.48. Tt may be urged that the cycle derived from the rainfall data
is no more real than that derived from the chance data. But actually
the cases are quite different, as we will proceed to show.

The test as to whether a time series contains cycles has been de-
veloped by Goutereau®, Besson* and Woolard®. If the absolute values
of the successive first differences of the series are averaged, this aver-
age is called the mean variability. The average of the absolue values
of the differences of each value from the mean of all the values is
called the mean deviation. Goutereau’s Ratio, G, equals mean varia-
tion divided by mean deviation. For a random series of numbers
whose distribution is Gaussian, the expected value of G will be y2.
But if there is a cycle present, even if concealed by large chance varia-

k(x-1773)

= k(x-1767)
y=44.22+860cos e + 258 cos 47

18 /0
which gives an average deviation of 4.28. (Some of these figures were obtained
by using the annual rainfall to the nearest inch and would be slightly different
if the data to hundredths of an inch were used.) The reality of the four
shorter cycles is very doubtful, but they produce a curve which fits the data
much closer than the straight mean, or than Marvin's proposed normals, and
somewhat closer than the simple 96 year cycle.

1. “A Reply to Karl Karsten’s ‘The Harvard Business Indexes—a New Inter-
pretation’,” Review of Econontic Statistics, April, 1927, pp. 74-92.

2. “Random Events and Cyclical Oscillations,” Journ. of the Amer. Statistical
Assn.. Sept., 1919, pp. 258-275.

3. Sur la variabilite de la temperature, Annuaire de la Soc. Met. de France, 54,
122-127, 1906. Summarized by Edgar W. Wooland in Minthly Weather Re-
view. Vol. 49 (1921), pp. 132-3.

4. *On the Comparison of Meteorological Data with Results of Chance,” (Tran -
lated by E. W. Woolard) Monthly Weather Review, Vol. 48 (1920), pp. 89-94.

5. Edgar W. Woolard, “On the Mean Variability in Random Series,” Monthly
Weather Review (1925), pp. 107-111.

+ 270 cos K=x_1738), 5;’9‘” 2.56 cos MEN, 155 ooy K(X-1810)
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TABLE 11

(1) (2) 3) 4) (5) (6) (7) (8) 9)
-~ 65.0
94.0 290
-24.5 69.5 98.5
1 2 0 2 -23 -26.8 427 141.2
2 6 1 7 5 2.7 -24.1 186 159.8
3 2 2 4 -3 - 03 -24.4 - 58 154.0
4 7 3 10 6 5.7 -18.7 -24.5 129.5
5 S 3 8 -2 3.7 -15.0 -39.5 90.0
6 8 4 12 4 7.7 -73 -46.8 43.2
7 0 4 4 -8 -03 -76 -54.4 -11.2
8 5 4 9 5 4.7 -29 -573 - 685
9 8 3 1 2 6.7 38 -53.5 -1220
10 6 3 9 -2 4.7 85 -450 -167.0
11 8 2 10 1 5.7 14.2 -308 -197.8
12 3 1 4 -6 -03 13.9 -16.9 -214.7
13 7 0 7 3 27 16.6 - 03 -2150
14 6 -1 5 -2 0.7 17.3 17.0 -198.0
15 1 -2 -1 -6 ~ 53 120 29.0 -169.0
16 3 -3 0 1 - 43 7.7 3.7 -1323
17 9 -3 6 6 1.7 94 46.1 - 86.2
18 3 -4 -1 -7 -53 4.1 50.2 - 360
19 0 -4 -4 -3 - 83 - 42 46.0 10.0
20 3 -4 -1 3 - 53 -95 36.5 46.5
21 7 -3 4 S -03 -98 26.7 73.2
22 4 -3 1 -3 -33 -13.1 13.6 9.8
23 4 -2 2 1 -23 -15.4 - 18 95.0
24 7 -1 6 4 1.7 -13.7 -15.5 79.5
25 3 0 3 -3 - 13 -15.0 -30.5 490
26 7 1 8 5 37 -11.3 —41.8 7.2
27 ) 2 7 -1 2.7 - 86 -504 - 432
28 9 3 12 5 7.7 - 09 -51.3 - 945
29 0 3 3 -9 -13 -22 -53.5 -1480
30 6 4 10 7 S.7 35 -500 -1980
31 6 4 10 0 5.7 9.2 —40.8 -238.8
32 6 4 10 0 57 149 -259 2647
33 4 3 7 -3 27 17.6 - 8.3 -273.0
34 0 3 3 -4 - 13 16.3 8.0 -265.0
35 0 2 2 -1 - 23 140 220 -243.0
36 0 1 1 -1 - 33 10.7 32.7 -210.3
37 1 0 1 0 -33 74 40.1 -170.2
38 9 -1 8 7 3.7 11.1 51.2 -119.0
39 1 -2 -1 -9 - 5.3 5.8 570 - 620
40 2 -3 -1 0 - 53 0.5 $75 - 45
41 7 -3 4 5 -03 0.2 57.7 53.2
42 7 -4 3 -1 -13 - 1.1 56.6 109.8
43 2 -4 -2 -3 - 6.3 -74 49.2 159.0
4 3 -4 -1 -1 - 53 -12.7 36.5 195.5
45 4 -3 1 2 -33 -16.0 20.5 216.0
46 0 -3 -3 -4 -73 -23.3 - 28 213.2
47 5 -2 3 6 -13 -24.0 -27.4 185.8
48 0 -1 -1 -4 - 53 -29.9 --57.3 128.5
49 6 0 6 7 1.7 -28.2 85.5 43.0
50 7 1 8 2 3.7 -24.5 -110.0 - 67.0

Sums 92 91.4

214 -86 -91.4

Sum of absolute values 178 182.8
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tions superimposed on the cycle, the mean variation will be smaller
than otherwise, and G will be less than 1.41. If the distribution is not
Gaussian, the expected value of G will no longer be V2, but it will
still be true that the presence of cycles will make G less than the ex-
pected value. Woodard, in the reference cited, gives a method for com-
puting the expected value of G for a random order with any sort of
distribution.

For the example of 50 random numbers used in Plate II, the mean
deviation was 2.48 and the average variation was 3.45, making
G = 1.39. The expected average deviation of numbers drawn from
a universe containing equal numbers of each of the digits from O to 9
i§ 2.50 and the expected deviation by Woolard’s method is 3.30, making
the expected value of G = 1.32". In the data for Boston rainfall, given
in Table I, the mean deviation was 6.356 and the mean variability 6.54,
or G = 1.03, while Woolard’s method would give an expected value
of 1.3840.11 for random succession. The distribution of the “uni-
verse” of which this is a sample is not Gaussian, but it is not much
different from Gaussian, so that the true value of G is not far from
1.41. An investigation of a much larger sample of rainfall data, which
the writer hopes to publish soon, gives G = 1.386 £.027. It is there-
fore uite certain that the departure of the value of G from the ex-
pected value for random numbers is not accidental but indicates that
we have here a real cycle, while in the case of drawn numbers we had
only an apparent one.

To test the operation of the method in a case where it was known
that there were both chance and cyclic elements present, Table IT was
prepared. The first two columns give the same random numbers from
which Plate 1T was plotted. Column (3) is an artificial cycle
which approximates a sine curve of period 24 and amplitude 4.00. Col-
umn (4) gives the algebraic sum of (2) and (3), and column (5) the
first differences of column (4). Column (6) gives the deviations of
the values in colunm (4) from the mean (4.30). Columns (7), (8)

1. The sample of 50 drawings gave by \Woolard’s method an expected mean
variation for random succession of 3.27 ¥ .39 or G = 1.32 £.16. Thus the
observed value fell within the range of the probable error. But the agreement
is often much closer. The results of a little experiment ‘made by the writer
are as follows. A\ pack of cards was thoroughly shuffled and the cards turns
up and their value recorded in order (\ce= I Jack=11. Queen- 12,
King=13). The mean deviation is forced in this case to he 42/13 or 3.231.
The obscrved mean variation was 1.314, making @ = 1.335. while the expected
value of @ as given by \Woolard's method for this case of rectangular distribu-
tion is 1.333.
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and (9) give the first, second and third integrals of these values. These
figures are plotted on Plate III. The period of the cycle in the third
integral curve is 21.5 and the amplitude is about 200. The original
cycle which would give this as a third integral would be
4.30+5.00 cos i%fzz——) This curve is plotted on the upper figure
of Plate III as a solid line. The cyclic amounts added to the random
data are plotted (above or below the line of the mean, 4.30) as crosses
and connected by a dotted line. The cycle that emerges from the
process is not quite the one that went in—it has been combined with
the pseudo-cycle which arises from the fortuitous variations—but it is
still a fair approximation of the original cycle. We can then assume
that cycles derived by this process from statistical data that contain
real cycles will be approximations of true cycles.

Goutereau’s ratio gives a means of determining whether real cycles
are present. If there are none it is not necessary to search for them.
If there are cycles present two courses are open to us. We may first
construct a periodogram and find whether there are short cycles present.
If not. we can assume that a long-period cycle determined by the method
of this paper will be real. If there are short period cycles present, we
can eliminate them and test the residue by Goutereau’s ratio. If it
still contains a cycle, we can assume that there is a real long-period
cycle. The other procedure would be to first find the long-period cycle
by the method of this paper. Tf the amplitude of the cycle is large, it
is quite certainly a real cycle. If it is very small, it may perhaps be
negligible, even if real, and is probably unreal. In doubtful cases the
cycle deduced may be subtracted from the given data and the residue
tested again by Goutereau’s ratio. If G is markedly larger than it
was in the original data, we may assume that the cycle is real.

- Criteria as to the reality of a given cycle have been proposed by
C. F. Marvin', H. W. Clough?, Dinsmore Alter’, and Sir Gilbert
Walker®, but they are adapted only to cycles obtained by means of the

1. Theory and Use of the Periodocite, Monthly Weather Review, Vol. 49 (1921),
pp. 115-124.

2. A Statistical Comparison of Meteorological Data with Data of Random Oc-
currence, Monthly Weather Review, Vol. 49 (1921), pp. 124-132.

3. The Criteria of Reality in thHe Periodogram, Monthly Weather Review, Vol.
54 (1926), pp. 57-58.

4. On Periodicity. Quart. Jour. Royal Met'l Soc., 51, No. 216, pp. 337-346.
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periodogram and not very well even to those'.

The question still remains as to how much less than the expected
value for random succession G may be before we are to believe that
a cycle is present. The writer would hazard 10 per cent as a rough
guess. It is to be hoped that some master of mathematical statistics
will give us before long a quantitative statement of, say, the relation-
ship between the ratio of the observed mean variation and the expected
mean variation for the same numbers arranged in random succession,
and the probability of a cycle of given amplitude being present.

It should be added that the germ idea of this paper is a product
of the fertile mind of the writer’s colleague, Professor P. W. Ott.

CONCLUSIONS

(1) The method of successive integration of discrepancies will
reveal the approximate period of long-period cycles if they are present.

(2) Even if no long-period cycle is present, the method will
give a fictitious cycle, but there are tests by which the reality or falsity
of the cycle can be investigated.

1. For example, Marvin's criterion depends only upon the standard deviations
of the sums of the various columns of the tabulation as compared to the stand-
ard deviation of all the data, without reference to the order of the columns.
Take, for example, the tabulation given on page 353 of Whitaker-Robin-
son’s “Calculus of Observations.” It is very evident that there is a real cycle.
But suppose.that another problem had yielded exactly the same columns of
data but in a random order, say the fifth column, then the twentieth, then the
third, etc. Are we ta suppose that a cycle of period 24 days is equally probable
in this case? This objection seems to the writer to make the method of Whit-
aker and Robinson much inferior to that of Schuster.

e



