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In fitting various types of curves to reaction-time data,’ the
writer was impressed with the enormous amount of labor and
boredom involved in the calculation of the constants of logarithmic
distributions. Besides the constant use of a set of logarithm tables,
it requires the tedium of squaring large numbers on a machine to
compute the second moments of the distributions. In order to
eliminate some of the labor involved in such a process, a short
method was devised for the computation of the average and the
standard deviation of logarithmic distributions.

The short method described in this pape: was originally
developed to facilitate the work of fitting logarithmic normal curves
to a large number of reaction-time distributions, but dispersions
approximating this type seem to be sufficiently common in econ-
omics and biology to warrant a more general tise of short methods
in the computation of the constants of such distributions. In the
field of economics, logarithmic curves have been fitted with suc-
cess to distributions of income and prices, and probably could.be
applied equally well to distributions of capital. Many skewed
distributions can also be found in the fields of biology and psy-
chology. Kapteyn fitted a logarithmic curve to a distribution iof

the minimum weights necessary to produce a sensation of pres -

*A portion of the work involved in this paper was carried ‘out during .

the writer’s tenure as a National Research Fellow.
1 Cf. Facilitation and Inhibition. Arch. Psychol. No. 86, 56 p.
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sure.? Kapteyn attempts to show that logically the normal curve
is the exception and skew curves the rule. For example, if “the
diameters of certain ripe berries” are distributed in a normal curve,
their volumes will be distributed in an asymmetrical curve; in
other words, volume increase will be dependent upon size, so that
volume changes are greater for large berries than for small ones.
That skew curves are the rule can be shown analytically. Suppose
certain quantities x are distributed normally, and any other quanti-
ties x are expressed as functions of z, thus,

zef(x)
Then,
(1) dz=f'(x)dx
If the frequency curve for the z's is,
(2) _(=z-M 2
N 2o
yve—F>=©

OYLTl

then the frequency curve for the x’s is,

3) ree-r1)2
N , 2ol
y—— flw)e
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It will be seen at once that the x’s cannot be distribhuted normally
provided x is a non-linear function of . If we let Zz=logx, then
ax = %1 and equation (2) becomes
-(logx- M) 2

Ro

(4) y = e

i~

Eh

This is the logarithmic curve of distribution, the theory of which
has been treated by several writers, one of the first and most im-
portant papers on this subject being that of McAllister.* The study

2], C. Kapteyn, “Skew frequency curves in Biology and Statistics”.

Groningen. p. 42-43, 1903.
3 The Law of the Geometric Mean. Proc. Roy. Soc. 29:367. (1879).
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of the properties of the logarithmic curve of error was undertaken
by McAllister at the suggestion of Galton,* who saw the possibility
of applying it to psychological and social phenomena.

Dispersions épproximating this type are illustrated by dis-
tributions which are definitely limited at the zero point, but a more
- definite presumption in. favor of the logarithmic curve is indicated
when the real origin, determined a priori or deduced from empirical
considerations, does not correspond witt ‘he origin on the value
scale.

Reaction-time distributions are good examples of dispersions
where a displacement of the origin is indicated by empirical con-
siderations. A little reflection will show that there must be a
physiological limit for the speed of reaction. It takes a certain
minimum time for the neuro-muscular machine to do its work. "The
time it takes for the machine to do its work constitutes an un-
disturbed region within which no deviations ever occur. Reaction-
time dispersions approximate the logarithmic more closely than the
normal curve of error. Investigations in the field of learning often
give distributions which have origins other than the zero of the
scale which can be determined a priori . . . .that is. the real origin
follows inevitably from the conditions of the experiment. If the
norm of mastery for learning a maze is two perfect trials out of
three, then the criterion is such that an animal to learn a maze must
make at least two perfect runs. In other words, the experiment-
er’s criterion is such that no deviations could possibly occur under
two trials.

In using the short method for finding the first and second
moments of a logarithmic distribution, the computer must still re-
sort to a table, but in this case it is only necessary to use a single
page table instead of an extensive logarithm table. Furthermore,
the labor of squaring the logarithms is eliminated. The short
method can best be explained by following the process through an

¢ The Geometric Mean in Vital and Social Statistics. Proc. Roy. Soe.
29:365. (1879).
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actual example.® This is illustrated in Table II on a distribution of
reaction-times. Beginning at 70 (the real origin of the distribu-
tion is assumed to be at 70) the step-intervals are numbered from
zero to the end of the distribution. Under the log x column of
Table I the value for each step is found and multiplied by the
frequency for each step. This operation gives the values shown
in the Flog x column of Table II. The sum of these values
divided by AV (number of cases) gives the correctionC. The
average (log G,) for the logarithmic distribution is finally found
by adding a factor K to the correctionC. The constant K depends
upon the length of the step-interval. In this distribution, the
length of the step-interval is ten. Looking under column K of
Table I, we find that the value of A for a step-interval of ten
units is equal to .69897. The geometric mean (G) of the dis-
tribution is found by adding 70 to (G,).°

The process of finding the second moment and standard
deviation (o) is similar to that for finding the first moment
and the average. In one respect it is simpler: no correction has
to be added for the length of step. The F log‘z column is ob-
tained by multiplying the value for each step in the log?x column
of Table I by its apprapriate frequency. The sum of these divided
by N (number of cases) gives the crude unit moment. The square
of the correction C is then subtracted to give the corrected unit
moment around the average. The square root of the corrected
unit moment around the average gives the standard deviation(@y, ),
and the antilog of gp  gives the standard deviation ratio (o).

The formula for finding the average of a logarithmic distribu-

tion is
’ F x
log 6,--‘3-%’5'— +K=C+K

8 For those interested, the proof of the formulae for getting the average
and standard deviation is given in an appendix at the end of this paper.

¢ One would expect the geometric mean to be different if the origin were
taken at a. point other than 70. An origin at 70 was assufmed because it
results in an extremely good fit to the distribution. In this case, 70 would
correspond to the physiological limit below which no deviations ever occur.
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TABLE II
%
Time F Step F log x F log®x
70 1 1 A
80 3 2 1.431363 682934
90 14 3 9.785580 6.839826
100 40 4 33.803921 28.567627

10 55 5 52.483338 50.081832
2 60 6 62.483561 65.069923
30 52 7 57.925054 64.525229
40 46 8 54.100197 63.626769
50 33 9 40.604814 49.962150
60 28 10 35.805100 45.785901
70 21 11 27.766605 36.713541
80 14 12 19.064189 25.960237
90 9 13 12.581460 17.588126
200 7 14 10.019546 14.341615
10 7 15 10.236785 14970255
20 4 16 5.965446 8.896638
30 3 17 4.555541 6.917653
40 1 18 1.544068 2.384146
50
60 1 20 1.591064 2.531486
70
\80 1 22 1.633468 2.668219
400 400)443.381100 400)508.114107
2 1.270285
C= 1108452 C(C'= 1.228667
K= 698970
= 041618
log G~ 1.807422
G= 204004
For origin at 70 . ... G,= 65.8

G=1358 o= 159
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TABLE I
Step

Step Log x (Log x)*  Interval K

1 .00000 00000 .00000 00000 1 .30102 99956
2 47712 12547 22764 46917 2 .00000 00000
3 69897 00043 48855 90669 3 17609 12590
4 84509 80400 71419 06972 4 .30102 99956
5 95424 25094 91057 87668 5 .39794 00086
6 1.04139 26851 1.08449 87247 6 47712 12547
7 111394 33523  1.24086 97921 7 .54406 80443
8 117609 12590  1.38319 06496 8 60205 99913
9 1.23044 89213 1.51400 45481 9 64321 25137
10 1.27875 36009 1.63521 07719 10 69897 00043
11 1.32221 92947 1.74826 38633| 11 74036 26894
12 1.36172 78360 1.85430 26993 12 77815 12503
13 1.39794 00086 1.95423 62678| 13 81291 33566
14 1.43136 37641 2.04880 22253 14 .84509 80400
15 1.46239 79978 2.13860 79042|| 15 .87506 12633
16 1.49136 16938 2.22415 97018 16 90308 99869
17 1.51851 39398 2.30588 45856 17 92941 89257
18 1.54406 80443 2.38414 61255 18 95424 25094
19  1.56820 17240  2.45925 66473|| 19 97772 36052
20  1.59106 46070  2,53148 65837|f 20.  1.00000 00000
21 1.61278 38567  2.60107 17684| 21 1.02118 92990
22 1.63346 84555  2.66821 91953 22  1.04139 26851
23 1.65321 25137 273311 16157]] 23  1.06069 78403
24 1.67209 78579  2.79591 12465| 24  1.07918 12460
25 1.69019 60800 2.85676 27889 25 1.09691 00130
26 1.70757 01760 291579 59062| 26 1.113% 33523
27 1.72427 58696 297312 72744\ 27 1.13033 37684
28 1.74036 26894 3.02886 22909| 28 1.14612 80356
29 1.75587 48556 3.08309 65087| 29 1.16136 80022
30 1.77085 20116 3.13591 68471| 30 1.17609 12590
31 1.78532 98350 3.18740 26197} 31 1.19033 16981
32 1.79934 05494 3.23762 64129) 32 1.20411 99826
33 1.81291 33566 3.28665 48386 33 1.21748 39442
34 1.82607 48027 3.33454 91850 34 1.23044 89213
35 1.83884 90907 3.38136 59785} 35 1.24303 80486
36  1.65125 83487  3.42715 747371l 36  1.25527 25051
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37 1.86332 28601 3.47197 20810§ 37 1.26717 17284
38 187506 12633  3.51585 47414 38  1.27875. 36009
39 1.88649 07251 3.55884 72561f 39 1,29003 46113
40 1.89762 70912  3.60098 85775 40 1.30102 99956
41 1.90848 50188 3.64231 50672 41 131175 38610
42 191907 80923  3.68286 07246| 42  1.32221 92947
43 192941 89257  3.72265 73909 43 1.33243 84599
44 193951 92526  3.76173 49312 44 1.34242 26808
45 1.94939 00066  3.80012 13980f 45 1.35218 25181
46 195904 13923  3.83784 31768| 46 1.36172 78360
47 1.96848 29485 3.87492 51187 47 1.37106 78622
48 1.97772 36052 3.91139 06589 48 1.38021 12417
49 198677 17342  3.94726 19240} 49 1.38916 60843
50 1.99563 51945 3.98255 98299] 50 1.39794 00086
. —

and, G,=antilog(C +K')

where G, is the geometric mean measured from an origin which
may be other than the zero of the scale. The geometric mean (G)
measured from the zero of the value scale is,

G = G, +(displacement of the origin)
The formula for finding the standard deviation around the average

is,
%= /Z.'Flog!x .c?
N

and, o, = antilog oy

Summary of steps in the calculation of the average (logG,)

by the short method: '

1. Beginning at the origin, find the deviation of the mid-
point of each step-interval from the origin in units of step-
interval.

2. Using Table I, find the log x of each step-deviation and

weight it by its appropriate £° (frequency).
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3. Find the sum of the Flog*x’s, and divide this sum by N
(number of cases). This gives the correction C.

4, Using Table I, find the value of A corresponding to the
number of units in the step-interval. Add the factor A’
to the correction C to get the average (log G,).

Summary of steps in the calculation of the standard deviation

(cy) around the average( log G, ) by the short method:

1. Using Table 1, find the log"z of each step-deviation
and weight it by its appropriate frequency.

2. Find the sum of the £ log®x's; and divide this sum by
N.

3. Then subtract the square of the correction C to get the
second unit moment around the average.

4, Extract the square root of the second unit moment to ob-
tain the standard deviation ().

APPENDIX

DipucTioN oF THE FORMULAE FOR THE SHORT METHOD

Let log G be the logarithmic mean, x, the length of step,
fy «-.....7, the frequencies for successive steps, and 77, m,
. . ., the mid-points of the steps for origin at zero. Then
the first mid-point, 77,is at x/2 the second, 777, is at Fx/etc.
For convenience, these items may be arranged in the form of -a
table.

Midgosnt| p- F log M F log®M
m, | f £ log % f; log? %
e | % %, log % % log

L |6l neiEts | g

- 2
N 1096 Z L g1 Zhler P g
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where G is the geometric mean, and gy is the standard deviation

around log G .
We have, therefore,
wG'fI/OQJ}é*f,'/OQ"%J- e e e '*ﬁ,/og(&""?x

N

Stating the logarithm of each fraction as the sum or difference
of the logarithms of its factors, we have,

£, (logl-logl+log x)s--+ ., [log(Zm-1)-log 2 + log )
log G = ~

_ flogl +flog3+---+ £, log(2n-1)
N

+logx -/log 2

-
AL "’96’5’7 )L-/ogx -log 2

S.
1nce /oy = P f/vlgz x

and, 10g 2= é_%’.g_‘.z_

Letting K= log x - log 2

and, c-Z [~ /09’62 n-1)]

we finally have,
logG=C+K
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Where C is the correction, and A is the constant indicated in
Table I.

For the second unit moment around log G, we have,

o2, Eltn tog* (B34) ] (z: [t 109 (4% x])z
(o N - '

N

. z{ ¢, L/ogf 27-1),2109 (484) Jog x + /og‘z]}
N

. {(27 n log (* 3—9’-‘) 5* 2Z [f,, log ( ‘-?1)] log %, log "x]
N _ N

Expanding again and collecting terms, we have,

o, z:[f,[/og/zn.z)]‘} z[t, togrzn-] |?
9 N N

_z{,lwgrzn1) 7} ot
N

In Table I, x=(27-1) so that,
log x = log (2n-1)
and (logx)? <[ /og (2 n-1)]?

For each step, 1, 2,3 . . . .7, the corresponding values of x are
1,3,5....2n-1. Note that x as used in the table is not the
same as x as ased in the deduction of the formulae.

The figures in Table I are accurate to ten places of decimals.



LOGARTHMIC DISTRIBUTIONS 55

The log % column consists simply of the logarithms of edd numbers
from one to one hundred. A was computed by subtracting log 2
from the logarithm of each number indicated in the “step interval”
column. The (/og x)*column was computed by squaring fifteen
place logarithms with the aid of calculating machines. This had to
be done by indirect methods through the use of the simple algebraic
relationship, (@+7)%- a®+2ar + r2 where a is the first part
of the number and is the remainder. The table was computed by
two different persons and checked on two different calculating ma-
chines by each person.




