THE LIMITING DISTRIBUTIONS OF CERTAIN STATISTICS!
By J. L. Doos

There have been many advances in the theory of probability in recent years,
especially relating to its mathematical basis. Unfortunately, there appears to
be no source readily available to the ordinary American statistician which
sketches these results and shows their application to statistics. It is the purpose
of this paper to define the basic concepts and state the basic theorems of prob-
ability, and then, as an application, to find the limiting distributions for large
samples of a large class of statistics. One of these statistics is the tetrad differ-
ence, which has been of much concern to psychologists.

I

Let F(z) be a monotone non-decreasing function, continuous on the left,
defined at every point of the z-axis, and satisfying the conditions
(1) lim F(z) =0, lim F(z) =

z—>—00 T —00

Then the function F(z) is said to be the distribution function of a chance variable
x, and F(z) is said to be the probability that x < 2. The curve y = F(z) is
sometimes called the ogive in statistics. The chance variable x itself is merely
the function z, taken in conjunction with the monotone function F(z).

If / zdF (z) exists as an absolutely convergent Stieltjes integral, the value
of the integral is called the expectation of x, and will be denoted by E(x).

II

Let F(zi, - - -, zs) be a function defined over n-dimensional space, which is
monotone, non-decreasing, continuous on the left in each coérdinate if the others
are held fast, and which satisfies the conditions
(2) lim F(zxy, ---,2,) =0, j=1,...,n, lim F(zy, - ,2.) =1

z j——o0 Z1y* oy T >0
where in the last limit, 2y, - - . , 2, become infinite together. Then F(zy, - - - , )
is said to be the distribution function of a set of chance variables x;, - - - , Xy,
and F(z,, - - - , z,) is said to be the probability that all the inequalities x; < z;,
(j = 1, ..., n), hold simultaneously. It can be shown that the function
Fix) = lim (&, --- &-1,%, &, - -+ £n-1) is of the type discussed in §I. The
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function F;(z) is called the distribution function of x;. The chance variables
X1, + - -, Xn are called independent if F(zy, - - , 2s) = [] Fi(z;). The chance
i=1

variables xi, - - -, X, are merely the functions xj, - - - ,z, defined over =-
dimensional space, taken in conjunction with the function F(zy, - - - , z,).

If ay, - - -, a, are any real numbers, the number F(ay, - - -, a,), the prob-
ability that x; < a;, j = 1, ..., n,is also called the probability that a sample
(1, - - - ,Z,) shall be in the region of n-dimensional space determined by
2 <ajj=1,---,n Thus regions of this special type have probabilities
attached to them Using the usual additivity rules, probabilities can be at-
tached to more general regions, and in fact probability can be defined on a col-
lection C of regions including all open sets, closed sets and all sets which can
be obtained from them by repeatedly taking sums, products, and complements.
(Such point sets are called Borel measurable). The resulting function of point
sets is non-negative and completely additive.?

If f(xi, - - -, ) is any function of zy, - - ., z, let E, be the set of points
(x1, - -+, x,) where f < z. Suppose that E, is in the collection C for all values
of z, and let F(z) be the probability attached to the set E,. Then it is readily
seen that F(r) has the properties discussed in §I and is therefore the distribution
function of a new chance variable x, which will be denoted by f(xi, - - - , Xa).
The chance variable f(x1, - - - , X,) is merely the function f(z;, - - -, z.) taken
in conjunction with the distribution function F(zy, - - ., z,). (An example is
f@y, -+« ,24) = 21+ + -+ + T, determining the chance variable x; + - .- 4 x,.)
Suppose that E(x) exists,

3) E(x) = / 2dF(z).
Then it can be shown that the n-dimensional (Lebesgue)-Stieltjes integral

@) [: /:'f(xl, e 2)dF G, e, 3)

exists and has the value E(x). Conversely the existence of the integral (4) im-
plies that of (3).
If there is a Lebesgue-integrable function ¢(z1, + + -+, zs) such that

(5) F(xly"‘rxﬂ)=f""'/ ‘P(xly"’rxn)dxl"'dxny

2 That is, if p(E) is the value of the set function on the set E, and 1f E, E, --- are
point sets with no common points, and which are in C, p(E E,,.) Z p(En).

m=1 m=1
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the function ¢ is said to be the density function of the distribution. In this
case (4) becomes

4) f / f@, -oey za) (@, oo, @) dy -+ - da.

The probability attached to a point set E in the collection C is the integral
4) (or (4) if there is a density function), where f = 1 over E and f = 0 else-
where.

II1

Let x, X1, X2, - - - be a sequence of chance variables. We suppose that for
every integer n, X, X, determine a bivariate distribution. Then it is readily
seen from $II that there is a chance variable | x» — x | and therefore that
P{|x, — x| < \}?is defined for every number \. If
(6) lim P{|x, — x| =} =1
for every positive number A, the sequence x, is said to converge stochastically,
or to converge in probability, to x. If « is a constant, P{| x, — a| = \} is also
defined for every number \,.and there is a corresponding definition of stochastic
convergence to «. The usual theorems about limits hold: if x,, y.» converge
stochastically to x, ¥, X. 4+ ¥. converges stochastically to x 4 y, ete.

An example of stochastic convergence is given by the law of large numbers.
Let x be a chance variable with distribution function F(z) and suppose that
E(x), E(x?) exist, i.e. that

/ : 2dF(z), /: : 22dF(x)

are absolutely convergent integrals. Let x;, - « - , X, be chance variables whose

n-variate distribution function is J[ F(x;): we are thus supposing that the vari-
i=1
ables all have the same distribution and form an independent set. Then

n

;1; E x; is a new chance variable, and Tchebycheff’s inequality furnishes an

i=1
n

immediate proof that»:; 2 x; converges stochastically to F(x).*
i=1

3 Throughout this paper, if v represents a set of conditions on chance variables, P{v}
will denote the probability that those conditions are satisfied.

‘If %, = ;;Z x;, E(x,) = E(x), BEx}) = %E(x’). Then if \ is any positive num-

i=1
—_ |2
ber P{| 22 — E(x) | > A} < E—“"—rj—(x)—]—} which implies (6).
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There is also another kind of convergence, called convergence with prob-
ability 1. The sequence {x,} converges with probability 1 to x if

)] lim P{{x, — x| SN | X — Xt SN, oo, [ Xnpp— x| S} =1

n —00

for every value of p = 0, uniformly in p = 0 for every positive number \. If
p = 0 in (7), (7) becomes (6), so that convergence with probability 1 implies
stochastic convergence. Although the converse is not true, if {x,} is a sequence
of chance variables converging stochastically to x, there is a subsequence of
{x.} which converges with probability 1 to x.> The usual limit theorems hold
here also: if x,, y. converge with probability 1 to x, y, x. 4 ¥. converges with
probability 1 tc x 4 y, ete.

An example of convergence with probability 1 is the following. If in the
previous example the hypothesis that E(x?) exists is removed, so that only the
weaker hypothesis of the existence of E(x) is supposed, the Tchebycheff in-

equality can no longer be applied, but a different method shows that;& 2 X;

i=1
converges with probability 1 (and therefore stochastically) to E(x).6 This result
is known as the strong law of large numbers.

v
Let x, X3, Xs, - - - be a sequence of chance variables with distribution functions
F(x), Fi(x), Fo(z), - - - respectively. Then if lim F.(z) = F(z) for every value

of z, the distribution of x, is said to converge to a limiting distribution with
distribution function F'(z).

As an example, consider the Laplace-Liapounoff theorem. Let x;, xs, « - -
be a sequence of independent chance variables (i.e. any finite number of them
form an independent set) with the same distribution functions, and let E(x,),
E(x%) exist. We suppose that o> = E{[x, — E(x.)]*} > 0 so that the dis-
tribution of x, is not merely confined to one point. Then the distribution of

8) n—_; > [x — E(x)]

n
i=1

5 The theories of probability and of measure are:fundamentally identical. Chance
variables correspond to measurable functions. Stochastic convergence corresponds to
convergence in measure, and convergence with probability 1 corresponds to convergence
almost. everywhere. The relation between these two types of convergence is discussed
(in the terminology of the measure theory) in E. W. Hobson, The Theory-of Functions of
a Real Variable, second edition Vol. 2, pp. 239-244.

¢ Cf. for instance J. L. Doob, Transactions of the American Mathematical Society,
Vol. 36 (1934), pp. 764-765.
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converges to a limiting distribution with distribution function’

z z?

1 -z
9 —_— 202 qy .
© 0\/214/—‘«:6 ’

The convergence of a sequence of n-variate distributions is defined as the
convergence of the distribution functions just as above for n = 1. Suppose
that (xu, « + + , Xu1), (K12, - - + , Xn2), - + - are independent sets of chance vari-
ables (i.e. the distribution function of any finite number of sets is the product
of the distribution functions of the sets) with the same distribution functions.
We suppose that E(x;), E(x},) exist, j = 1, - - . ,n and that ¢} = E{[x;; —

1 m

E(x)]2} > 0. Thenif X;n = m 2 Y [x; — E(x;)], the n-variate distribution
=1

of Xim, + - -, Xnm converges to the normal distribution® about zero means with
variances ¢}, - - - , o2 and correlation coefficients {p;;} where oio;0;; = E{[xa —
E(xa)l[xp — E(xa)]}.

Three lemmas will be needed below in applying these concepts.

Lemma 1. If {x.} is a sequence of chance variables whose distributions approach

- a limiting distribution and if {y.] 7s a sequence of chance variables converging

stochastically to 0, the sequence {x,y.} converges stochastically to 0.

For if F(z) is the distribution function of the limiting distribution, and if A,
u are any positive numbers,

P{lxu¥n| <A} Z P{lxa¥u| <N, |yl Su} Z Pllxal <Mip, ¥l S 4}
(10)  z P{lyal S} — Pllxal 2 Mu} = — P{l¥a| > 4} + P{lxa] <N/u}
Z — P{lys| > s} + P{xa <Nu} — P{xa < — N/2u}.
Then, letting » become infinite,
(11) Ii”m_“ionf P{| .y | <A} = F(\/u) — F(—=\/2u) .

Letting u approach 0, F(\/u) approaches 1, F(—\/2u) approaches 0, and the right
hand side becomes 1, as was to be proved.

LeMMA 2. Let {X.}, {¥a}, {2} be sequences of chance variables such that the
distribution of x. approaches a limiting distribution with continuous distribution
function F(x) and such that the sequences {¥.}, {z.} converge stochastically to 0,
1 respectively. Then the distributions of {X./z.}" and of x, + y. approach limit-
ing distributions with the same distribution function F(x).

7 A. Khintchine, Ergebnisse der Mathematik, Vol. 2, No. 4: Asymptotische Gesetze der

Wahrscheinlichkeitsrechnung, pp. 1-8.
8 Ibid. pp. 11-16.
9 If {a.} is a sequence of real numbers lim sup a, is defined as lim {least upper bound

n—0 n-—>00
@y Gny1y * ¢ }, and lim inf @, is defined as —lim sup (—a,.). A necessary and sufficient
n—0o0 n—0
condition that the sequence {a.} converge to a limit a is that lim inf ¢, = lim sup a. = a.
n—0oo n—0o0

10 Since z, converges stochastically to 1, the probability that z, = 0 approaches 0. The
theorem is independent of the way x,/z, is defined when z, = 0.
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Since ;1‘ = X, + X. 1 ; Zn (neglecting the possibility that z, may vanish),

where the last term converges stochastically to 0 by Lemma 1, it is sufficient
to prove the second part of the theorem. If ¢ > 0, and if z is an arbitrary
number,

(12) P{x,+ yn <z} =P{xn+¥a <x)lyn| Sel+P{xat Y <x;IYn| > e},
Since the sequence {y.} converges stochastically to 0,

(13) m P{X, + ¥n <2, [yn| > e} SImP{|y.| > €} =0

n—00 n—0

so that in the limit the second term in (12) can be neglected. Moreover
(14) P{x, 4+ Y2 <%, ¥a | < €} < P{x.<z + ¢} .
If we let » become infinite and then let ¢ approach 0, (14) becomes

(15) lim sup P{x, + y» < z} = F(z).

n—00

A similar argument shows that

(16) lim inf P{x, + ¥» < z} = F(z),

n—0o0

and (15), (16) taken together imply that

an lim P{x, + ¥» < z} = F(z),

n—0o0

as was to be proved.
Lemma 3. If x5, Xs, X3, X4 are chance variables whose distribution has denstty

Junction

1 e— —(zl+a:,+z§+zf)
(2m)
the distribution of 2 = XiXa — XsX4 has denstty function je1=!.
The distribution of u = x;x2 and that of v = —Xx;x4 have the same density
function:
© _ st

(18) 1 f "7 O

s [} t

Hence the distribution of z has density function

0 @ ®© (z—)\)2 2 A2
(19) _1_/ f e_z—w_l“z_z_ﬁ"?d)‘itfd.f_
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If we change to polar coérdinates: ¢ = r cos 8, r = r sin 8, and integrate out A,

we obtain
® fx/2 _ =z _r?
lf/ e 27’ 2d'rd0=71) —l=l,
™ Jo 1) &

\'s

TuEOREM 1. Let X1, Xs, X3, X4 délermine a 4-variate distribution with distri-
bution function F(zy, T2, xs, xs). Suppose that E(x;), E(x}), E(xix?) exist,
i,j=1, ---, 4, and suppose that E(x;) = 0, E(x?) = 1,V 4, jo= 1, 2, 3, 4.
Let %y;, Xa;, X3, X4; have the same 4-variate distribution as xl, X2, X3, X4y j=1,---,m,
and let the 4n-variate distribution function of {x;;} be H F(xy, o5, x3j, ). We

shall use the following notation (which suppresses the dependence on n):

1
20) &=~ 2 ik Si = 2 XarXit pi = E(xx;).
k=1

Let ¢ be a function of &, si;, defined in a neighborhood N of P: & = 0, s = pij
which, together with its second partial derivatives is continuous in N. Define
o= 0by

4 4
de dp
, 2 — X x, — = (py — XiXi
(21) o E{L=1 5 ;E,-; 25, (pii — XiX;) H

where the partial derivatives are evaluated at P. Then if ¢ > 0, the distribution of
V1 e — o(P)] (where ¢ has the arguments &, s;;) converges to a limiting distribu-
tion which is normal with mean 0 and variance o

To prove this theorem we expand ¢ in the neighborhood of P, obtaining
4

(22)  Valo—o(P)] = 2 VIR SVACTEERES &

where the partial derivatives are evaluated at P, and where R, consists of a
linear combination of \/n&&;, \/;lfi(ij — Sit), \/ﬁ(pq‘ — 8ij) (o — Sw), with
coefficients which are uniformly bounded as long as &, s;; are in the neighbor-
hood N. Now

(23) lim & =0 lim s; = pyj

with probability 1, by the law of large numbers, and as n becomes infinite the
distributions of v/n &, v/n (p;; — si;) converge to limiting distributions, by the

11 The hypothesis that E(x;) = 0 involves no real restriction, since the general case can
be reduced to this one by substituting x; — E(x;) for x;. The hypothesis that E(x?) =
can be met by substituting x;{E(x?)1} whenever E(x?) > 0, which will always be true un-
less x; = 0 with probability 1.
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Laplace-Liapounoff theorem. Then by Lemma 1, the terms of R, converge
stochastically to 0. The other terms of vVnle — ¢(P)] are sums to which the
Laplace-Liapounoff theorem can be applied, giving the desired conclusion.

As an example of the application of this theorem, we suppose that ¢ is a
correlation coefficient:

_ Si2
(sus»)t ’

Here o2 is E{[x1xs — 3pu(x} + x3)12}, (which reduces to the familiar result 1 — p},
when the bivariate distribution of xi, x; is normal) and ¢ = 0 only when, with
probability 1,

(25) 2 x1Xs = pra(X? + x32).

(24) (4 <P(P ) = p12.

As a second example we suppose that ¢ is a tetrad difference:

S13S24 — S14Sg3

= —— P = —_— .
( S11 522 5% s“)* ’ <P( ) P13 P24 P14 P23

(26) @

Here ¢2 becomes
4 2
@27 ot = E“:pmxlxs + p13X2Xs — praXeX; — p23Xi Xy — 5 E X?:”

and ¢ = 0 only when the quantity in the brackets vanishes with probability 1.
If in either of the two above cases s; — &;£; is substituted for s; (i.e. if the
deviations from the sample mean, not those from the true mean, are used), the
result is unaltered. This is true in general, since g;f , g_s‘ﬁ are unaltered at P by
(1 7
this substitution.

There is a well-known é-method used in statistics to find limiting variances
of statistics of the type covered by Theorem 1, and Theorem 1 shows an
interpretation which can be given to the results obtained by this method.

We now investigate the necessary modification of Theorem 1 if ¢ = 0, i.e. if

4 4
de Ao
28 % % — 99 (ps — x:x;) = 0
(28) 2 %~ iZ;l 55 (pii — XiX;)

with probability 1. If we assume that ¢ has continuous third partial deriva-
tives in the neighborhood N, we find that

12 Examples of the use of this method can be found in T. L. Kelley, Crossroads in The
Mind of Man, Stanford University (1928), pp. 49-50, and in an article by S. Wright, Annals
of Mathematical Statistics, Vol. 5 (1934), p. 211.
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02
nle — ¢(P)] = 7-)’ af‘fp LE; + 2 2 ; af 88 it(sﬂc pit)
(29)
n 02 KX ’
+ 3 355 35 (sij — pij)(see — o) + R,

7.k, 0

where R, converges stochastically to 0. The second degree terms constitute
a quadratic form in {&, s;x — pjx}. Now the multivariate distribution of
{v/nE&, V/n(sir — pir)}, by the Laplace-Liapounoff theorem, converges to a
normal distribution whose variances and correlation coefficients are those of
X, X;Xx. The distribution of nlp — ¢(P)] thus converges to the distribution
of the quadratic form

nY e ™ 8¢ .t "
(30) § aE a£ a; a; + 2 i;k as‘asjk a; @]k + 2 iz as" aSk @ugkl’

where {a,—, Bjk} have the multivariate distribution just described, unless the
quadratic form vanishes identically. This reasoning can be continued, the
general result being that there is some power » of =, if ¢ is sufficiently regular,
such that the distribution of n’[¢ — ¢(P)] converges to a limiting distribution.

When ¢ = 0 in the second example, unless the distribution of x;, xs, X3, x4
is confined with probability 1 to a 4-dimensional quadric, p13 = p14 = p2s =
p2e = 0. Equation (29) becomes

(29") nle — o(P)] = s13824 — Suss + R,,.

Now if x;, x; are transformed by a linear homogeneous transformation with
determinant A, it is readily seen that s13824 — S14S23 lS multlphed by A. The
same is true of x3, xs. If xy, X2 are transformed into X1, X, so that E(z;?) = 1,
E(ziz;) = 0, the determinant of the transformation is :I:(l - pn)"* Then
transforming each pair (%1, X2), (X3, X4) in this way mto (x1, x3), (x5, X4), the

. 4 ’ ’ ’ 1
variables X1, X3, X3, X4 are uncorrelated. If s;; = - E : xikx,-,,,

S138y4 — S14Sy3 .
+(1 — pi )1 — p3o)}

The limiting distribution of S13S24 — S14S24 is the distribution of @1 sB2s — @14523
where these four chance variables are normally distributed, E (613) = E@,,) =
E@i) = E@.s) = 0, E@:) = Exix;), E@;8r) = Exix;x:x;). Now if
X1, X2, X3, X4 are normally distributed—the most important case for statistical
purposes—x, X, X3, X4 will also be distributed normally, and the vanishing of
the correlation coefficients means that the chance variables are independent.

If this is true
(32) E(@:f = 1; E(@i;‘@kl) = 0; (Gii #= @kz)-

4 7’ 7 7’
(31) S13824 — S14823 =
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Evidently, however, x, X3, X3, X; do not have to be independent to make these
equations valid. It is more than sufficient if the pairs (1, X2), (X3, X4) and there-
fore the pairs (x1, X,), (X3, X4) are independent. If (32) is true, the s are in-
dependent, each one being normally distributed with mean 0 and variance 1.
Summarizing these results, and using Lemma 3: if ¢ is the tetrad difference and
if p13 = p1a = pas = pas = 0, the distribution of nlp — ¢(P)] converges to a limiting
distribution. If in addition the distribution of X1, X3, Xs, X4 s normal, or if the
pairs (X1, X2) (X3, X4) are independent, this limiting distribution has density function

c

—e—cl=z|

where ¢ = (1 — pip)t (1 — p3) .

Wilks has investigated the case where xi, X2, X3, X« are normally and inde-
pendently distributed, and in this case found the exact variance of the tetrad
difference as a function of n.1?

CoLuMBIA UNIVERSITY.

13 Proceedings of the National Academy of Sciences, Vol. 18, (1932), pp. 562-565.



