ar

error” is V: 2,. The only reason which may be advanced in defence of the use of this
idea is that we are spared some little computations, viz.some squarings and the extraction
of a square root, which, however, we rarely peed work ont with more than three signi-
_ficant figures.

IX. FREE FUNCTIONS.

§ 36. The foregoing propositions concerning the laws of errors of functions —
especially of linear functions — form the basis of the theory of computation with observed
values, a theory which in several important things differs from exact mathematics. = The
result, particularly, is not an exact quantity, but always a law of errors which can be
represented by its mean value and its mean error, just like the single observation. More-
over, the compntation must be founded on a correct apprehension of what observations
we may consider mutually unbound, another thing which is quite foreign to exact mathe-
matics. For it is only upon the supposition that the result B == r,0, 4 ...7.0, = [ro)
— observe the abbreviated notation — is a linear function of unbound observaticns only,
0y ...0, that we have demonstrated the rules of computation (35)

A4(R) = rd,(0,) -+ ... + 1rady(00) = [r2,(0)] (52)
A5(B) = rid(0,) + ...+ rads(0s) = [r*24(0)]. (63)

While the results of computationg with observed quantities, taken singly, have laws
of errors in the same way as the observations, they also resemble the observations in the
circumstances that there can be bonds between timm. and, unfortunately, there can be
bownls betwees “results”, even though they are derived from unbound observations, If
only some observations have been employed in the computation of both R' = [+'o] and
R" = |/"0], these results will generally be bound to each other. This, however, does not
prevent us from computing a law of erfors, for instance for aR’ 4 bR". We can, at any
rate, represent the function of the results directly as a function of the unbound observations,
0, .... 04,

' o aR 4 bR" = [(@’ + br")o). (54)

This possibility ix of some importance for the treatment of those cases in which
the single observations are bound. They must be treated then just like results, and we
must fry to represent them as functions of the circumstances which they have in common,
and which must be given instead of them as original observations. This may be difficult
to do, but as & principle it must be possible, and functions of bound observations must
therefore always have laws of errors as well as others; only, in general, it is not possible
to compute these laws of errors correctly simply by means of the laws of errors of the
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observat.  enly, just as we cannot, in general, compute the law of errors for aR' -} bR"
by means of the laws of errors for R’ and R".

In example 5, § 29, we found the mean error in the determination of a direction B
between two points, which were given by bond-free and equally good (14(z) == A4(y) = 1)
measurements of their rectangular co-ordinates, viz.: 1,(R) = 7 and then, in example 8,
we determined the angle ¥ in a triangle whose points were determined in the same way.

It seems an obvious conclusion then that, as ¥V = R'—R", we must have 2,(V)

= 2y(R')H24(R") = -2,2—, +72',,—i. But this is not correct ; the solution is 2,(V) = "—'t:ﬁ}',,f B '

where 4, £, and 4" are the sides of the triangle. The cause of this is, of course, that
the co-ordinates of the angular point enter into both directions and bind R’ and B’ together.
But it is remarkable then that, when V is a right angle, the solutions are identical.
With equally good unbound observations, ‘o,, 0,, 0,, and o,, We get

Ay(09—20,--09) = 64,(0)

A5(05—20,4-0,) = 64,(0),
but

A3(05—30,+30,—0,) = 201,(0),

although 0,—30,+30,— 0y == (0,—20,+0,) — (0,— 20, 0,), according to which we
should expect to find

A3(04— 80430, — 0g) = Ay(03—20;+0,) + A3(0y—20,+00) = 1224(0).

But if, on the other hand, we combine the two functions

R == 0y+480,—40, and R" == 20,+-30,—o0,,
Where ,(R') == 531,(0) and 2,(R") == 1444(), and from this compute i, for any fuhction
aR’'+ bR", then, curiously emough, we get as the correct result i,(aR’'+OR") =
(6301 145%) 25(0) = a2y(R') 4 b*24(R").

Gauss's general prohibition against regarding results of computations — especially
those of mean errors — from the same observations as analogous to unbound ubservations,
bas long hampered the development of the theory of observations.

To Oppermann and, somewhat later, to Helmert is due the hononr of having
discovered that the prohibition is not absolute, but that wide exceptions onabie us to
simplify our calculations. We must therefore study thoroughly the conditions on which
sctually existing bonds may be harmless.

Let 0,,...0, be mutually unbound observations with known laws of errors, 1,(a),
A4(0), of typical form. Let two general, linear functions of them be

[po] = pyo, 4 ...+ paoa
Leo) = gioy + ... + guta.
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For these then we know the laws of errors
L[po] = [phi(0)]s As[po) = [p*As(0))s Alpo] = O
Ai[g0] = (94, (0))s 24[g0] = [g*2: (o). 4r[gqo] = of
For“a general function of these, F' = a[po]+b[¢o], the correct computation of the law of
errors by means of F = [(ap -+ bq)o] will further give

A(F) = (up,+Bq,)44(0)) + - . - + (spat-bga) 4 (04) =
= al,[po] + bi,[y]
A4(F) == (ap,+5¢,)* d4(0,) + - - - + (apa + 8q4)* A4(08) = ‘
= &*1,[po] +b*2,[40] +- 2ub{ pq 4(0)]
A (F) = 0 for r>2.
1t appears then, both that the mean values can be computed unconditionally, as
if {po] and [go] were unbound observations, and that the law of errors remains typical.
Only in the square of the mean error thers is a difference, as the term containing the
factor 2ab in 1, (F) ought not to be found in the formula, if [po] and [go] were mot
bound to one another.
When consequently

[Pgd4(0)] = P19.45(0i) + - . . + Pagudy(04) = 0 (67
the functions [po] and [go] can indeed be treated in all respects like unbound observations,
for the law of errors for every linear function of them is found correctly determined also

upon this supposition. We call such functions mutually “free functions”, and for such,
consequently, the formula for the mean error

A([pa)a + [g0]6) = a*[p*2.(0)] + 6*[9* 4y(0)) (68)

for » > 2.

} ' (65)

(56)

hotds good.

If this formula holds good for one set of finite values of a and b, it holds good
for all.

If two functions are mutually free, each of them is said to be “free of the other”,
and inversely.

Example 1. The sum and difference of two equally’ good, unbound observations
are mutually free.

Example 2. When the co-ordinates of a point are observed with equal accuracy
and without any bonds, any transformed rectangular co-ordinates for the same will be
matually free.

Example 3. The sum or the mean value of equally good, unbownd observations
is free of every difference between two of these, and gonerally also free of every (linear)
fanction of such differences.
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Example 4. The differences between one observation and two other arbitrary, un-
bound observations cannot be mutually free.

Example 5. Linear functions of unbound observations, which are all different, are
always free.

Example 6. Functions with a constant proportion cannot be mutually free.

§ 37. In accordance with what we have now seen of free functions, corresponding
propositions must hold good also of observations which are influenced by the same circum-
stances: it is not necessary to respect all connecting bonds; it is possible that actually
bound observations may be regarded as free. The conditions on which this may be the
case, must be sought, as in (57), by means of the mean errors caused by each circumstance
and the coefficients by which the circumstance influences the several observations. — Note
particularly:

If two observations are supposed to be connected by one single circumstance which
they have in common, such a bond must not be left out of consideration, but is to be
respected. Likewise, if there are several bonds, each of which influences both observations
in the same direction.

If, on the other hand, some common circumstances influence the observations in the
same direction, others in opposite directions, and if, moreover, one class must be supposed
to work as forcibly as the other, the observations may possibly be (ree, and the danger of
treating them as unbound is at any rate less than in the other cases.

§ 38. Assuming that the functions of which we shall speak in the folloving are
linear, or at any rate may be regarded as linear when expanded by Taylor's formula,
because the errors are so small that we may reject squares and products of the deviations
of the observations from fixed values; and assuming that the observations o,, ... 0., On
which all the functions depend, are unbound, and that the values of 24(0,) ... Ad.(0s) are
given, we can now demonstrate a series of important propositions.

Out of the total system of all functions

[po] = py0, + ... + paou
of the given n observations we can arbitrarily select partial systems of functions, each
partial system containing all those, which can be represented as functions of a number of
m < n mutually independent functions, represeniative of the system,

[a0] == a,0, 4+ ... 4 au0n

[do] = d,0, + ... -+ duoa,
of which no one can be expressed as a function of the others. We can then demonstrate
the existence of other functions which are free of every function belonging to the partial
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system represented by (un] .... [do|. It is sulficient to prove that such a function
[90) = 9,0, + ... gwou is free of [uo]... |do] in consequence of the equations
lyady|=0...|yd2,} = 0. For if so, |gn| must be frce of every function of the partial
system,
(et ... t-2d)o] = rlao] - ...- - z{do],
hecause
[glra +... “2d)iy)| = wlguiy| ... +2lyddy] = 0.

Any function of the total system [po] can now in ome single way be resolved
into a sum of two functions of the same observations, one of which is free of the partial
system represented by [no]...[do], while the other belongs to this system.

If we call the free addendum [p'o], this proposition may be written

[po] = [#'0] + {#[a0] + ...+ z[do]}. (59)
By means of the conditions of freedom, [p'ad,] = ... == [p'dd,] —= 0, all that
concerns the unknown function [p'o] can be eliminated. We find

[paly] = zand,] + ... + 2{dai,]
............................... } (60)
{pd2,] = z[ad2,] + ... + 2z{dd 1,],

from which we determine the coefficients x ...z unambiguously. The number m of. these
equations is equal to the number of the unknown quantities, and they must be sufficient
for the determination of the latter, because, according to a well known proposition from

the theory of determinants, the determinant of the coefficients

![ual,]....[dal,]i lapy ... a4

......... e | =

[add,], ... [ddd,]|
is positive, heing a sum of squares, and cannot be == 0, unless at least one of the func-

tions [aa) ... |do] could, coutrary to our suppeeition, be represented as a function of
the others,

From the values of z ... 2 thus found, we find likewise
[p'o]) = [po] — x[ao} ~ ... — z[do]. (61)

A4(0r) - . A4(0))

If [po] belongs to the partial system represented by [ao].... [do], the de-
termination of z....2 expresses its coefficients in that system only, and then we get
identically [p'o) = 0.
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But if we take [po] out of the partial system, then (61) gives us [p'o] as different
from zero and free of that partial system. It [po] —[go] belongs to the partial system of
[a0]...[do}, [go] must produce in this manner the very same free fanction as {po].

Let [po]...[ro] be n—m functions, independent of one another and of the m
fanctions [ao] ... [do]; if we then find [p'o] out of [po] and [r'o] out of [ro] as the free
functional parts in respect to [ao]...[do), the n functions [ao]...[do] and [p'0]...[ro]
may be the representative functions of the total system of the functions of o,...0,, because
no relation a[p'o] + ... + 8[r'0] = 0 is possible; for by (61) it might result.in a relation
a[po] + ... + 8[ro] + x[a0o] ...+ ¢[do] = O in contradiction to the presumed represen-
tative character of [po]...[ro] and [a0]...Tdo).

If we employ [p'o]... [0} or other m —m mutually independent functions

g0} . .. ko),
all free of the partial set [ao]...[do], as representative functions of another partial system
of 0,...04, then every function of this system must be free of every function of the partial
system [ao]...[do] (Compare the introduction to this §). No other fanction of o,...0,
can be free of [ao]...([do] than those belonging to the system [go]...[ko]; otherwise we
should have more than n independent functions of thé m variables o, ...o,.

Thus selecting arbitrarily a partial system of functions of the observations o, ...,
we can — with reference to given squares of mean errors A,(0,)...2,(0s) — distribute
the linear homogeneous functions of these observations into three divisions:

1) the given partial system [a0] ... [do},

2) the partial system of functions [go] .. .[ko], which are free of the former, and

8)all the rest, of which it is proved that every such function is always in only one way
compounded by addition of one function of the first partial system to one of the second.

The freedom of functions is a reciprocal property. If the second partial system
[go]. ..[ko] were selected arbitrarily instead of the first |an]...[do], then only this latter
would be found as the free functions in 2); the composition of every function in 3) would
remain the same.

Example. Determine the parts of o, -+ 0,, 0, 1 0,, 0,4 o,, and o, - o, which
are free of o, + o0, and o, + o,, on the supposition that all 4 observations are oqually
exact and unbound.

Answer: !(o, + 0, — o0, —o0,), etc.
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§39. Like all other funclions of the ohservations o, ,..o0u. each of these observed
values, for instance o, is the sum of two quantities, nne o, belonging to the system of
fao] .. [do], the other o, to the partial svstem of {gu]... ko], which is free of this. Bat
from o, = 0; + o; follows, generally, that | ps| = | po"|~ [po'). and [po"). evidently belongs
to the system of [wo]... |do] | 1m| to the system which ix free of this, Accordingly there must
between the n functions o). ..an exist m rolahom |uu] - ...[d¢') = 0; likewise » — m
relations [g0"] = . [ko"l = 0, hetween o)

§ 40. That the functions of obsenanons can he split up, in an ar-logous way;
into three or more free quantities, is of no conseyuence for the following, eccept when g
imagine this operation to be carried through to the utmost. It is easy enough to see,
however, that also the partial systems of functions can be split up. We could, for instance,
among the representatives' |wn]...[do] of one partial system select a smaller number
[ao].,.[bo]}, and from the others [cc]...[do], according to (37), separate the functions
[c'o]...{d'0} which were free of [as]...[bo]. [c'o]...[d'o] would then represent the sub-
system of functions, free of [wo]...[bo], within the partial system [an]...[do}: and in
this way we may continue till all representative functions are mutually free, every single
one of all the rest. Such a collection of representative functions we call a complete set
of free funclions. Their number is sufficient to enable us to express all the observations,
and all functions of these observations, as functions of them; and their mutual freedom
bas the effect that they can be treated, by all computations of laws of errors, quite like
unbound obscrvations, and thus wholly replace the original observations.

§41. The mathematical theory of the transformations of observations into free func-~
ticns is analogous to the theory of the transformation of rectangular co-ordinates (comp.
§ 34, example 2), and is treated in several text-books of the higher algebra and determinants
under the name of the theory of the orthogonal substitutions. 1 sball here enter into
those propositions only, which we are to use in what follows.

When we have transformed the unbound observations o,...0, into the complete
set of free functions [ao). [V'o]...[d"0], it is often important to be able to undertake the
opposite transformation back to the observations. 'l'his is very easily done, for we have

a
0 - {('“'(;'z] [aoT +-... [d'd'l ][d’ ]} 1(09), 62)
which is demonstrated by substitution in the equations for the direct transformation

fuo] = a0, + ... 4a40a

fd’0] = dio,+ .:. +dioa,
bocause [ab'dy| = [ad”2g) = ... |Vd 2] = O.
‘.
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As the original observations, considered as functions of the transformed observations
[ao]...[d"0], must be mutually free, just as well as the latter are free functions of the
former, we find by computing the squares of the mean errors 2, (o) and the equation that
exproases the formal condition that o, is free of o, two of the most remarkable properties
of the orthogonal substitutions:

1 al it
Lo ettt (63)

aad a@a, dids
-Gt te (64)

If all observations and functions are stated with their respective mean error as
unity, or are divided by their mean error, a reduction which gives also a more elegant
forin to all the preceding equations, the sum of the squares of the thus reduced observations
is not changed by any (orthogonal) transformation into a complete set of free functions.

We have

[ac]* [@o _ o %

T 7 IR N7 5 R O R AR (©)
which, pursuant to the equations (63) and (64), is easily demonstrated by working out the
sums of the squares in the numerators on the left side of the equation. As this equation
is identical, the same proposition holds good also, for instance, of the differences between

1 ++.0q 80d n arbitrarily selected variables corresponding to them o,...v,, and of the
corresponding differences between the values of the functions. Also here is

(L 1-—[” || L@l = (@) (efo—o] TN i Chad) i

24 [d¥0] [aal,] (@@ 1) 66)
- (0‘ —9 ) + +(0.—9.)
Aq(0y) 25(04)

§ 42. For the practical computation of a complete set of free functions it will be
the easfest way to. bring forward the functions of such a set one hy one. In this case we
mus® select a sufficient number of functions and fix the order in which these are to be
taken into consideration. For a moment we can imagine this order to be arbitrary.

The function [ao], which is the first in this list, is now, unchanged, taken into the
transformed set. By multiplying the selected function by suitable constants of the form
E%—:J:—]. and subtracting the products from the remaining functions [bo] in the list, we can,
wcotalng to § 88, from each of these separate the addendum which is {ree of the selected
function. Of these then the ome which is founded on function Nr.2 on the list is taken
into the transformed set. This function is multiplied in the same way and subtracied from
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the still remaining functions, so that they give up the addenda which are free of both the
selected functions, and so on. The following schedule shows the course of the operation,
for the case n == 4.

Yuse Coefficients Sums of the Products Rule of Computation

Ayton) Aytog) Aytop) Aotog)
[ao0] a, o, 6, a, [acd] [abA] [ acd] [ add] [ o] is selected.
[ bo] & b, b, b, ([bad) (bbA) [ bed) [ &dd] [ bo]—[wo] [ bud]:[ aad] = [ bo]
[co) ¢ ¢ ¢, ¢, [cad) [cba) [ ccA] [ edd) [ co)—[ao)-[ cud):[ wad] = [ co}
[ d0) d, d, d, d, [deA]) [@bA) [dei] [ ddd] [ do)—[aol-[ dud):[ aad] = [ d'}

[v0) & b, b, ¥ [b%'2) (b'¢'A) [ Bd'2] [ bo) is selected, is free of [ao]

[co] ¢ ¢ ¢ ¢ (6] [Cc'a] [ ed'd] [ o] —[bo]-[ c6'a):[ bBA] = [ ¢}
(do) &, &, &, & [@b2] [d¢2) [dd'd] [d'o)— [¥o].[dba):([ bb'A] = [d"0]
[e0) ¢ ¢ ¢ ¢} [¢’c"2) [c"d"2) [c"o] is selected, is free of [b'0] and [«'0]
(o] & & & & (@) [@d1]  [d0) - [¢'o) - [d""]: [N} = [d"0)
(d"0) a7 d7 47 a7 [d"d"2] [d"'0] is free of [c"0], [b'o], and [uo].

The computations of the sums of the products (in which for the sake of brevity
we have written A for i,(0)) could be made all through by meens of the single coef-
ficients in the transformed functions, as it must be done in the beginning by means
of the coefficirnts in the original functions. It is much easier, however, (particularly if
for some reason or other we might otherwise do without the computation of the coeffi-
cients of the transformed functions), to make use, for this purpose, of the following remark-
able property of these sums of the products. We have, for instance,

s bad l
ven= (- )2 - |
= (bed] — faea) 24 _ (pazy Lo4] (bad) fear) _

aaz) ~ %24 [Gaz) T L (a3 Taaa

(67)
= [bed) — [aci] - [bad]: [ead] . i
Consequently, the same general rule of computation as, according to the schedule, holds
good of the functions and their coefficients, holds good also of the sums of the products
and of the squares, The schedule gets the following appendix:
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[bhA)~[abd)-[bad): [ead] = [b'b'], [bed]--{ucd]-[bad}:[aud) == [b'¢'A), [bdA}—[ada]-[bai]: [aal] = [B'd'A)
|cb] —[aba]-[cal] : [aad] = [c'b'a], [ccA]—[wcA)-[cad]:[aad] = [¢c'd), [cdA]—[adi]:[cal]:[aad] = [¢d'd]
[dba)—[abd] - [dal]: [aad) = [d'}'d], [ded]—[acd]:(dad):[aad] =[d'c'], [ddA)—[ad]}[dad):[acd] = [d'd']

(CCA)—[B'eA)- [Cb'a): [BB') == ("), [C'A)—[b'd'A]- [¢b'A]: [B'R) = [c"d"A]
[d'¢2)—[6'c')-[d'b'2);: [b'D'2] == [@"¢"A), [d'd'A] —[b'd'A]{d'b'a]: [b'b'A] == [d"6"2)

[6"@" Q) —[¢"d" 3] - [d"¢" 3): ["¢" 3] = [d"d" 2]

As will be seen, there is a check by means of double computation for each of
the sums of the products properly so called. The sums of the squares sre of special
importance as they are the squares of the mesn errors of the transformed functions,
4,[00] == [aad], A4[b'0] = [W''2], A[c"0] == [¢"¢"A], and A,[d"0] == [d"d"1].

Ezample. Five equally good, unbound observations o,, 0,, 04, 0,,8nd 0, represent
values of a table with equidistant arguments. The function tabulated is known to be an
integral algebraic one, not exceeding the 3+ degree. The transformation into free functions
is to be carried out, in such a way that the higher differences are selected before the lower
ones. (Because 4¢, certainly, 4% etc., possibly, represent equations of condition). With symbols
for the differences, and with 2,(o) =~ 1, we have then:

Fanction Coefficients | Sums of the Products Facturs
o0s| 0o, +00y-t10s 400, 100, 1 —1 —2 3 6] —&
Vdoyl 0 0 -1 1 0 " 2 3 —6-10] }
oyl 0 1 —2 1 0 ¥ 3 6-10-20 3
Vdo,| 0 -1 3 —3 1 , 3 —6-10 20 35| —}
do,| 1 —4 6 —4 1| 6—10-20 35 70 is selected
op—do |- B O B -t 0 0
Vdo+ido,| 4 —+ —+ 1 4 |-+ + ¢ - i
Lo, +3do,| 3 - -2 -+ b |-+ ¢+ ¢ O 0
Vo, —4do,|—¢4 1 0 —1 | 0 -1 0 § is selected
op—dlo, |—&% B H OB -&| w-t - 1
VM.‘-}-!VA’O,—--‘!;A‘O. '-i!i "i!.‘ —4 al_. R | ’a!i 12 -4
Loy+3de,l 3 -4 —F ~t § |- ¥ 3} is selected
ot Lotidon| ¢+ ¢ ¢ 0+ H | F O are free
Vd‘l"bho"‘lyd"’a"*d‘": "'* "Tl? 0 '115 * 0 T‘E lmmm
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The complete set of free observations and the squares of their mean errors
are thus:

©0) = 04+ 4, } 4%, == }(0y40y+0,+0,+05),  44(0) = }
- (1) == Vdoy— y4r04+§(V a0y —}d',) = }5(—20,—0y+0,4205),  2,(1) = /5
(2) - Loy} 4, == }(20,—0y—20,—0,+204), 45(2) = }
(3) = V. flo,— 4%, ~ }(—0,+20,—20,+0,),  A,(8) — }
4) = 4o, - 0,—40,+60,—40,40,, 1,(4) =~ 70

Through this and the preceding chapter we have got a basis which will generally
be sufficient for computations with observations and, in a wider sense, for computations
with numerical values which are not given in exaot form, but only by their laws of errors.
We can, in, the first place, compute the law of errors for s given, linear function of reci-
procally free observations whose laws of presumptive errors we kmow. Ry this we can
solve all problems in which there is not given s greater number of observations, and other
more or less exact data, than of the reciprocally independent unknown values of the
problem. When we, in such cases, by the means of the exact mathematics, have expressed
each of the unknown numbers as & function of the given observations, and when we have
succeeded in bringing these functions into a linear form, then we can, by (35), compute
the laws of errors for each of the unknown numbers.

Such a solution of & problem may be looked upon as a transformation, by which
» observed or in other ways given values are transformed into » functions, each corre-
sponding to its particular value among the independent, unknown values of the problem.
It lies often near thus to look upon the solution of & problem as a transformation, when
the solution of the problem is not the end but only the means of determining other un-
known quantities, perhaps many other, which are all explicit functions of the independent
unknowns of the problem. Thus, for instance, we compute the 6 elements of the orbit of
a planet by the rectascensions and declinations corresponding to 8 times, not precisely as
our end, but in order thereby to be able to compute ephemerides of the future places of
the planet. But while the validity of this view is absolute in exact mathematics, it
is only limited when we want to determine the presamptive laws of errors of sought
functions by the given laws of errors for the observations. Only the mean values, sought
88 well as given, can be treated just as exact quantities, and with these the general linear
transformation of m given into s sought numbers, with altogether »* arbitrary comstants,
remains valid, as also the employment of the found mean numbers as independent variables
in the mean value of the explicit functions.

If we want also correctly to determine the mesn errors, we may employ po other
teansformation than that into free functions. And if, to some extent, we may cheose the



228

independent umknowns of the problem as we please, we may often succeed in carrying
through the treatment of a problem by transformation into free functions; for an unknown
number may be chosen quite arbitrarily in all its » coefficients, and each of the following
unknowns looses, as a function of the observations, only an arbitrary coefficient in com-
parison to the preceding one; even the n'* unknown can still get an arbitrary factor.
Altogether are §n(n-+1) of the n® coefficients of these transformations arbitrary.

But if the problem does not admit of any solution through a transformation into
free functions, the mean errors for the several unknowns, no matter how many there
may b, can be computed only in such a way that each of the sought numbers are directly
expressed a8 8 linear function of the observations. The same holds good also when the
laws of errors of the observations are mot typical, and we are to examine how it is with
4, and the higher half-invariants in the laws of errors of the sought functions.

Still greater importance, nay a privileged position as the -only legitimate proceeding,
gets the transformation into a complete set of free functions in the over-determined problems,
which are rejocted as self-contradictory in exact mathematics. When we have a collection
of observations whose number is greater than the number of the independent unknowns
of the problem, then the question will be to determine laws of actual errors from the
standpoint of the observations. We must mediate between the observations that contradict
one snother, in order to determine their mean numbers, and the discrepancies themsolves
must be employed to determine their mean deviations, etc. But as we have not to do with
repetitions, thé discrepancies conceal themselves behind the changes of the circumstances
and require transformations for their detection. All the functions of the observations
which, as the problem is over-determined, have theoretically necessary values, as, for
instance, the sum of the angles of a plane triangle, must be selected for special use.
Besides, those of the. unknowns of the problem, to the determination of which the theory
does' not contribute, must come forth by the transformation by which the problem is to
be solved.

As we shall see in the following chapters on Adjustment, it becomes of essential
moment here that we transform -into a system of free functions. The transformation begins
with ‘mutually free observations, and must not itself introduce any bond, because the trans-
formed functions in various ways must come forth as observations which determine laws
of. actual errors,

X. ADJUSTMENT.

& 48. Pursuing the plan indicated in §5 we now proceed to treat the determina-
tion of laws of errors in some of the cases of observations made under varying or different



