A THEORY OF VALIDATION FOR DERIVATIVE SPECIFICATIONS
AND CHECK LISTS?

By Lee ByYrNE

Visiting Professor of Secondary Education, New York University

ParT I. RESEARCH ProODUCTS WHICH MAY BE CLASSIFIED AS DERIVATIVE
SpEcIFICATIONS AND CHECK LisTs

Meaning of Specification

In specification something is assigned a specific character. The something
to be thus assigned a specific character may be called the specificandum. The
specific character assigned to the specificandum, or (as a second meaning) the
act of so doing, may be called the specification.

A proposition is the smallest unit in which it is possible to embody a complete
thought and is ordinarily represented by a single sentence. In specification
the characterization may be confined to a single proposition or it may be ex-
tended to include an indefinitely large number of propositions. So a speci-
fication may be embodied in a sentence, a paragraph, a chapter, or a whole book.
No matter how far it is extended it will never give complete determination, as
our knowledge cannot be made exhaustive or our control be given an absolute
precision.

In view of the meaning assigned to specification it is evident that very many
books and monographs could in this sense be classified as specifications.

Meaning of Derivative Specification

There is a type of specification (book or monograph) which is developed by
deriving it from a group or class of specifications which already exist. This
class may be a total class of all such specifications, or a group of those accepted
as authoritative, or a group of those taken to be representative. A specification
derived in this manner may be called a derivative specification. As an example
we could take almost any first-class work by a present-day historian; by his-
torians it would be called ‘“‘secondary” because it is based on study of pre-
existent documents called “primary sources.”

Meaning of Check List

The act of deriving a product from a pre-existent set of documents may, as
we have seen, take the form of a derivative specification, embracing an as-

1 This paper is an amplification of a report made in the statistical section of the Ameri-
can Educational Research Association at its meeting in February, 1931.
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semblage of determinates or determinations. On the other hand the product
derived may be intended merely to indicate the ground covered or to be covered
by determination, without actually selecting the particular determinations.
Such a product will be called a check list. The term is not a very happy one,
but it is in very common use. If we think of a specification as an assemblage
of determinations then a check list could be thought of as a corresponding set
of determinables.? Since any determinable is capable of an indefinite number
of determinations it is evident that a long check list could give rise to an ex-
tremely large number of different specifications, of which, of course, some frac-
tion might prove undesirable, inadmissible, or false.

Modes of Specification: How We Specify

If we examine any specification to see how the specifying is done we shall
find that it ultimately takes the form of specification under aspects. The fol-
lowing diagram indicates the principal (perhaps all the) possibilities in the way
of specification.

Naming the original or main specificandum

Naming an aspect
Characterization of the specificandum under the aspect named

Naming a relation (includes process, operation ete.)
Naming an aspect of the relation
Characterization of the relation under aspect named

Naming a relatum or thing related (a new specificandum)
Naming an aspect of the relatum
Characterization of relatum under aspect named

Naming a part
Naming an aspect of the part
Characterization of the part under aspect named

(The naming of aspects may be merely implicit but it is always present in
principle.)

2 On the notion of the ‘““determinable,’”’ which is due to W. E. Johnson, see his Logie,
Cambridge University Press (1921), Part I, p. xxxv and Chapter XI.



148 LEE BYRNE

Thus it appears that if specification is pressed far enough it always ultimately
becomes specification under aspects. Aspect and determinable may be re-
garded as synonyms.

Current Examples of Derivative Specifications and Check Lists

At the present time it will be found that we have very many products of
research which take forms capable of being classified as some kind of derivative
specification or (derivative) check list in the senses in which these expressions
have been explained.

I have distinguished more than twenty different logical types of derivative
specification or check list which are exemplified in the current literature of
educational research and related subjects. However space will not permit
exhibition of examples of these different types.

PaART II. VALIDATION OF DERIVATIVE SPECIFICATIONS AND CHECK LisTs

Many research products may be classified as derivative specifications or check
lists, derivative in the sense that they have been derived from a group of docu-
ments (books, articles, journals, newspapers, courses of study, etc.) through
analysis of their content. Such source documents themselves we shall call
specifications or groups of specifications.

The only validation problem raised here is the question whether the resulting
check list or derivative specification truly represents the class of source specifi-
cations used. The further question whether the class of source specifications
itself constitutes a satisfactory source is not discussed.

From this point of view, if a check list or derivative specification is based in
some suitable manner on all the documents of the class represented, no real
validation problem arises; the validity has to be regarded as perfect.

It may often happen that the investigator does not wish to analyse all of
the specifications of the class in question but prefers to save time and labor by
confining his analysis to a select group drawn from the total class as a sample.
In this case the problem arises as to how far results based on such sample should
be judged to be truly representative of the entire class of specifications (most
of which have not been analysed). A problem of this nature may be called the
problem of validity for this kind of work.

Such a validation problem appears to take the same form whether the product
to be validated is a derivative specification or (derivative) check list. Accord-
ingly we shall for the sake of brevity carry on the discussion by referring to the
problem as that of validating (derivative) check lists. The same principles
would apply if the product happened to be a derivative specification.

In order to consider the validity of a check list based on a sample group of
specifications (called here a Sample Check List) we may hypothesize a check
list based in the same manner on the entire class of specifications from which
the sample was drawn. Such a hypothetical check list (which is not made)
will be called the Ideal Check List. Then the problem of validity may be con-
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ceived as the question as to how far the content of the Sample Check List agrees
with the unknown content of the Ideal Check List.

An overlapping of the two appears ordinarily to be certain but a failure of
complete coincidence is very highly probable. The question is what degree of
coincidence is to be expected.

This general validity problem naturally divides into two separate questions.
The first question asks what proportion of the content of the Sample Check
List may be expected to be present also in the Ideal Check List; this may be
called the (sub-) problem of reliability. The second question asks what propor-
tion of the content of the Ideal Check List may be expected to be present in the
Sample Check List; this may be called the (sub-) problem of completeness.
The answers to these two problems, if expressed in numerical percentages, could
be called the Index of Reliability and Index of Completeness respectively.

We shall first consider these two problems in their simplest form and after-
ward in a more complex form in which they exhibited themselves in a recent
study by the writer.® The simple case presents no great difficulty and it is
possible that a different method of disposing of it might be preferred. The more
complex case, however, appears to be rather difficult of solution and the writer
has not been able to find in the literature any developed technique for handling
it. The simple case is presented here primarily because it affords, by further
extension, a successful approach to the difficult problem of the more com-

plex case.
Simple Case
Terms and Symbols

The “class of specifications” will be understood to consist of all specifications
which belong to the whole class of specifications regarded as a source, a class
which we claim to represent in our final product. In this problem the “class”
will not be regarded as indefinitely large but as consisting of a definite number
of specifications, a number to be ascertained by actual count or by careful
estimate.

“Sample specifications” are the limited group selected from the class for
purposes of actual analysis, and which play the réle of representing the whole
class. The remaining specifications of the class are not analyzed.

“Sample Check List Material”’ is a name for the assemblage of all the different
items found in one or more sample specifications.

“Ideal Check List Material”’ is a name for a hypothetical assemblage of all
the different items found in one or more specifications in the class. Only those
appearing in some sample specifications can be actually known, the rest are
hypothetical.

3 Byrne, L. Check List Materials for Public School Building Specifications. Teachers
College, Columbia University. 1931.
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Write

M (constant) = total number of specifications in class

N (variable) = number of these specifications in which a particular item
under consideration appears (this number is hypothetical and some
of the particular items themselves are hypothetical)

m (constant) = number of sample specifications

n (variable) = number of sample specifications in which a particular
(the same) item appears

Values of » may be expected to vary for different items, from m to 0 by inter-
vals of 1, the zero value appertaining to any item wholly absent from the Sample
Check List Material (hypothetically present in Ideal Check List Material).

Values of N might be expected to vary, for different items, from M to 1 by
intervals of 1. But in this problem the convention will be adopted that the

range is from M downward by intervals of ]‘—”{ Thus if the number M should

be five times as large as the number m then the range for N would be treated
as proceeding from M downward by intervals of 5: M, M — 5, M — 10, - . . 5.

A ‘“‘tabulation” will mean a statistical table showing how many different
items appear in every possible number of specifications. A tabulation must be
made by actual count for the items of the sample specifications, and will show
the number of items having each possible value of n. A similar tabulation is
hypothetical for the items in all the specifications of the class, that is for the
number of items having each value of N permitted by the convention of the
last paragraph.

“Tabulation cell” (or simply “cell”’) will mean, as needed, either the number
of items or the group of items appearing in any designated number of specifi-
cations. For Sample Check List Material it will be the number or group of
items to which a particular value of n appertains; for Ideal Check List similarly
the number of items or group of items to which a particular value of N appertains
(hypothetically).

“Sample Check List” will mean a list of items selected from the Sample
Check List Material according to some adopted criterion. For illustrative
purposes we shall consider this criterion to be, for example, the numerical

. m
ratio n = 5

“Ideal Check List” will mean a list of items selected from the Ideal Check
List Material according to some adopted criterion. For illustrative purposes

we shall consider this criterion to be the numerical ratio N = %’

Problem of Reliability

The problem of reliability may be restated and renamed the General Reli-
ability Problem. This may be broken up into a group of problems which will
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be called Elementary Reliability Problems. Each of the latter may be in turn
broken up into a group of problems which will be called Ultimate Reliability
Problems. Each Ultimate Reliability Problem may be solved directly. Com-
bination of these solutions will yield solutions of the Elementary Reliability
Problems. Combinations of the latter solutions will finally yield the solution
of the General Reliability Problem.

These problems will now be stated

General Reliability Problem: What proportion of the items present in Sample
Check List may be expected to be present also in Ideal Check List?

Elementary Reliability Problem: What proportion of the items in a particular
cell in Sample Check List may be expected to be present also in Ideal Check
List?

Ultimate Reliability Problem: What proportion of the items in a particular
cell in Sample Check List may be expected to be present also in some designated
cell in Ideal Check List?

To solve an Ultimate Problem:

From the Fundamental Theorem in the Theory of Inductive Probability
(Whittaker, E. T. and Robinson, G. The Calculus of Observations. London:
Blackie & Son. 1924. p. 305) the solution may be expressed as

PR'ps
ZPp’

Whittaker and Robinson’s statement of the Fundamental Theorem in the
Theory of Inductive Probability is as follows (form slightly changed without
change in meaning):

“Suppose that a certain observed phenomenon may be accounted for by any
one of a certain number of hypotheses, of which one, and not more than one,
must be true: suppose moreover that the probability of the R-th hypothesis,
as based on information in our possession before the phenomenon is observed,
is Pg, while the probability of the observed phenomenon; on the assumption of
the truth of the R-th hypothesis, is p,. Then when the observation of the
phenomenon is taken into consideration, the probability of the R-th hypothesis is

Pn-Pa
ZPp

where the symbol Z denotes the summation over all the hypotheses.””*

It is clear that an Ultimate Reliability Problem is a case falling under thls
Fundamental Theorem. The observed phenomenon is any item occurring in
any specified cell of Sample Check List, say cell n = s. It may be accounted
for by a certain number of hypotheses as to its source in the Ideal Check List

4 For the fundamental position of this theorem in a theory of science and for its proof
one may also consult Jeffreys, H. Scientific Inference. Cambridge: Cambridge University
Press. 1931. Chapter 1I (section 2.34).
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Material; the different cells in the Ideal Check List Material are these different
hypotheses of origin, hypothetical because we do not know from which one it
has come but only that it must have come from some one of them; the cell from
which it actually comes is the true hypothesis, though we do not know which
one that is. That the origin of the item is in cell N = R is the R-th hypothesis,
and its probability is written Pr. The probability of the occurrence of the
phenomenon on the assumption of the truth of the R-th hypothesis is the prob-
ability that an item in cell N = R will appear in Sample Check List in cell n = s
and its probability is written p.,. As we clearly have in our Ultimate Reliability
Problem a case falling under the Fundamental Theorem quoted we may accept
as the required solution of the Ultimate Reliability Problem the formula already
given in the initial statement:

PR’pa
ZPp’

This expresses the probability that any item found in Sample-Check-List cell
n = 8 comes from (and appears in) Ideal-Check-List-Material cell N = R, or
it gives the proportion of items found in Sample-Check-List cell n = s that
may be expected to come from (or appear in) Ideal-Check-List-Material cell
N =R.

Meaning of any value of P (say Pr) = the probability that any item, drawn
at random from those cells of Tdeal Check List Material which are possible
sources of items in Sample-Check-List cell n = s, will happen to be drawn from
cel N = R.

Meaning of any value of p (say p.) = the probability that any item in Ideal-
Check-List cell N = R will also be present in Sample-Check-List cell n = s.
(Important: this supposition is not equivalent to its converse.)

Evaluation of Pr:

_ number of items in cell N = R
® = number of items in all cells which are possible sources of items in celln = §

For this ratio it is necessary to assume that the shape of the numerical curve
formed by the greup of Ideal-Check-List-Material cells is the same as that of
the numerical curve formed by the group of Sample-Check-List-Material cells.
On this assumption we may replace the numerator by the number of items in
the Sample-Check-List-Material cell having an abscissa corresponding to that
of the Ideal-Check-List-Material cell N = R, and replace the denominator by
the sum of the numbers of items in all the cells with abscissae corresponding to
those of Ideal-Check-List-Material cells which are possible sources of items in
celln = s.

Evaluation of p,:

By the aid of “the definition of probability which is used in practically all
treatises on the subject” (Coolidge, J. L. An Introduction to Mathematical
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Probability. Oxford: Oxford University Press. 1925. p.4) and the principle
underlying the Theory of Combinations (Whitworth, W. A. Choice and Chance.
New York: G. E. Stechert & Co. 1927. Proposition II) we are able to arrive
at the evaluation:

Cn—aCn

CM

in which, for any p (say p.), we employ for N the value N = R, and for n the
value n = s. As the denominator later cancels out it may be disregarded
throughout, simplifying the formula to

p=CuNCy.

(A symbol such as C% is read ‘“‘the number of combinations of N things taken
n at a time’’; also written in several other forms.)

The definition referred to may be worded as follows (Coolidge’s own preferred
definition is not quite the same):

“An event can happen in a certain number of ways, which are all equally
likely. A certain proportion of these are classed as favorable. The ratio of
the number, of favorable ways to the total number is called the probability that
the event will turn out favorably.”

The principle underlying the Theory of Combinations may be quoted from
Whitworth as follows (also found in ordinary works on algebra):

“If one operation can be performed in m ways, and then a second can be per-
formed in n ways, and then a third in r ways, (and so on), the number of ways
of performing all the operations will be m X n X r X ete.”

If it is not at once clear that the formula for evaluation of p follows from the
definition and principle just quoted, the following considerations should make
it evident.

We are working in terms of a particular item belonging to a particular Ideal-
Check-List-Material cell, say cell N = R. “Favorable” occurrence requires
that this item fall in a particular Sample-Check-List cell, say n» = s, while
falling in any other Sample-Check-List-Material cell (including cell n = 0 for
absence) is “unfavorable.” Again the real meaning of the ‘“favorable” occur-
rence is that the item will be found in just n = s out of the m specifications of
the sample, and absent in the remaining m — = specifications of the sample.
Moreover presence in Ideal-Check-List-Material cell N = R means that the
item occurs in just N = R of the M specifications that constitute the whole
class and is absent in M — N of these specifications. The total number of all
the ways (favorable and unfavorable) in which our event can happen means the
same as the total number of all the ways in which a group of m specifications
can be selected from a larger group of M, and this is, of course, written CX and
given us in our denominator. The number of favorable ways in which our
event can happen means the same as the number of ways in which N specifi-
cations containing the item can form groups of n specifications while at the

p
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same time M — N specifications not containing the item can form groups of
m — n specifications; the first distribution can be done in C% ways and the
second in C¥=¥ ways, so by Whitworth’s principle the number of ways which
these things can happen simultaneously is Cp—y C%. Assembling numerator
and denominator we have the formula initially stated for evaluation of p, viz.:

IM—N NN
Cn=nCa

cx -
This is the general formula; in applying to the particular example N = R, n = s
the replacements for N and n, of course, give

Cn=2C
= o

Having a means of evaluating P and p we may solve all needed Ultimate
Problems. The resulting solutions of the needed Ultimate Reliability Problems
(not necessarily completed) enables us to arrive at the solution of any needed
Elementary Reliability Problem in the form of a percentage which may be
called an Index of Reliability for the Sample-Check-List cell in question. In
computing this percentage we distinguish source-cells that belong to the Ideal
Check List from other source-cells that belong to the Ideal Check List Material
but not to the Ideal Check List.

By properly averaging cell-Indices of Reliability (which are really Indices of
Reliability for the individual items in the cells) we may obtain a solution of the
General Problem of Reliability in the form of an Average Index of Reliability
for the Sample Check List as a whole.

In addition to the Average Index of Reliability for the Sample Check List
we may easily secure also Average Indices of Reliability for any series of briefer
Sample Check Lists selected from the Sample Check List, by properly averaging
the Indices of cells contained in any Sample Check List in question, keeping
the original criterion for Ideal Check List.

In practice it may not be necessary to compute all cell-Indices, as a portion
of these may be entered in tables by any methods of interpolation regarded as
acceptable.

Ds

Problem of Completeness

Again we have General, Elementary, and Ultimate Problems. These may
be stated as follows:

General Completeness Problem: What proportion of the items present in
Ideal Check List may be expected to be present also in Sample Check List?

Elementary Completeness Problem: What proportion of the items present in
Ideal Check List may be expected to be present also in some designated cell in
Sample Check List?

Ultimate Completeness Problem: What proportion of the items in a particu-
lar cell in Ideal Check List may be expected to be present also in some designated
cell in Sample Check List?
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To solve an Ultimate Problem:

From principles already used the proportion to be expected is the same as the
value of p alone in an Ultimate Reliability Problem, viz.:

Cnn Co
Cn

By the use of this formula we may solve the Ultimate Problems for all values
of N represented in Ideal Check List and all values of n represented in Sample
Check List; some of these solutions will have a value of zero.

For each value of n, if we properly average the solutions of the Ultimate
Problems, we obtain a solution of the Elementary Problem for one Sample-
Check-List cell in the form of a percentage which may be called the Index of
Completeness for the particular Sample-Check-List cell. In securing this
average it is necessary to multiply each Ultimate Problem solution by a relative
number corresponding to the assumed ratio of number of items in the particular
Ideal-Check-List cell to the number of items in all the Ideal-Check-List cells.
The source of the assumed relative numbers is the same as that used in evaluat-
ing P in the Reliability Problem.

When we have an Index of Completeness for each Sample-Check-List cell
we may obtain a Total Index of Completeness for the Sample Check List as a
whole by summing the cell-Indices of Completeness of all the cells of the Sample
Check List. By an equivalent but preferable method we may divide the last-
named result by the sum of the cell-Indices of Completeness of all the cells of
the Sample Check List Material (including cell n = 0); by this method the
C™ of the original formula cancels out and so may be disregarded throughout.

A Total Index of Completeness is similarly obtainable for a Sample Check
List (any Sample Check List selected from the Sample Check List) by summing
the cell-Indices of Completeness of the appropriate cells. Thus, if desired, a
tabulation may be made showing Indices of Completeness for a series of Sample
Check Lists differing in extent.

A combined tabulation may show for each of a series of Sample Check Lists
its Index of Reliability and its Index of Completeness.

More Complex Case

So far we have considered a validation problem of simple type. In the writer’s
Check List Materials for Public School Building Specifications® a more complex
problem was presented, due to the introduction of the concept of the Applicable
Case. A Check List for School Building Specifications was developed with a
view to its use by school officials or others as an aid in judging proposed school
building specifications with reference to their completeness or incompleteness
of determination. The position was taken that a new specification ought not
to be charged with the omission of a given item unless the building (as repre-

s Byrne, L. Check List Materials for Public School Building Specifications. Teachers
College, Columbia University. 1931.
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sented by the specification) had an Applicable Case for that item. To give a
single example, the Check List contains various items relating to the specifying
of marble work. It did not seem appropriate to score a specification down for
the omission of numerous determinations in marble work, if in fact there was no
marble in the building to be determined. This situation is expressed by saying
that there are no Applicable Cases for those items.

It seems likely that there are other research problems in which the question
ought to be raised whether adequate treatment does not require the introduction
of the concept of the Applicable Case. If so a more difficult validation problem
is presented than would otherwise be the case.

In the more complex case indicated solution is obtained by making the neces-
sary extensions in the procedures followed for the simple case.

Modifications in Terms and Symbols

M (constant) = total number of specifications in class
D (variable) = number of these specifications containing an Applicable Case
for a particular item
N (variable) = number of the latter specifications which also contain the
particular item
number of specifications in sample
number of these specifications containing an Applicable Case
for the particular item
n (variable) = number of the latter specifications which also contain the
particular item

m (constant)
d (variable)

Values of d range from m to 0 by intervals of 1, and those of n range from d
to 0 by intervals of 1.
The convention is adopted that values of D range from M downward, and

those of N from D downward, by intervals of %{l

(Tabulation) cell will mean the number of items (or the group of items) having
a common value of d and a common value of #.
The criterion for membership in the Sample Check List may, for illustrative
purposes, be taken as n = g
The criterion for membership in the Ideal Check List may, for illustrative
D

purposes, be taken as N = 3

Problem of Reliability

Following the same principle and line of reasoning as for the simple case we
arrive at the same general formula for the solution of an Ultimate Reliability
Problem, viz.:

Py +Ps
zPp’
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Meanings of values of P and p are the same as before except that cells must be
described respectively in terms of n and d values instead of n values alone, or
N and D values instead of N values alone.

Pz is evaluated in the same manner as before, using the new meaning of
“cell.”

For p, the evaluation now becomes

M—D .YD—- N NN
m—d Yd—n Yn

Cn
which through cancellation may be simplified to the working formula

M—D \D—N NN
P = Cm—d d—nVne

The reasoning leading to the denominator Cj, is unchanged and so this de-
nominator itself remains unchanged. The numerator for the evaluation of p is
altered to the extent shown by the consideration that, in producing ‘“favorable”
ways, we now have to do with the number of simultaneous possibilities of draw-
ing n specifications from a group of N specifications containing a particular item,
drawing d — n specifications from a group of D — N specifications which con-
tain an Applicable Case for this particular item but do not contain this item
itself, and of drawing m — d specifications from a group of M — D specifications
which contain no Applicable Case for the item.

Problem of Completeness
Following the same principles and line of reasoning as for the simple case we
arrive at the following formula for the solution of an Ultimate Completeness
Problem:
cx2e5-nex
cx
By suitable treatment bringing about cancellations the working formula may

be reduced to
a2 osCl

Techniques and Aids in Computation

The present paper is limited to an attempt to explain with adequate fullness
the proposed theory of validation for derivative specifications and check lists,
and space is lacking in which to exhibit techniques of actual computation. One
specimen problem worked out in fairly complete detail, together with remarks
on available aids in computation will be found in Appendix A3 in typewritten
copies of the writer’s “Check List Materials for Public School Building Specifi-
cations” on file in the Library of Teachers College, Columbia University; the
Appendices are not included in the printed edition.



