A NEW THEORY OF DEPRECIATION OF
PHYSICAL ASSETS

By Rosert E. Morirz

1. The various methods employed for the computation of
the depreciation of a physical asset are as many devices for re-
covering, by means of a yearly charge to production during the
life-time of the asset, its reduction in value, The methods differ
according t6 the answers given to such questions as the following:
Should the yearly charge be based on original cost or on replace-
ment value? Should the yearly charge be uniform over the life-
time of the asset? If not uniform, should the depreciation charge
be proportional to the actual reduction in market value, or, in the
case of new plant, should such charges be minimized or whoiely
deferred during the earlier years when the plant is trying to estab-
lish itself 7 Should interest be disregarded, or should the yearly
charges to production he accumulated with interest? If interest
is to be considered, should the rate be the effective rate on the
capital employed in the business, or the commercial rate? All
these questions and others have received careful consideration.?

Quite as important as those already mentioned are two other
considerations, which have been generally ignored or overlooked.
There is first the rather obvious fact that depreciation is insepar-
ably tied up with the question of repairs. Depreciation is greatest
when the asset is new, when repair charges are negligible, and it
diminishes as repair costs grow. The problem of depreciation,
therefore, cannot be adequately treated asidé from repairs. Within
certain limits depreciation may be compensated by repairs. The
yearly depreciation charge to production, therefore, should not be
based on original cost or renewal cost alone, but on original cost
plus costs of repairs during the life-time of the asset.

In the second place, the life-time of an asset is not a constant

1See Saliers, E. A., Depreciation, Principles and Applications, New
York (1922).
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as is generally assumed, but is a variable which, like depreciation-
itself, is definitely related. to the repair function. Aside from ob-
solescence, the value of an asset could be kept practically intact
indefinitely by sufficiently increasing the outlay for repairs. There
is always a threshold period of time when it is a question whether
to scrap or to continue to repair, and frequently this threshold
extends over a period of vears. In short, the life-time of an asset
is generally an unknown quantity, the determination of which re-
quires the solution of an equation which expresses the condition
that the annual charge to production, necessary to recover tle:
ariginal cost of an asset together with all repair costs, shall be a:
minimum.®

The present paper is an attempt to treat the problem of de--
preciation from the point of view here suggested. The problem,
then, is to determine the life-time of an asset such that the annual
charge to production, necessary to cover original, cost and all re-
pair charges, shall he a minimum.

2. Let us denote the original cost of the asset by C. the-
cost of repairs during the first x years by Z2(%), then the total.
outlay to he recoi'ered_is C + @(x). Furthermore, let (%)
denote the average yearly charge to production necessary to re-
cover the total outlay in x years. Then, disregarding for the
present all interest considerations, we have
) Ul SR
The notation {/(x) suggests that, in general, the unit charge to.

production will be a function of x .
We shall now define the life-time of an asset as that value of

x which will render the value of (/%) in (1) a minimum,

2], S. Taylor, A Statistical Theory of Depreciation, Journal of the:
American Statistical Association, Vol. 18 (1923), p. 1010, is, I believe, the
first writer who recognized in part the principle here set forth. He calls
attention to the fact that the useful life of a machine depends both on the
manner of distributing depreciation charges and on the assumed interest rate..
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The analytical conditions that a function of x may have a
minimum are that the first derivative of the function with respect
to x be zero and that the second derivative of the function with.
respect to x be positive. If, as is customary, we denote the first
and second derivatives of ((x)by (//x) and (/ () re-
spectively, and those of &%) by A2 (%) and & (%) respective-
ly, we find on differentiating

xRx)-C-Prx)
or)

UI//U):

X2R (o) PP )+ RR()+2C _ P?x)-ZU'Kx)’

IVE] x

U'te) =

from which it is evident that the life-time of an asset must satisfy-
the two conditions

(2) xP)-C-Ple):0  Pila)>O

In short, the life-time of an asset is given by that root of
the equation x 2 /%)- &/x)- C which will make 2"(x)> O,

For example, let us suppose that the repair function is given
by the equation (%)= @x? bz +c . Then Rlx)-2ax+b,
Rt)-2a, and the conditions (2) reduce to

QZ2= C*C‘, a>0

The life-time of the asset is therefore equal to m
provided the coefficient < is positive. It is interesting to observe:
that x is independent of the constant b .

3. In the preceding discussion no allowance was made for-
the salvage value of the asset. Let us denote the scrap-value of
the asset after x years by S(x), then the average yearly de-
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preciation, interest again not considered, is

3) Uty LR =9,

and the conditions which will make (/(x)a minimum are
) 2|R1I-S6)|-|C+R)-SCe)] -0, R"6) >5 ).

If the scrap-value is a constant, both S(¥)and S “(x)
vanish, and the life-time of the asset is determined by

(5) 2R (x)-C-RP(x)+S(x)=0 R"“(x)>0

The conditions (2) include (4) if we replace &%) by Zrx)
- Stx), that is, if in the outset we diminish the repair function by
the salvage value at time x ; to include (5) it is sufficient to re-
place C, the otiginal cost of the asset, by -5, the difference
between original cost and scrap value. With these modifications
we may treat (2) as representing the general case.

4. To avoid any possible confusion, let us denote by 7/x)
the total outlay to be recovered hy uniform annual charges to
production during the life-time of ‘the asset. Taking account of
the residual value S(x)we see that

(6) Ttx)=C+R%)-S(x), T (x)=R (x)-Stx)
and (3) and (4) take the simpler forms

(7)  Ulx) = Tlz)/z, 27 tx)-Tlx)=0, Rt)>St)
From tiie first and second of the equations (7) follows:

(8) Ttx)=Ulx)

which may be appropriately called the life-equation of an asset
since its solution yields the life-time of the asset as defined in 1.



112 DEPRECIATION OF PHYSICAL ASSETS

5. When the repair function and the salvage function are
known, the real roots of the life-equation may be found either
by direct methods or by methods of approximation. However, in
the great majority of cases which occur in practice the value of
T () is given only empirically, from the recorded experience re-
lating to the asset in question, and the data available may not lend
itself to analytical treatment. In all such cases the life-time of
the asset may be determined approximately by means of the fol-
lowing simple graphic method.

M

B2 7,/{)

|/

o u Q [
FIGURE 1.

Let AB (Fig.1) represent the graph of the equation
y = T(x) , constructed in Cartesian coordinates. We shall call
it the total outlay graph, because the ordinate y of any point
(x,y) on this graph represents the total outlay during the period
of x years if the asset were scrapped at the end of this period.
The straight line, O/, joining the origin O to any point A~
on A B, we shall call the uniform charge to production graph.
It enables us to determine at sight the aggregate amount that must
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be charged to production during any given period of time in order
to recover the total outlay O/ for the time x on the basis of
uniform distribution over the entire period x . If x is ex-
pressed in years, the ordinate (/V/, of the point on O/ whose
abscissa is unity, will represent the uniform charge to production
per year, which is required to recover the total outlay for x
years.

Now it is obvious that this unit charge (/V/ will vary with
the slope of the line O/ . It will be least when the slope is least,
that is to say, when the point 2 is-such that the line OF is
tangent to the total outlay graph. The abscissa, OC , of the point
of contact, 7, is then the life-time of the asset under considera-
tion.

To determine the life-time of an asset, interest considerations
being disregarded, we need therefore only construct the total
outlay graph 48, then draw the tangent O7 , and finally mea-
sure the abscissa of the point of contact 7
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(Tig. 2)shows the construction when 7 (x) has the forms
10 x* + 25x + 1000,
10 x# + 1000, and
10 x*- 25 + 1000
respectively.  In each case the life-time is found to be 10 years,
which verifies the theoretical conclusion of 2: that the life-time is
independent of the coefficient of x .

We have seen from graphical.considerations that the uniform
charge to production will be a minimum when its graph is tangent
to the total outlay graph, This condition is precisely the condi-
tion expressed by equation (8), which asserts that when z is
the life-time of the asset 7 '(x) . the slope of the tangent to the
total outlay graph, is numerically the same as the yearly charge
to production.

6. We now come to consider the problem of finding the life-
time of an asset when interest at a specified rate is to be taken into
account. In this case, the various items that make up the total
outlay, as well as the component charges to production, must be.
replaced by their present values at some arb’itrarily chosen epoch,
as say, the epoch zero.

Let us attempt an analytical solution of the problem. LetAt¢
represent a small interval of time. The outlay during the interval
from¢ to t+A4¢ is T(¢+A4¢)-Tr#). 1f the specified rate
of interest is, ¢ , and if we represent the discount factor by /(Z+i)
the conventional symbol v, then the present value of

T(tedt)-T(t)
at the epoch @ has some value between [7'/ ¢+ D- T/f)] vt
and [T (t+4¢)- T, tet us say
[Trteat)-T(1) ** 4%
where & has some value between O and 1. The

total outlay during the time # , evaluated for the epoch O , is.
therefore

(9) C+Z[Tt+4¢)-T()] v T84
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‘the sum extending over all the time intervals between O and #.

Now v¥> y?#04t, 46, 42 where G, is the greatest
among all the fractions ©. We have, therefore,

| [T/f+Af)— 7)) s [T/z‘+.d t)-7r6)] v 710 0*
(10)
> [T(z‘+dz‘)- 77:‘)]!/ 148,41

If the intervals A7 are all equal and their number 77, then
At =t/7m, and as r7 is increased indefinitely A# approaches
O Then ¢+&,,. At approaches ¢ ,’and we see from (10) that
(9) must have the same limit as

(11) Cell [7'/#+A #)- m)] LVt

To determine this limit we write

where the first factor on the right represents the difference quotient
which approaches 7 (%) as a limit as A# approaches O as a
limit. With this relation introduced into (11), we obtain for the
present value at the epoch O of all the increments of outlay dur-
ing the time # , the intervals of time being infinitesimal,

Tt)<C+ 5{,:,2;?; r(e8t)708) 1, f] i

(12) ) ,
c.«/yt. T'rt)- dt

o

In a like manner we may derive an expression for D (t),
the limit of the sum of the present values at epoch O of all the
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charges to production during the time # apportioned at some uni-
form, rate U to each of the intervals 4. . The charge ap-
portioned to the interval from ¢ to £ +A#is L. A¢t, its present
value at epoch O is U/ ¥ *@%Yt. The present value of the sum

of these amounts for all the intervals A# between O and ¢ is
2 U vte-at 4y

which for infinitesimal values of A# has the same limit as
Z U.v% At,  sothat finally

t
(13) Dt)=Limit Zov vt4t=u/y*‘.a/f.
at »o o)

Let {J/x) be the value which must be assigned to L/ in
order to recover 7 (%), the total outlay for x years through a
uniform charge to production, interest considered. Then D(x)
must equal 7 (%), that is,

1 x
U(&/'/Vt-dz‘s C+/Vt: T'(t).at,
(4 [

from which

c+/ VET ).t

(14) U/Z}’ /thAdf

(]

The life-time of the asset is that value of x in (14) which
will make (/(¥) a minimum. The derivative of (/(x) with
respect to x must therefore vamish. Differentiating (14) with
respect to > and setting the result equal to 0, we find

X x
vET ) [viat- [a/y‘fr’(t/, dz‘] o)

from which

% .
c+/[virit) dt

ot
[de‘

(15) T (x)=
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‘which is the life-equation of the asset, interest considered.

7. In deriving equation (13) we apportioned the charges
to production for an interval A7 and found the sum of the pres-
ent values at epoch @. D(#) is the limiting value of this sum
as the intervals A7 are indefinitely diminished. If, as is cus-
‘tomary, no charge is made to production until the end of the
year, this single charge will be the aggregate amount of the con-
stituent portions for the separate intervals 4#, accumulated with
interest to the end of the year. The charge for the interval from
t to t+A¢tis U At , its amount at rate { to the end of the
year is UJ. (/+i)LA¢t , where ¢ is the time to the end of the
wyear, and the equivalent single charge at the end of the year is

O = limit 5 U (1+0) At = U limd 2010 At
At»0 At »0

1: .
- )t 2 .
(16) U/(l*[) 'dl‘=/o9(?+";

8. As an example let us again take 7(%/)=c? Lot +C,
then

*
T @) =2at+b [vidt=vlog v,: = (vil)flogy,

¢ ¢ t
[Tt [ vtzatib)at

(4]

= [2atvttv2)|/logv-2alvie)/og v)*
(17)

T(t)= c+[2522‘:/$b/1/ ’-‘])] Slog v-2a(vi/)/(1og v)?

(18) D) =U.(v¥%1)/ Jog v,
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and (15) reduces to

/ . 2
(19) V¥ fog ¥+ C—(‘r‘?—‘/}—

While the life-equation (19) cannot be solved algebraically,
it is evident that an approximate solution for  could be ob-
tained from a list of tabulated values of the function v *./og v %
When such a {able is not available, an approximate solution to any
desired degree of accuracy may be obtained as follows:

We may write for v, e 09V where € is the base of the

natural system of logarithms. (19) then takes the form
(20) e*/%9 Y. v log v =1+c(logv)¥ea.

On expanding the first term of this equatidn into a power series in
x, and simplifying the result, we have

xznv"//oq V)/}+,z4//ayt//‘e//2+ x(/og V/’/do 4o =0/,

whence

c/a .
= Trxllog v)]3+22lcqv)i/IR +x ¥ log v)Vb0+-- -

Now for all ordinary rates of interest log v is necessarily very
small, so that if we denote successive approximations of x by

X, %, ¥y, etc.,

% Ga ye
%, '/C/d/ » ):f[/*z/ //0? V//;]

ca vz
%3 ’[/412 (tog v}/ 7 +,zz‘r//09 v) 2//Z:|

) c/a y2
Y [/* z,(log v)/3 + z; (log v) %2 +2] (log v) 3/0’0]
, etc.
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Let us take the special case, previously considered in 5., when
¢ = 1000, =0, a=10, and let the assumed rate of interest be

6 percent. Then
log v = -0058269, (logv)?= 0o03 39,

N/log v =-17.16/ 788, W(log v)* =294 526 967,

and we find
7 () =/0¢%+/000,

T(t)=1000- 34324 ¢ % 5890 54(v% 1),

D) = 17162 U2-v'E),
and the life-equation is

v¥-log v ¥ /169 764

|~
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FIGURE 3

The first four successive approximations for z give
x, =10, x,=///4 x,<//07
x, =107
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The value x = // Q7 substituted in (14) and (16) give us
Ulx)=22/45 and Dlx)- 22803

This value of (/(%/ substituted for ¢/ in the expression for

D gives

D(t)- 3800.5(/-v%),

which represents the present value at epoch & of the aggregate
momentary charges during a period # at a rate such as to recover
the total outlay 11.07 years, the theoretical life-time of the asset.
The momentary rate is 221.45 per year, the equivalent single
charge to production at the end of each year is 228.03.

(Fig. 3) shows the graphs of the two equations,

T(t)=1000- 343.24 ¢ - 5890
D) =38005(/-v*¥)

The abscissa of the common ordinate of the two curves represents
the life-time of the asset.

9. It appears from (Fig. 3) that at the point common to
the two graphs, the graphs have a common tangent as well as a
common ordinate. To see whether or not this is a general prop-
erty let us trace the changes in the total outlay and total charge
to production functions when interest is taken into account.

In the first place it is evident that the increments of the
ordinates of both of the graphs in (Fig. 1) must be replaced by
their present values at the chosen epoch. If this epoch is  the
effect in question will be to shorten progressively the ordinates of
both graphs. The charge to production graph will then be no
longer a straight line but some convex curve, while the total out-
lay graph will go over into another graph which is less concave
than the original graph. But both graphs will continue to rise
indefinitely as we proceed from left to right because the incre-
ments of their ordinates, while decreasing indefinitely remain
positive.
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In (Fig. 4) let 77/%) and D(4) represent respectively the
total outlay graph and the charge to production graph, interest
disregarded. 7(%) the total outlay graph, interest considered,
and D(#) the charge to production graph, interest considered,
through any point £ on 7(Z). The ordinates on (7 repre-
sent the present values at epoch ¢ of the momentary charges to
production during time # at a rate such as to recover the entire
outlay during the time corresponding to the abscissa of the point
£ . 'This rate is measured by the initial slope of D(?), the
slope of D(t) when #=0.

Let us follow the changes in this slope for the various posi-
tions of the point & as it moves along 7(7) from left to right.
It is evident that this slope at first decreases, also that it cannot
keep on decreasing indefinitely, it is therefore plausible that it
will ultimately increase, reaching a minimum value at the point
P where the 7(#) curve and the D7) curve have a common
tangent. The abscissa of the point of contact, /2, is then the life-
time of the asset under discussion.
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10. The foregoing considerations, however plausible, are
open to objections, because we have reasoned from graphs result-
ing from the assumption of a special law governing the repair
function. Different assumptions might give rise to essentially
different graphs. We shall, therefore establish the conclusions
above arrived at, by an analytical proof, which is independent of
any assumptions regarding the nature of the outlay function. We
shall prove the

Theorem: If the rate L/ of a uniform charge to produc-
tion curve is a minimum, this curve is tangent to the correspond-
ing total outlay curve, and the abscissa of the point of contact
represents the life-time of the asset. Conversely,

If a uniform charge to production curve is tangent to the
corresponding total outlay curve, U is a minimum.

To prove this theorem, let y = 7(t) be the equation of the

— ¢
total outlay curve, y= D)=y / V'at, the equation of the uni-
[

form charge to production curve, and » the abscissa of a point
common to the two curves.

— — P4
Then 7(x)=D(x) =U/ v%?¢ from which
(-
(21) vy viat
(4

Since by hypothesis ¢/ is a minimum, its derivative with respect
to ¥ must vanish, that is

»
(22) 7)) viat-v*Tis)0
(<]
From (22) and (21) follows.
— -—— x ——
(23) r'(z,).y”m)// Vit v B D).
(-]

This shows that at the point common to the two curves their
slopes are equal, they have therefore a common tangent, and since
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U has a minimum value, x must represent the life-time of the
asset.

To prove the converse theorem we observe that if the two
curves have a common tangent at the point Z=x ,

_ z
(24) T(x)= D)« ) v ¥t
(4
and
(25) Tex)=D(x)=v*¥U

Substituting the value of {/ from (24) in (25) we find -
- - %
T(2)=v*® T(z)//y taf
9

from which

7)) At ET)0.

But by (22) this is precisely the condition that U is a nﬁnimum.

11. In most cases which arise in practice the analytical
method of ﬁnd’ing the life-equation of an asset fails owing to the
empirical character of the outlay function. The question suggests
itself whether a graphic method, similar to that employed in the
simpler case treated in 7, can be devised, which will yield an ap-
proximate solution of the problem. The theorems of the pre-
ceding article offer the key to such a method.

T.et us suppose that the total outlay graph has been con-
structed on a convenient scale, the scale depending on the magni-
tude of the quantities involved. Every point on. this curve
determines a definite uniform charge to production curve. We
scek that particular one of these curves which is tangent to the
total outlay graph. The abecissa of the point of contact would
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give us the life-time of the asset, and the initial slope of the uni-
form charge to production curve would give us the rate

Instead of constructing first the total outlay curve, we may
first prepare a sheet with rulings, as shown in (Fig. 5), each rul-
ing representing the uniform charge to production curve cor-
responding to a definite L/, the successive values {/ being chosen
at suitable intervals, We may then plot the graph of any given
outlay function on this same sheet and from among the various
rulings select that on which comes nearest having contact with the
outlay graph. This will yield a first approximation of ¥ . A
closer approximation may then be obtained by the usual processes
of interpolation.
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