SOME INTERESTING FEATURES OF FREQUENCY CURVES

By Ricamonp T. ZocH

Introduction

It is well known that in the normal error curve the points of inflection are
equidistant from the mode. However it has never been pointed out that this is
also a characteristic of all of the bell-shaped Pearson Frequency Curves. This
fact can be most easily shown by placing the mode at the abscissa x = 0.

Many rough checks have been developed for use in applying the Theory of
Least Squares. The second part of this paper develops a rough check on the
computation for use when fitting a Pearson Frequency Curve to a set of observa-
tions. No rough checks on computation are given in textbooks on Pearson’s
Frequency Curves.

At present it is customary to follow a separate procedure for each Type of
curve when computing the constants of a Pearson Frequency Curve. The
third part of this paper shows how a single system may be followed for all Types.
A single procedure is very desirable in order that the rough check of Part 2 may

be quickly applied.
Part 1. Points of Inflection

Perhaps nothing brings out the limitations of the beli-shaped Pearson Curves
in a more striking manner than a discussion of their points of inflection. In
dealing with frequency curves it is well known that any curve can be fitted to a
given distribution and that the real problem in curve fitting is the selection of a
curve. Figures 1, 2, and 3 illustrate three hypothetical histograms. All three
of these histograms are bell-shaped yet none of them will be closely fitted by
any of the Pearson Curves. The reasons will be pointed out presently.

The differential equation from which Pearson derived his system of frequency
curves is

dy _ _ylz—P)

dr ~ bua?+ bir + be’
By putting x — P = X, i.e. by placing the mode at the abscissa X = 0, this
differential equation may be written:

& _ yX
iX " EBX+BX+ B

where the + or — sign is taken according to the type of the curve. (It will be
shown later that the constant term of the denominator must be less than zero.)
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Since in the Type II{ curve B; is 0 and in the “Normal Curve” both B; and B,
are 0 it will be advantageous to consider the general case of

dy  yX
dX ~ F(X)’
where F(X) is an integral rational function of the n** degree, at once rather than
considering special cases first.
If
dy  yX .
X ~ F(X)’
then

d¥y Yy 9 4
d—Xﬁﬁ"(T')]z{X + F(X) — XF'(X)}.

3 M b
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2
In order to locate the points of inflection, g—)éC is equated to zero. Then we have:

X? 4+ F(X) — XF'(X) = 0. (69

This-equation is always of the same degree as F(X) except when F(X) is linear or
constant. Hence we have proved the Theorem: If y = G(X) be the solution
of the differential equation

dy _ ¥X
dX ~ F(X)’
then the number of points of inflection of y cannot exceed the degree of F(X)
when F(X) is of degree greater than one.
Now F(X) = B, X* + B,.X"! 4+ ... + B.X* + B, X + B,. Whence
equation (1) can be written in the form:
(1 - n)Ban + (2—n)Bn-1X”—l + (3 - n)Bn-—2X”—2 + b

+ (r —n)B,...,+1 Xr—r+l ... — 3B X* — 2B:X?® + a- B,;) X2 +By=0.
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Hence we have established the Theorem: The coefficient of the linear term of
X in the equation of the points of inflection is zero.

2 b M [3 d

Fia. 3

For the “Normal Curve ”’ and also for Type I1I,
Bz=B3=B4= oo =Bn=0-

Hence the points of inflection of these two Types are given by X = =/ —B,.
For Types I and II, B, is positive and B; = By = --- = B, = 0, and the
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points of inflection are X = :l:‘/ —Bo .
1 - B,

undefined if By = 1, are pure imaginary if B, > 1, and real if B, < 1.

Hence the points of inflection are

For Types IV, V, VI and VII, B, is negative and B; = ... = B, = 0, and the
points of inflection are at X = =+ 1— f"l B’

In some of these Types it may happen that the abscissae of the points of
inflection though real will lie beyond the range of the curve. Thus Types III
and VI may have 1 or 2 points of inflection, the single point of inflection occur-
Vi

1+ B,
limited. Type IT may have 0 or 2 points of inflection, as there will be no real
points of inflection when B, = 1. Type I may have 0, 1 or 2 points of inflection.
Types IV, V and VII as well as the “Normal Curve’” always have 2 and only
two points of inflection.

Now it should be noted that when one of the eight bell-shaped Pearson curves
has two points of inflection then the abscissae of these 2 points of inflection are
equidistant from the abscissa of the mode. In figure 1 a point of inflection will
be at abscissa b and another at abscissa a. (M is the abscissa of the mode )
Since b — M ¢ M — a none of the Pearson curves will fit this histogram closely.
In figure 2, points of inflection occur at abscissae a, b, and ¢. Since a Pearson
curve can have at most two points of inflection no Pearson curve will fit this
histogram closely. In figure 3 there are four points of inflection and no Pearson
curve will fit this histogram closely.

> the range of the curve in the direction that the range is

ring when

Part 2. Range

DerINITION: A bell-shaped curve is a continuous curve which starts at zero
(or zero as a limit), rises to a single maximum, at which maximum point the
first derivative is zero, and then falls to zero (or zero as a limit).

Or, more formally, y = G(z) is a bell-shaped curve if G(x;) = G(x2) = 0 and
if G'(P) = 0 and G''(P) <0 where G(z) is continuous and does not vanish in the
interval from z, to 2, and P is a unique point in this interval.

If a bell-shaped curve has the value of zero at two finite points, one on each
side of the maximum (mode), it is said to be of limited range in both directions,
or briefly, of limited range.

If a bell-shaped curve has the value of zero at only one finite point it 1s said
to be of limited range in one direction, or also of unlimited range in one direction.

If a bell-shaped curve has the value of zero only at £« , i.e. at no finite points,
it is said to be of unlimited range in both directions, or briefly, of unlimited range.

TueoreM I: If F(x) can be separated into a finite number of factors each
either of the form (z — r;) or (2 + 2r; € + 7} + r3;) where no real root is
repeated and y = G(x) is a bell-shaped curve which is a solution of the differential
equation
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dy _y@z—P)
dz =~ Fl)

then if F(z) has no real roots, y is of unlimited range in both directions; if all of
the real roots of F(z) lie on the same side of P, y is of limited range in one (that)
direction; if at least one real root of F(z) lies on one side of P and at least one on
the other side, y is of limited range in both directions.

Proor: If F(z) = 0 when z = P, we have

y _ ¥

dz  g(x)
where g(x) = F(xr) + (x — P). This derivative is zero only when y = 0 or
g(r) = £ o. Hence the solution does not have a finite maximum and therefore
is not a bell-shaped curve. If F(z) > 0 whenz = P, we have

dry y . d
ar: mz[(x — P)? 4 F(z) — (x — P) d—xF(x)]

and

dy y

k-4 = F(z)]

d:l:2 =P [F(x)]z[ (x)a
which is greater than zero and, since at a maximum the second derivative must
not be greater than zero, in this case the solution would have a minimum at
z = P and therefore would not be a bell-shaped curve. As the theorem concerns
only those solutions which are bell-shaped curves, F(r) < 0 when z = P. If

dy

F(r) = 0 when ¢ # P then i = + o unless y is also zero. Assume y # 0.

Since F(x) is negative, if y # 0 when F(z) = 0 then g% — — « as F(z) — 0,

for an z > P, and changes to + « as F(z) changes sign on passing through the
value 0. Hence the curve would contain another maximum before falling to
zero and therefore the solution is not a bell-shaped curve. Similar reasoning
holds for an £ < P. Therefore if ¥ ¢ 0 when F(z) = 0, the curve is not bell-
shaped. Ify = 0 when F(z) = 0, the curve has its range limited at this point.
That is, any real number which makes F(z) vanish will also make y vanish if y
represents a bell-shaped curve. Hence if all of the real roots lie on the same side
of P the curve is of limited range in that direction only, while if at least one of
the real roots lies on each side of P the curve is of limited range in both direc-
tions. If F(z) contains no real roots it does not vanish for any real value of z.
In this case, by partial fractions the differential equation becomes:

dy _ ky dx n kyy dz 4o 2k, (x + 1)) dx

y (= + ) + 731 (xz + 7'2)2 + 7‘32 (@ +r)* + 7‘%1
2k, (x + 1,) dx
(x + 1) + i,
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On integrating,

z+ry
k11 arc tan

y=20C [(:c + )’ + rol]"” [(:c + 1)+ rﬁz]"’” .6 oy

Hence y does not vanish for a finite real value of z and the Theorem is fully

established.
TaeoreM II: If F(x) can be separated into a finite number of factors each

either of the from (z — r) or (22 + 2r;z + r} + rj,) where no real root is repeated
and y = G(z) is a bell-shaped curve which is a solution of the differential equation

% = y—@%,(——;)P) , then if y is of unlimited range, F(z) contains no real roots; if y
is of limited range in one direction, all of the real roots of F(z) lie on the same
(that) side of P;if y is of limited range in both directions, at least one of the real
roots of F(z) lies on one side of P and at least one on the other.

Proor: By partial fractions the differential equation may be written:

@= ky, dz +k21d:c P ky, dx
Yy T—Tyn T —T)p (x + 7'21)2 + "'31
ky, dx L 2ky(@ 4 ry) dz | 2h(z + Tes) A
(r + 7'22)2 + 7':2 (x + 7'21)2 + 7'31 (z + 7'22)2 + 7'32
and on integrating:
kg1 arc tan #trm
y=C@ — )Mz — rph2 ... [(x + ) + 1 1]':31 cec € "0y

Hence y = 0 for z = ry, rs, - - - and for no other finite values of z provided %y,
ks, - - - are positive. If one or more of the k;; are negative, y = « at such
points and unless some r;; closer to P has previously made y vanish, the curve
is not bell-shaped. Therefore, for bell-shaped curves, the exponent of the factor
containing the real root of smallest absolute value on each side of P is positive.
Therefore: if y is of limited range in both directions, at least one real root lies on
each side of P; if y is of unlimited range in one direction, all of the real roots lie
on the same side of P;if y is of unlimited range it contains no real roots. Hence
the Theorem is established.

The effect of repeated real roots will now be considered. If a real root is
repeated an odd number of times at £ = r, then F(z) changes sign at ¢ = r
and the first theorem is true. If a real root is repeated an even number of times
at z = r, then F(x) does not change sign at £ = r and we know that either (a)

y = 0atz = r;or (b) yis finite and # Oand% = & o at x = r, i.e. there is a
point of inflection at # = r. It will now be shown that (b) cannot occur. If

case (b) is possible, y is continuous at r = r, Z—Z = =4 « accordingas (r — P) S 0
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moreover g; does not change sign in the neighborhood of the point z = r, and

Z > changes sign from 4 o« to — o« or vice versa according as (r — P) S
Now

dz!/ 2
= G- P @ - P) L) |

Whence if y is finite and = 0 @y Y does not change sign at £ = r because it is

’ d 2
possible to select a neighborhood such that

|~ PP|>|F@) ~ @~ P) & F@)

for an z differing from r by e where ¢ is a small positive quantity. Therefore
case (b) is not possible and y = 0 when a real root is repeated an even number of
times. That is to say the range-of the curve is limited at a point where a real
root is repeated an even number of times. Thus Theorem I always holds for
repeated roots.

For Theorem IT it is clear that this Theorem helds for repeated roots when a
non-repeated root lies closer to P, and on the same side, than the repeated root.
Suppose that the repeated root is the nearest root to P (on a given side of P).
Then by partial fractions:

dy _ kydz ki dx ky; dz - ky dx ke dz
N (1' - 7‘11) (J«‘ - 7‘11)2 T (x - 7‘11)3 + * (x — 7‘41) (r — T42)
R k,y dx ko, dx o Zky(x +-19) dz L.
(z + "'21)2 + "'gl (z + 7'22)2 + ng (z + "'21)2 + "'31

and on integrating:

y = C(z - ’rll)k”(x -_ 7'41)k“($ — 7'42)1‘42 v [(x + 7'21)2 + r?’l]km

+ k k
kg1 arc tan T Foeee — 12 _ 13 -
..o.e oy (2=rn)  2(a—ry)?
Hence y can = 0 only for £ = 7y or-for £ = 74, re, - - - and for no other finite

values of z. Since by hypothesis y is bell-shaped, then the proper &;; must be
positive and Theorem II always holds for repeated roots.
Theorems I and II can now be combined and generalized in the form:
TreoreM: If F(z) is a polynomial with real coefficients and y = G(x) is a
bell-shaped curve which is a solution of the differential equation

dy _yl—P)
dr = F(x) '
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then the necessary and sufficient condition: that y be of unlimited range in both
directions is that F(x) have no real roots; that y be of limited range in one direc-
tion is that all of the real roots of F(x) lie on the same side of P; that y be of
limited range in both directions is that at least one real root of F(x) lie on one
side of P and one on the other.

CoroLLARY: F(x) must be negative throughout the range of y.

Suppose now that we have some statistics which we wish to graduate and the
statistics are of such nature that we would expect a bell-shaped curve, rather
than a J- or U-shaped curve, and we desire the best fit: If we use a curve which
is a solution of the differential equation

dy _ ylz - P)
dz F(x)

(the Pearson Curves being special cases) to fit the statistics and if in computing
the constants for the curve one of the following cases arise:
(a) by < 0 when this constant is computed,
or (b) B, 4« 0 when the origin is moved to the mode,
or (c) arootislocated within the range of the statistics then it means that:

1. A mistake may have been made in the computation; thus the Theorem
just established provides a rough check on the work of computation,

2. If no mistake has been made in the computation it may indicate that the
bell-shaped Pearson Curves will not closely fit the statistics and that some
other graduation curves be used, e.g. the Gram-Charlier Types A or B might be
tried,

3. If no mistake has been made in the computation it may happen that one
of the bell-shaped Pearson Curves will give an excellent fit but a different method
than or a modification of the Method or Moments should be used in order to
compute the constants.

Part 3. Computing the Constants

At present, the constants of a frequency curve are computed as follows:
First the moments are computed about an arbitrary origin, then the moments
about the A.M. are determined, then 8, and B and the criterion are computed,
after which the type of curve can be selected. From this point a separate
procedure is followed for each curve. Now in the above method one will not
know whether a root has been located in the range of statistics or not.

Take Pearson’s differential equation

dy __yle—P)
dr ~ b 4 bix + by’

Put X =2 — P. ThendX =dzxandz = X 4 P,and

dy _ yX _ yX
dz~ by(X 4+ P2+ bi(X +P)+ b0 bX2+ 2Pb:X + 01X + P2 + Pby + bo’
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Now put
be = B,
2Pb, + by = By
P2, + Pby + bo = By .

Then we have

dy = yX or dy = y(z — P) (1)
dX B;X®+4 B, X + By dr  By(x — P)?24 Bi(x — P) + By~

It should be noted that for a particular curve, By, B; and B, are constants;
i.e., their values do not change with a change of the origin. The values of b,
and b, do change with a change in the origin.

If we clear equation (1) of fractions, multiply by e* and integrate with respect
to x over the range from z; to z,, where

Agn2  Agnd
27 3" z9
PP LI LA
e 1 2! 3! Ef eﬂ”ydx,
z

1

then successively differentiate with respect to 5, and equatc cocfficients of
like powers of 5, we finally obtain:

M — P+ By — 2PB, + 2B\, = 0, )
X2 + By — PB; + P2B; + B)\; — 2PBy\; + 3Boh: + B\l =0,
As + 202B1 — 4PBy\; + 4Bo\y + 4BA\; = 0,

A + 3BAs — 6PBy\g + 5By\s + 6BaA3 + 6B\ = 0.

Since we can compute the moments from the raw statistics and the semi-
invariants from the moments, we may regard Az, A\; and A, in these equations as
knowns and the By, By, B;, P and \; as unknowns. But the origin has not yet
been specified. Let the origin be placed at the A.M. where y; = \; = 0. As
Az, A3, A, By, B; and B, are unchanged by a change of origin, we have:

B, — P, — 2P,B, = 0.
N2 + By — PyB; + PiB; + 3B\, = 0,

@)

As + 2B\ — 4PyBohs + 4Bahs = 0, @)
M + 3Bi\s — 6P4Bo); + 5Bohy + 6BoA: = 0.
Now put
by = By — PB, + P3B,,
by = B, — 2P,Bs, ¥ 4)

’

b, = By; J
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then
by — Py =0,
A + by + 3byy = 0,
As + 2bihe + 4bsAs = O,
A+ 3bihs + Bbyhs + 6byAE = 0.

)

By reversing the transformation (4) we get:
By =b;,
By = b, + 2Peb, (6)
By = by + Po(by + Pib,).

Now the above theory suggests the following procedure for computing the
constants of a frequency curve: First the moments are computed about an
arbitrary origin, then the semi-invariants are computed (or alternatively the
moments about the A.M., either step involves about the same amount of work),
then the equations (5) are solved and then by means of equations (6) the B,
B, and By are computed. Next solve the quadratic equation

B:X? + B.X + B, = 0.

The character of the roots of this equation indicates which type to use and it is
unnecessary to compute the criterion. The constants of the frequency curve
are simple functions of the roots of the above quadratic equation and can be
readily found by integrating the diff. eq. (1) being careful to write the solution
as a function of X = £ — P. The rough checks mentioned in Part 2 can be
quickly and conveniently applied when this procedure is followed.
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