A PROBLEM INVOLVING THE LEXIS THEORY OF DISPERSION
By WaLTER A. HENDRICKS

The attention of the author was recently directed to a study of the hatch-
ability of chicken eggs at the U. S. Animal Husbandry Experiment Station,
Beltsville, Maryland. It was necessary to find the average hatchability of the
fertile eggs incubated for each of a number of lots of birds and the corresponding
standard errors of those averages.

It was very apparent that some methods for computing such values, in com-
mon use at the present time, do not give satisfactory results. This is due to the
fact that the fertile eggs produced by different birds vary considerably with
respect to hatchability as well as with respect to number of eggs available for
incubation. It seems reasonable to suppose that the variability in hatch-
ability of a number of fertile eggs, produced by a given number of birds, should
obey the Lexis law of dispersion. This supposition is based on two hypotheses:

(a) The probability that a fertile egg will hatch is constant for all fertile eggs
produced by the same bird during the time interval under consideration.

(b) The probability that a fertile egg will hatch varies from bird to bird.

The reader familiar with the principles of genetics may question the validity
of the first of these hypotheses. The probability that a fertile egg will hatch is
largely governed by the genes carried by the chromosomes of the ovum of the
hen and the sperm of the male bird which fertilized that ovum. The kinds of
genes carried by various ova and spermatozoa are not necessarily the same, even
when those ova and spermatozoa are produced by the same female and male
birds, respectively. However, if we have a sample of a number of fertile eggs
produced by the same hen, we are justified in assuming that the proportion of
those eggs which will hatch is constant, except for sampling fluctuations, when
successive samples of fertile eggs produced by the given hen are incubated, pro-
vided, of course, that the eggs in the successive samples were fertilized by the
same male bird or birds. The limit approached by the proportion of fertile eggs
which hatch as the number of fertile eggs produced by the given hen becomes
infinitely large may be defined as the probability that a fertile egg produced by
that hen will hatch. It will be recognized that this definition is based on purely
academic considerations, since there are physical limitations to the number of
fertile eggs which a hen can produce in a given period of time. Hypotheses (a)
and (b) are to be interpreted in the light of this definition of the probability that
a fertile egg produced by a given bird will hatch.

Let sy, 83, --- 8, represent the numbers of fertile eggs produced by n birds
during a period of time and let fi, fs, - - - f», respectively, represent the numbers
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of chicks obtained from those eggs when the eggs are incubated. Let pi = I
Sk

represent the hatchability of the fertile eggs produced by the kt* bird.
The squared standard error of p; is given by the Lexis formula:!

=22y u 1> (P Py W
t=1
in which the P, represent the respective probabilities that the fertile eggs pro-
duced by the n birds will hatch, P is the arithmetic mean of the P,, and @ is
equaltol — P.
The values of the probabilities, P;, are not known. However, as a first
approximation to equation (1) we may write:

s — 1 <
Op = ?;’g kn—s 2 (p. — p)? (2)
k k t=1
in which p is the arithmetic mean of the p, and ¢ is equal to 1 — p.
The product, pg, can be accepted as a reasonably close approximation to the

product, PQ, but the expression, Y (p. — p)?, will, in general, be greater than
t=1

the expression, Y, (P, — P)2. The reason for this is apparent when we con-
t=1

sider that if each of these two expressions is divided by #, the former yields an
estimate of the squared standard deviation of the p, while the latter yields an
estimate of the squared standard deviation of the P,. The standard deviation of
the p, will, in general, be greater than that of the P, because the p, are more or
less imperfect estimates of the P, and are, therefore, subject to sampling errors
from which the P, are free.

We may write:

n 1 n
EP= P = > o — ) — )
t=1 t=1

in which ¢2 is an appropriate correction as yet undefined.
Since the p, would approach the P as statistical limits if each of the s, were
made extremely large, it follows that ¢2 must approach zero as each of the s,

approaches infinity. Furthermore, if P, = P, = --. P, = P, we must have:
%2(1’:—?)2—0i=0 or
t=1

ol 12 (pe — p)2. (CY)

. =
n
t=1

t The formula as given in this paper is a modification of that given by Rietz, H. L. (1927)
in his book, Mathematical Statistics, Open Court Publishing Co., Chicago, which was
necessary in order to make it applicable to relative frequencies.
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These conditions suggest that ¢% be defined by the equation:

s _pg1
=2 (5)

If o2 is so defined, it will obviously approach zero as each of the s, approaches
infinity. Furthermore, it has been shown by Yule? that if we have a series of n
relative frequencies, such as the p, under discussion, based on n samples of
unequal size, and the probabilities of the occurrence and non-occurrence,
respectively, of the particular event under consideration are constant from
sample to sample, the squared standard deviation of those relative frequencies
is given by a relation such as that used to define ¢2 in equation (5). There-
fore, the second condition is also satisfied. o2 may be interpreted as repre-
senting that part of the squared standard deviation of the p, which is due to
the unreliability of the p, as estimates of the P,.
Therefore, it seems reasonable to write:

1< 1< Pq !
_E:P_Pz=_zt — 2—_2:“'
n &t (P, ) n & (pz P) n & 5, (6)

Combining equations (1) and (6), we obtain the following formula for calcu-
lating the squared standard error of p::

AT | B S VRO oF |
e =5 T The [; (p: — p) pq; SJ. )

Since the weight of a measurement is inversely proportional to the square of
the standard error of the measurement, we are now in & position to calculate a
weighted mean, p, of the p;.

P = —t:;l-——-—- (8)
Z We
t=1
in which:
1
Wy = ———2— . (9)
¢

The squared standard error of $ is given by the familiar formula:

n

Z wi(p: — D)*
012-, = -t_l———-——“"—— . (10)
(n — 1) Z Y]

t=1

? Yule, G. Udny, 1927. Introduction to the Theory of Statistics, Charles Griffin and
Co., London.
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It would seem that p may be accepted as a good estimate of the average
hatchability of the fertile eggs produced by the given lot of birds, and that
equation (10) may be used to obtain a valid estimate of the reliability of p.

However, the problem is not quite so simple. In the first place, there is
usually a small amount of positive correlation between the number of fertile
eggs produced by a bird and the hatchability of those eggs. Secondly, as
pointed out earlier in this paper, the hatchability of fertile eggs is influenced to
some extent by the male birds used to fertilize the eggs. The error involved in
neglecting the correlation between hatchability and number of fertile eggs incu-
bated does not seem to be of much importance in those practical problems which
have come to the author’s attention. The effects of differences among the male
birds may be largely obviated in experimental work by frequently transferring
male birds from lot to lot during the experimental period.

The best test of the suitability of a particular formula for calculating the
standard error of an average is to compare the value of the standard error
calculated by means of the formula with the corresponding value obtained by
direct calculation from the distribution of a number of such averages obtained
under essentially the same conditions. The accompanying table gives the
standard error of the weighted average hatchability of fertile eggs calculated
for each of four lots of birds by means of equation (10), together with the corre-
sponding values obtained from the distribution of averages. The former are
designated as the ‘“‘predicted’’ values and the latter are designated as the
“observed’” values. In the calculation of the “observed” values, the various
averages were assigned the same weights which were used in the calculation
of the “predicted” values.

Comparison of ‘“predicted” and ‘“‘observed”’ standard errors of the weighted average
hatchability of fertile eggs, calculated for each of four lots of birds

_ Standard error of p
Lot 4
“Predicted” ““Observed’’
1 0.7684 0.0287 0.0327
2 0.7115 0.0533 0.0561
3 0.6834 0.0355 0.0379
4 0.7260 . 0.0615 0.0674

The data used in these calculations involved a total of 74 birds, approxi-
mately equally divided among the four lots, and a total of 2,901 fertile eggs
which were produced and incubated during an experimental period of 48 weeks.
The agreement between the “predicted’’ and ‘“‘observed’’ standard errors of the
weighted average hatchability for each lot of birds is excellent. However, the
author’s experience with biological data tends to make him doubt that such
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close agreement will always be found when such data are subjected to the
above treatment. The agreement in the present illustration could be less
close without indicating that the method of calculating the ‘‘predicted”’ stand-
ard errors is unsound.
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