ON A NEW METHOD OF COMPUTING NON-
LINEAR REGRESSION CURVES*

By

WALTER ANDERSSON,
fil. dr, Stockholm.

In 2 memoir published in ¢his journal in February 1930* Pro-
fessor S. D. Wicksell pointed out that the well-known Pearson
method? of computing skew regression curves by adopting the
principle of least squares can be simplified, and in some direction
generalized, by inserting some assumption concerning the distri-
bution function of the population studied. After some remarks
on the subject as advanéed in the said memoir the problem was pre-
sented to. me by Professor Wicksell. The results obtained by me as
regards this problem were published as a part of my doctor thesis.®
In the course of the official ventilation of my thesis Professor
Wicksell made some interesting remarks con¢erning the relations
between my solution and the general Pearson solution. His sug-
gestion has led me to take up this special problem, which will be
congidered in the following lines.

I. We consider a bi-variate distribution and denote the varia-
bles x and y . The distribution function—for the sake of sim-

* From the Statistical Institution of the University of Lund, Sweden.

18, D, Wicksell, Remarks on Regression.

32 Karl Pearson, On the General Theory of Skew Correlation and Non-
Linear Regression; Mathematical Contributions to the Theory of Evolution
/ Drap. Comp. Res, Mem., Biom, Ser. II, 1905.

$Walter Andersson, Researches into the Theory of Regression, chap-
ters IV-VI, / Kungl. Fysiografiska Sillskapets Handlingar, N. F. Bd. 43,
Nr. I; also as Meddelande frin Lunds Observatorium, Ser. II. Nr. 64 /

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



g2 NON-LINEAR EREGRESSION CUBVES

 plliciity being supposed discomtiimaons—may e

@ £ = Feoxy),

so that
@ Z- %1 Fex,y) =1

Let g(x) be the regression functiom of y onx. Thus
@ T = 90,

where g; denotes the mean value of the dependent variate 4 for
a fixed value of the independent variate x . Consequently we have

Z 3 Fosy
g = z Fmp
We further observe that the marginal distribution of > is
(5) Jx= Z Flxy).

Expanding the regression function in the series of Tcheby-
cheff we put

(4)

(6) g(x) = LI+ &30 AN €5 L ERERIN
where Y} (x) are polynomials of the th orders, fulfilling the
following condition of orthogonality

7) Zfo) Y (x) g (x)=0, for (X4,

and

(A
®  Z f69:[g00-4 p,0d- 90— 5 4,09 Min.

From (7) and (8) it may be shown that the expansion by
Tchebycheff carried to some order gives the same approximate
expression for the regression as obtained by fitting a parabola of
the same order to the mean values of Y for every value of x ,

¢ Tchebycheff, Collected Works, Vol. I, pp. 203-230.
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each observation being allotted a weight proportional to the num-
ber of individuals possessing the value of x in question. Thus,
by using the series of T'chcbycheff in treating the regression prob-
lem we have as a matter of fact applied the same method of de-
scribing the regression as applied by Yule® and Pearson.®

We observe that using the series of ‘I'chebycheff we gain the
advantage of being able to perform the graduation successively for
the higher orders. With respect to this circumstance I have used
the notation successive regression cocfficients for the coefficients
o; of (6).

‘Working out the solution for these coefficients we obtain from

(7) and (8),
= fx) () 9(0)

Z foo Ly@)®

the polynomials \,(x) being determined from (7).

The successive regression coefficients—except o, —have been
shown / see W. Andersson, Op. cit., pp. 14-15 / to be independent
of the zero-values of the variables, and in some cases they are
found to stand in simple relations to the well-known semi-invariants
of Thiele.” Especially when the distribution is assumed to be gen-
erated according to the hypothesis of elementary errors the semi-
invariants of Thiele and the successive regression coefficients are
closely related. In this respect the denomination semi-invariant
regression coefficients may be suggested for the coefficients or,. The
values of these coefficients ought to be derived in all more exhaus-
tive studies of curved regression lines.

©) o =

6G. U. Yule, On the Significance of Bravais’ Formulae for Regres-
sion, &c., in case of Skew Correlation / Proc. Roy. Soc., Vol. 60, pp. 477-
489, 1897 /.

8 Pearson, Op. cit.

TT. N. Thiele, Theory of Observations, London 1903, p. 24. / See
also Annals of Mathematical Statistics, Vol. II, pp. 165-307, where this
work of Thiele is reprinted /. '
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We introduce the moments, V,_; , of the distribution, Taking
these about any point we have

Y

(10) y, = Z ; x5yt Fox,y).
If we observe that
h h
(11) gf(z)-x -g(:z): %? x-g-/:(x-y),

it is immediately seen from (9) that the coefficients o; can be
expressed as linear functions of the “mixed” moments lg,' , Y,
Y, upto ¥, ,all other quantities being dependent on the marginal
moments of X alone, ,

This solution may shortly be summed up. For a fuller discus-
sion I refer to the cited memoir by the writer.

We write

3 it -2
1 = x° X fee + e
(12) lﬁ(x) x +e£’. X +e€i—z Pt X+ &,

@)
Let A ~ be the following determinant of the marginal mo-
ments of x,

T ’ Y, Y,
/ , u:o 20 ho
[ !
©) ’40 "fz:: Y0 um;,o
(13) JANE
y' ' !
) ho '{m,o ‘ﬂu,o 2h,0

and A,,  beits sub-determinant obtained by cutting out the
(h+1) th row and the (L+1) th column and multiplying by
(-1 )hﬂ . Then we haze)

A
14 e. .= =
(14) g ——uf-AiL ,
and -~1)

A ] ! / '
(15) °\/L = —ZT'['{::"C.:,L-; Uéa,/*"'*'et, Y*Co ‘{:IJ,
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or, using the “standardized” variables

- -7,
(6) &=, e L2,
! 2

(m =mean, ¢ = dispersion)
and introducing the coefficients

(17) S, = g, -1 &

i+, 0

where £,; stands for the “standardized” moments and 2 is the
usual Galton coefficient of correlation, we have / W. Andersson,
Op. cit.,, p. 16 /

1)
PN
(18) = @ [360 * i St Gig 830] ’

The relations between the successive or the semi-invariant
regression coefficients o; and the coefficients of the graduation
parabolas as written in their usual forms are easily obtained.
Taking the parabola of the ﬁ*ﬁ order

— ®) () R) 2 ) S
(19) (7‘=a2+a,‘, x+a2x+~-+aﬁx,
we have, indee)d, / Op. cit.,, p. 17 /
(€2
A, = Nt €, e, t € Mg
a‘ﬁ-)_
;= N b ht Ut tew Ve
)
20 -
(20) CLZ = °rl+ *eﬁ& ‘*_ﬂ
w T ST T T
a«# = Yfa

The coefficients e&.j are the same as those defined by (14).

2. Starting with the general solution just indicated we may
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proceed further into the matter. It will be seen that some new
problems are met with in applying the general method to actual
statistics.

Taking account of the fact that the solution only involves the
moments of the distribution, we can free ourselves from any as-
sumptions as regards the distribution function itself. The required
moment values may then be directly computed from the observed
frequencies, This way of solving the problem leads to the method
advanced by Pearson in his treatises on this subject. The solution
evidently gives a least squares graduation to the observed array
means when the weights of each mean value are proportional to
the observed frequencies in the corresponding arrays.

This method may be the most straight-forward one, but it is,
however, by no means the simplest, nor the most efficient one.
Considering the fact that the term of the {** order of the parab-
ola contains moments up to the 2. ® order, we immediately
conclude that the arithmetical work would rise to a considerable
amount, and, with growing moment order be more and more in
vaih, as a consequence of the rapidly increasing sampling errors
of the computed moment values. Some other ways to treat the
problem must be sought for in order to eliminate these difficulties.

A first outline of a new method was suggested by S. D. Wick-
sell in the year 1930 / Wicksell, Op. cit. /. Starting with the gen-
eral solution Wicksell pointed out that some well-known rules of
Thiele as-regards the determination of moments of high orders
were directly applicable in the computation of high order regression
parabolas. The rules of Thiele referred to may be formulated in
the following way / Thiele, Op. cit., p. 24 /:

To obtain the first semi-invariants, or moments, rely entirely
on computations. To obtain the intermediate semi-invariants rely
partly on computations, partly. on theoretical considerations. But
to obtain the higher semi-invariants rely entirely on theoretical con-
siderations.
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Professor Wicksell’s suggestion was that instead of the higher
marginal moments, involved in the least squares expressions for
the regression coefficients, should be inserted the moments of a
suitably chosén frequency function (with a limited number of
parameters), fitted to the marginal distribution of the independent
variate. A

The method indicated was then more thoroughly studied by
the writer of these lines / Op. cit. /. The solution obtained along
these lines was in detail worked out, and it was also tested as re-
gards its practical usefullness in dealing with actual statistics.
Especially by use of the Pearson types of frequency functions
very simple expressions, successfully applicable within a large
domain of actual statistics, were deduced.

An important advantage of this method / as well as of the
Pearson method / of computing high order regression parabolas
may be noticed. As the regression coefficients have been expressed
as functions of the moments only—in the method elaborated by
the author only of those of low orders—the influence of “group-
ing” may be accounted for by correcting the computed moment
values in this respect. For this purpose suitable correction formu-
las are available, as for instance the well-known ones given by
Sheppard. Experience has convinced me that at the ends of the
regression curves, at least, the effect of grouping can displace the
computed curve in a considerable manner, so that in many cases
some attention must be paid to these circumstances.

It is, however, to be remembered that the solution obtained
by applying Wicksell’s proposition does not give a strict least
squares graduation to the observed array means, as a consequence
of the fact that the theoretical values of the high order moments
always in some degree differ from the directly computed ones.
From this it is evident that some care must be taken in choosing
the hypothesis as regards the marginal distribution of the inde-
pendent variate. It may be remarked, however, that these circum-
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stances cause very little practical difficulty on account of the much
refined theory of uni-variate distributions.

The discrepancy between a least squares solution and the
solution as obtained by applying the method as advanced by the
author may, as pointed out to me by Professor Wicksell in the
course of the official ventilation of my thesis, be removed by an
adjustment by which the latter solution is turned into a strict
least squares solution. This problem will be considered in the
following paragraph, and at the same time we shall get an oppor-
tunity to study the hypothetical assumptions applied before from
a somewhat different point of view.

3. We consider the expression (8). Before we have from
this condition worked out the general least squares solution in
assuming f(x) to be the true marginal distribution (5) and 9(x)
to be the true regression function and then 1/ the directly com-
puted- moment values were inserted in the general solution / Pear-
son’s method /, or 2/ the moment values required were deter-
mined in accordance ‘with the rules indicated in § 2 / method
elaborated by the writer /. Now we shall directly imply in (8)
our working hypothesis concerning the marginal distribution. of
x . Let the hypothetical #-marginal distribution function be w(x).
The solution is then to be deduced from the following condition

(21) Zx.‘ w(x)-,_ﬂ(x) — Y- P -~ %, l}’h(xﬂ: M.

It is immediately clear that, in this way, we always get a
strict least squares solution with respect to the distribution func-
tion w(x) whatever the form of g(x) may be.

In fact, the functions f(x) and g(l) are totally independent
of one another, and, as is seen from (8), the distribution func-
tion f(x) enters into the expansion of Tchebycheff for the re-
gression function g(x) only as a weight function which deter-
mines the weights to be allotted to the-regression means in grad-
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uating the values of these by means of this series carried to a
certain order, or, what is the same, by means of a parabola of the
same order, the coefficients of which are determined according
to the principle of least squares. Then it is clear that for practical
purposes it is not necessary to derive the exact form of f(x) in
performing the expansion (6). The hypothetical distribution
function w(x) would be expected to give a satisfying result as
soon as w(x) in its main characteristics corresponds with the true
distribution function f(x).

I am going to work out the detailed solution for the follow-
ing two usual forms of wW():

A/ Normal Error Function,

. ] - /
w(g)= ar € “
(22)
‘év = x-fm‘ )

1

B/ Peavson Type III Function,
-t &

w(®)= c (&)

(23) _ L gl o
Laxty rogi 32

5 is the skciwness, or
(24)

In both cases the expressions for the terms of the series of
Tchebycheff will be found to be very simple.

At first considering the polynomials y,(x) we are to have
in accordance with (7), the distribution function being continuous,

@) [ dx weogo gm0 (Lxg).
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From this expression it may be concluded that the polyno-
mials .(x) are in case A/ the polynomials of Hermite, and in
case B/ those of Laguerre. Both these kinds of polynomials are
of well-known forms, and consequently the values of the e-coeffi-
cients as defined by (12) may easily be derived from propositions
about these polynomials.

For the successive coefficients we have according to (9) the
following expression

—:a/c{xo w(x) Y(x)- g(x)

(26) = =

(3

S *
2 odx w Lo

Taking account of (13), (14), and (15) and introducing the
notation

o0
_ h

(27) v, = dx - w(x) x - g(x),

-0
we obtain

Z(&-')
(m) -;(-: =-2§T-LT [‘{".e&;t"l l{,gl"'"feg’(‘{l*'eio%[]’
or, introducing the corresponding “standardized” moments Ezj
and putting
(29) S = &}:: - & Eiﬂ,o
we get @)
@ T =58 4805 St g, 530] .

~(é-1)

The coefficients ‘%z, ~and EL} are determined by (14) and
(15) when the moment values
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"

(31) 7, /41- wie) X

respectively

) &= S w(9) &

are inserted in the determinants.

In the cases here considered we get very simple expressions
for these determinants. We have, indeed, / W. Andersson, Op.
cit., pp. 88 and 123 / in case of normal distribution

- (1)
&4 L
(33) =@ T’
and in case of Pearson type.1II distribution
)
A /
(34) —
AT 7/'(/+/1,S)

The values of the e-coeﬂicnents necessary for the computa-
tion of the terms of the series of Tchebycheff up to the fifth order

are given in the following exposition.

Mor| €, |Type W T Nor. | €. Type I .
ol e, | o o | e, 7S
0| e, 2S -6 | ey, o(65=1)
-1 | e -/ 0 e, | 4s(eS™7)
3 €40 -3(651)
o €, 65 o 654 205
~3 | €, [3(2S7) || ~10 |e54 10(125™~1)
o| e, | -4S 0 €5, | 205(u2s5)
15 e, | 5(245-465%3)
0 |€s0 | -§5@25>5)
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In order to. derive the expressions for the computation of the
moment quantities J, » OF 6 , we denote the class-breadth by &
and the observed mean value of y in the 70 array of x by g’ *
The values of iJ i, are then given by the following formula

ho
35 vV = . .
(35) v, % pr X Gx, 5
where
x*o-%’-
(36) I - dx - wix).
B - B '
% Z

The computation is easily performed as soon as the function

37) Q (x) = fdx w(x)

is known. In either case we have access to suitable tables of this
function. For the Pearson type III function the “Tables for the
incomplete [ -function, edited by Karl Pearson” are to be used.

4. We will now make some general remarks concerning the
relations between the different methods of computing regression
parabolas touched upon in the preceding lines. We start with the
general condition (8) for the determination of the coefficients:

2

%— f(x)' [?(x)-"(o Y)Y (x)—— o ‘Pb(X)J= Miw.
It is seen that the expansion is determined by the marginal
distribution function f(x) and the regression function g(x). If
}(x) -and g(x) are not the true functions of the population but
the functions corresponding to the actual sample, the solution
will give the sampling values of the coefficients. This is the solu-
tion advanced by Pearson, and consequently in his method no
graduation of the data is performed in order to smooth out the
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influence of sampling irregularities on the values of the coeffi-
cients, Without any further considerations it is clear that meth-
ods which include an adjustment of the data in this respect are
desirable. The problem is analogous with that occurring in the
general theory of distributions. Among other facts of great im-
portance that speak in favour of using mathematical functions
for the déscription of distributions one is that we in this way are
able to eliminate in some degree the accidental irregularities.
When the regression is described by the series of Tchebycheff the
smoothing process is evidently performed firstly by graduating
the regression means by a parabola, and secondly by adjusting
the parabola coefficients for the accidental irregularities. This
latter adjustment has been accounted for by the two methods
treated by the author. When using the rules of § 2 as principle
for this adjustment the smoothing process is applied to the mo-
ment values involved in the general solution for the coefficients,
and in the methods indicatzd in the preceding paragraphs we have
used a weight function which is to be considered as a graduation
of the observed marginal distribution of the independent variate.

As mentioned before we do not get a strict least squares solu-
tion” when applying the rules of § 2. This is, however, of little
practical importance, but it remains to see in what manner this
solution is to be modified in order to become a least squares grad-
uation of the observed array means.

‘When applying the rules of § 2 the product moments are
computed from the following expression

h  —
38 - = .
(38) Y N % nxﬂ X, 71#,

where A is the total number of observations and nxp the number
of observations in the ﬁth array of x . We suppose that the
graduation is to be based on directly computed moment values
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up to the /z,th' order, /v usually not being greater than six, in
accordance with the rules of Thiele. The values of the marginal
moments of the independent variate up to the h«thorder indicate
the distribution function £(x, 1, -y 4.)» which function is chosen
as the theoretical distribution functton determining the values of
the marginal moments of orders above the h th A strict least
squares solution with respect to the distribution function f( )
may be worked out according to the formulas given in this mem-
oir by taking wJ, f 0,4, A n) In this case we have for the
product moments the following values

Vv = N i
® 5 -ZI g,
where
Xyt 2
(40) I, = | _ dx fC454%,)
b "7@

| Subtracting (39) from (40) we get
' Z ( I _ 7 )
(41) ay, = = L gxf, ,

which consequently are the corrections to be added to the directly
computed values of the product moments of the solution worked
out in accordance with the rules of § 2, in order to obtain a strict
least squares solution.

These corrections are easily computed as soon as the integrals
I x, are determined. This task, however, would in some cases be
somewhat arduous. If the general Pearson theory of frequency
is applied we must sometimes resort to mechanical quadrature
formulas.



WALTER ANDERSSON 95

a remark concerning the correction of the grouping of the mo-
ments &, . According to the method of computing these char-
acteristics we may regard them as mixed moments of a distribu-
tion having as its x-marginal distribution the function w(x), the
regression means being the observed ones. Thus we evidently
can apply the usual methods of correcting computed moment val-
ues for the effect of grouping. By using the formulas of Shep-
pard we have to observe, however, that the moments involved in
these formulas must be referred to the supposed semi-theoretical
distribution.

5. Numerical Illustrations. In order to illustrate the appli-
cation to observed data of the consideration above I have numeri-
cally treated a few populations—representative ones in that they
are examples of correlation distributions of different degrees of
skewness. |

Example I. Case of slightly skew correlation.. Pearson’s
example B. Example I1:2 and II:2 of the cited memoir of the
author. Population :Correlation between age and height of head
in 2272 girls.

/X = age; Yy = height of head /

Xz 12.548s.  X-%,=+.2007 @e=1 £=.3263 X -.0655

Y= 12525mm G-y =-.601T  @y=2 2895y +.ITHL.

As regards the moment values I refer to the memoir of Pear-
son. These indicate that the marginal distribution of x may ap-
proximately be represented by the normal curve. Thus I take for
wy the normal function.

We have to calculate the product moments #, , ,,and 7, .

These computations may be performed by using the follow-
ing scheme. The different values are derived from the correlation
table given in Pearson’s memoir.

The values of E, correspond to the class ranges.
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,
x 7’ % '3 I, |- %" x'. ‘7; 0 7 x" 5’
-9| -5.000 .0004] - 3.165 0015 0011 45.000} - 405.000 3645.000
8] ~4.143 0031 - 2.831 0037 0006 33.144] - 265.152 2121.216
-7] ~3.88 0079] - 2.513 0084 0005 27.223] - 190.561 1333.927
-6| -3.075 0176] - 2.186 0170 | - .0006 18450 - 110.700 664.200
-85] -2474 0335]— 1.860 0311 | - .0024 12370| - 61.850 309.250
-4} - 1208 0550) - 1.534 0511 ] - .0039 7.232| - 28928 115.712
~31-1.763 0779]- 1.208 0756 | - .0023 5.289| - 15.867 47.601
-2]- 1217 1034 - 0881 .1003 | - .0031 2434 - 4.868 9.736
-1]- 1054 1149| -~ 0.555 1199 {0050 1.054] - 1.054 1.054
0o{- 0.680 .1360 - 0.229 1296 | - .0064 0.000{ = 0.000 0.000
1]- 0.194 1158 0.098 1238 0080] - 0.194| - 0.194 - 0.194
2 0.232 08714 0424 1106 0235 0.464 0.928 1.856
3 0453 0942 0.750 0858 | - .0084 1.359 4.077 12.231
4 0.642 0713 1.077 0605 | -~ .0108 2.568 10.272 41.088
H 0.832 0418 1.403 0384 | ~ .0034 4.160 20.800 104.000
6 0.885 0268 1.729 .0218| - .0050 5.310 31.860 191.160
7 2.154 0057 2.055 0115 0058 15.078 105.546 738.822
8| ~0.714 0031 2.382 .0052 0021} = S8.712| — 45.696] - 365.568
9 0.625 0035 2.708# .0022| -~ 0013 5.625 50.625 455.625
10 0.000 .0009 3.034 .0008| -~ .0001 0.000 0.000 0.000
1 _L__J__“_l__
A S S E————— I—
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We get
219, ZIx G ST, _
-—z—iz T = 29809, =3FE= -6.6564, —5—2-2 T =755197

and from these values
I =31123, U =-22376, ¥, =79.2110.
Sheppard’s corrections for grouping have been applied.
For the corresponding standardized moments we obtain the
following values:
E,=02941, & =-00689, & =0.8000.
This leads to.the following values of the & -coefficients de-
fined by (29):
;5”: -0.0689, §k= -0.0823.
The values of the successive regression coefficients then be-
come
X, =02941, S =-00345, X, =-00127.
Comparing these different values with the uncorrected ones
we find

5“ -2 = 00000 e. -2, = 4 0.0021
g, - &, =—00086 B0 = Sue = — 0.0337
:ﬁ_;'- E, = +4-0.0511 & - =, =+0.0000
E,,— £50 = — 00365 &, - v, =+00010
g - €&, =+ 0289 & - Y3 =—0.0056

We especially observe that the adjustments of the © -coeffi-
cients are smaller than those of the moments @f the same orders.

The adjusted cocfficients result in the following regression
parabola of the third order:

7y = +0.0345 + 03352 & — 0.0345 £ —00137¢.

The curve is drawn on diagram 1. For the sake of compari-
son the graph of the Pearson curve and that obtained by applying
the rules of Thiele, the marginal being the normal curve, are given
on the same diagram.
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Example II. Case of moderately skew correlation. Popula-
tion :Correlation between weight of newborn boy and weight of
placenta; material supplied by the Maternity Hospital of Lund,
Sweden. Example 2 in S. D. Wicksell: “Correlation Function of
Type A, etc.” /Kungl. Svenska Vetenskapsakademiens handlingar,
Bd 58, Nr. 3/. N =1223.

/x = weight of boy; Y = weight of placenta/.
X,=3350 gt @,=300 X-x,=+4685 &=.5940X-.2783

Y=0630ge  By=go  F-y--5715 7= .-69544'+.3974
The correlation table and the computed moment values are
given in the said memoir of Wicksell. For w, we take the nor-
mal function.
Calculating the moments T , etc. in the same manner as used
in the first example we obtain the values,
, =15540, ) =03412, 2; = 11.7653
which give the following values of the standardized moments:
E, =06420, £ =0083, &,=17153.
The values are corrected for grouping.
We further get
§3° = + 0.0837, §~m=_0'2106
and
& =+ 0.6420, Sr; = + 0.0419, 3?'3 = —0.0351.
The values of the adjustments of the different quantities are
given below :

Z, -x =—00035 3, -9, =—00656
E, - & =+001% 3, - S4o =—00173
E”- g, =—02132 & -, =-—0.0035
&,- €, =+01320 % -~ =-—00328
€,,- %40 =— 02870 % - ~, =—0003l

The correction of ©r, is rather great, but not greater than was
to be expected with consideration to the roughness of the fit of the
hypothetical marginal distribution function. It is clear that when
applying the solution of my previous paper in this example we
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should use a type IV curve for the marginal distribution. The
unadjusted values of the parabola coefficients are also in this
case easily computed, but the calculation of the adjustments by
which the solution is turned into a least squares solution would
be very laborious.

In order to illustrate the suitability of the several methods I
have drawn the following curves on diagram 2: 1/ unadjusted
solution, hypothetical marginal distribution being the normal
function ; 2/ adjusted.solution, hypothetical marginal distribution
being the normal function; 3/ unadjusted solution, marginal dis-
tribution being Pearson’s type IV function.

The equation of the second curve is

s = — 0.0419 + 07473 & + 00419 ¢ 0.0351 &’

The third curve is undoubtedly best fitted to the data.

Example III. Case of extremely skew correlation. The cor-
relation between. the age of bachelor and the age of spinster at
marriage, Sweden 1911-1920. Example 1:4 and II.7 in the cited
memoir of the author. N = 321908.

/x = age of spinster; Y = age of bachelor/
X,=2754s. @=5 X-x,:-.3131 &= .9515x +.2929

Y,2275415. Ty=5 G-4=+.2824 M= 8506y — .2424.
The moment values as given in the said memoir indicate that

we can use Pearson’s type III function as hypothetical distribu-
tion function for the x-marginal distribution. From the moment
values as computed in the cited memoir we obtain the following
values of the constants of this function:
o =14312 3 =2.0483,
It is to he remarked that for our purposes the computation
‘of the constant’ C is not necessary.
For the c-coefficients we get ‘the following values:
e, =-—13974 €,,=—41922 ¢,=— 83344
e,, =—10000 e, =—00708 e,, =+ 11.5752
' o=+ 27948 e, =+ 113771
e, = — 5.7876.

eso
(.
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For the unadjusted values of the ¢ -coefficients and the suc-
cessive regression coefficients we further get
$30 =+0.1787 @,,=+ 05255 @5, = + 2.8763
o, =+ 0.5535 o, =+ 0.05192
%3 = —00122669 < = + 0.003097.
Computing the corresponding adjusted values by use of
“Tables of the incomplete / -function” we obtain
Bo=+0.1723 $,, =+ 04638 §,, = + 2.0851
% =4 0.5528 2. =+ 0.05789
‘?3 =—0014647 &, = 4 0.001097
Sheppard’s corrections have been applied in both cases. The
differences between the adjusted and the unadjusted values are

& -2 =—00007 E,,- €3,= 0.0000
&, - &, =—00034 &, - £40 =—04762
§, - &, =—03237 &, - €50 =—20405
£, - &4 = —14548 & - ° = —0.0007
@, - 9, =—0.0064 o — B4a =—0.0617
%%~ 8¢ =—07912 % - Y2 =+ 000597
S - 3 =-—0001978
&, - oy = —0.002000.

The parabolas of the third and the fourth orders are the
following ones:
Unadjusted values of the coefficients :
Wy = ~ 0873 + 48484 + 10504~ 012478’
r —.1053 + 5171 & + .u{oré"- .os&b‘lf’r.oosoe7 g‘/,
Adjusted values of the coefficients:
Mgz --0908 + 47294 + .11938" 51465 &
e 1952 + 48544 + 1320£%-.02584 £+ 001097 g' .
The graphs are drawn on diagrams 3 and 4.
The results indicated by the few examples treated in this
paragraph clearly point out that the Tchebycheff expansion can-
not be considered as a least squares graduation of the observed

N
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regression means when the moment values involved in_ the solu-
tion are determined in accordance with the rules laid out in § 2.
As regards the practical applicability of such a solution, how-
ever, this circumstance is of little importance, because the curve
in this case is found to give as good, and sometimes a better rep-
resentation of the regression than a strict least squares graduation.
Further, as the calculation of the moments of the first few orders
is often required for other purposes than the determination of
the regression curve, the computation of the unadjusted solution
in these cases is arithmetically very simple. Not having access to
the moment values we may perhaps in some cases consider the
direct computation of the adjusted solution as performed in ex-
ample I to be the simplest method. The adjusting of correctly
determined unadjusted solutions would certainly very seldom be
of real gain.

Stockholm, September 1933.

S. D. WickseLL
Note on Dr. Andersson’s Paper.

In an extensive memoir, Researches into the thcory of Re-
gression, Dr. W. Andersson has worked out a very simple and
widely ai)plicable numerical method of computing curved regres-
sions. The general principle on which this method was founded
Dr. Andersson has kindly attributed to me. It was laid out in
my paper in the first number of the “Annals” Journal and may
be stated as follows: After fitting a suitable univariate frequency
function with a limited number of parameters—e.g. the normal
curve or one of Pearson’s types—to the margfnal distribution of
the independent’ variate, the moments of this function—which are
all expressible in. terms of the parameters—should be used in
computing the regression coefficients, instead of the ordinary
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values (power means). Of course, when, in fitting the curve, the
ordinary moments of lower orders have been used in determining
the parameters, this procedure means that the moments of higher
orders are theoretically expressed in terms of the moments of
lower orders instead of being directly computed,

Applying this device to the ordinary least squares expres-
sions for the regression coefficients, it was clear that a departure
from the least square condition took place, but the chances were
that this would not harm the result, and the computations would
be much simplified. Dr. Andersson's investigation has shown
that these expectations were highly justified. '

During the official ventilation of the memoir, which was pre-
sented as Thesis for the degree of D.Ph., it was agreed that
the method ought to be tested by a comparison with a theoretically:
very similar method in which the least squares condition was re-
tained, although theoretical or semi-empirical weights were intro-
duced instead of the purely empirical weights used in the method
of Karl Pearson.

In the present paper Dr. Andersson has taken this question
up and he shows that whereas the original (unadjusted) method
is numerically simpler in application, it gives practically just as
good regression curves as the new, adjusted method. In some
cases he even considers the unadjusted solution to be the better one.

By this the incident may seem to be closed. I should, how-
ever, like to point out, in a few words, how very straightforward
a principle it is, which lies behind this adjusted method.

It is simply this: When a correlation table is given, the re-
gression of y on £ will not be affected by multiplying the frequen-
cies within any x:array by a constant factor. Hence the follow-
ing procedure will not affect the regression of y on x; i.e.. the
process of reducing or adjusting the frequencies in the several
x:arrays so that the marginal sums will be equal to the smoothed
frequencies, corresponding to any mathematical curve which has
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been fitted to the marginal distribution. Thus, on applying Pear-
son’s ordinary least squares solution to this adjusted table a least
squares regression parabola would be obtained in which the mar-
ginal moments where those of the smoothed distribution, and also
the mixed moments were, although only in a secondary degree,
affected by the smoothing of the marginal. It is only in this last
respect, i.e. as regards the mixed moments, that this method devi-
ates from the one originally proposed.

In my opinion many curved regressious could be very easily
and accurately enough computed by simply smoothing the mar-
ginal of the independent variate with a normal curve or, event-
ually, a Pearson Type III curve, and correspondingly adjusting
the array frequencies. This method may work well even if the
deviations of the actual distribution from the smoothed distribu-

tion are systematical.

Statistical Institute, University of Lund, November 1933.
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