ON THE POSTULATE OF THE ARITHMETIC MEAN

By Ricamonp T. Zocu

Introduction

Suppose n observations have been made of an unknown quantity. It is de-
gired to know the most probable value of the unknown. When Gauss gave his
development of the so-called Normal Law of Error, he assumed that the Arithmetic
Mean of the n observations is the most probable value. The question arises: Can
this postulate be justified?

In the excellent book, entitled ‘‘Calculus of Observations,” by Whittaker and
Robinson! there is given a proof which purports to deduce the postulate of the
Arithmetic Mean from assumptions of a more elementary nature. This proof
is not correct.

Since this book has had wide circulation, it is believed that the errors in this
proof should be called to the attention of the users of the book. The present
paper has been prepared for this purpose. The first part of this paper points
out the questionable features of the proof given in Whittaker and Robinson’s
book. The second part gives some critical comments on the original sources
from which Whittaker and Robinson obtained their proof.

Part 1

The assumptions on which Whittaker and Robinson based their proof of the
postulate of the Arithmetic Mean are:

Axiom I. The differences between the most probable value and the indi-
vidual measures do not depend on the position of the null-point from which
they are reckoned.

Axiom II. The ratio of the most probable value to any individual measure
does not depend on the unit in terms of which the measures are reckoned.

Axiom ITI. The most probable value is independent of the order in which the
measurements are made, and so is a symmetric function of the measures.

Axiom IV. The most probable value, regarded as a function of the individual
measures, has one-valued and continuous first derivatives with respect to them.

It is fairly easy to show that if the Arithmetic Mean is the most probable
value, then the above four axioms follow as conclusions. The converse, viz. if
the above four axioms be assumed then the Arithmetic Mean is the most prob-
able value, however, is not true. That is to say the above assumptions are

1 The Calculus of Observations by E. T. Whittaker and G. Robinson, Blackie & Son, Ltd.,
London (1929), pp. 215-217.
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necessary conditions, but not sufficient conditions. For, consider the following
function of the measures:

i=n

- }: (z: — )3

M3 n ;=1

K2 i=n
- E (z; — %)?
n

=1

where Z is the Arithmetic Mean of the z:.

Clearly this function is a symmetric function of the measures (z;) and there-
fore satisfies Axiom ITI. If the z; are each multiplied by % then the Arithmetic
Mean (z) is also multiplied by ¥ and we have

t=n

— Z (kz; — kz)?
t-l k E_S ;
- 2 (ke: — kz)2

n i=1
that is to say, if we multiply the individual measures by % it is the same as multi-
plying the function £2 - ® by k and therefore the ratio of any individual measure
to the most probable value (function) does not depend on the unit used. Hence

the function ¥ ” % satisfies Axiom II.

The partial derivative of ?with respect to z; is
2

(& - f(E ot 2} se-miz]
_ {E (o - z)a} [2[2 (i x)}{ 24 a0a - 2

t=1 i=1

. { S x)} Bual(os = 2 = o = P = )

i=1 ™
since :7 = }z’ and Z (z; — &) = 0. The partial derivatives of ba w1th respect
1 i=1

to each of the z; are of the same literal form and clearly these partlal derivatives

are single valued and contmuous Therefore the function #2 - % satisfies Axiom IV.

Now it can be shown that if h be added to each z;, then the functlon = 1s
unchanged and hence this function does not satisfy Axiom I. (It should be

noted that the function £ p ! is invariant under the transformation specified by
2
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Axiom 1) However, consider the function Z + a B = 1, where a is a constant
2]

independent of the z;. Clearly, f satisfies all of the four axioms.

Thus a function, distinet from the Arithmetic Mean, has here been exhibited
which satisfies the four axioms given in Whittaker and Robinson’s book. Hence,
these four axioms are not sufficient to establish the postulate of the Arithmetic
Mean. The question arises: Where is the proof given by Whittaker and Robin-
son lacking in rigor? The proof given is essentially as follows. (No part of the
proof given by Whittaker and Robinson is here omitted ; in fact, for the sake of
rigor and careful reasoning, further explanations are given and the various steps
are numbered.)

(1) Suppose the most probable value is expressed in terms of the n measures

Ty, T3, - - - » T DY the function ¢(z, 2o, - - -, x,); that is to say the most probable
value is some function, ¢, of the observations, or: the most probable value
= ¢(x1, T3y -+ Tn).

(2) By the theorem of the mean value in the differential calculus, which by
Axiom IV is applicable, we have ¢(kz1, kz, - - - , kza) =

(0,0, ---,0) +kxl[3¢]+ +kx,.|:—69],

5:?1 0%,

where the square brackets denote that every z; is to be replaced by 8kz; where 6
lies between 0 and 1.

(3) By AxiomII, the left hand side = ko (x1, T2, ++ , ZTn).

(4) By the continuity of ¢, postulated in Axiom IV the equation
o(kzy, kxay -+, kn) = k(21 T2y -+ -, ) must hold in the limit when k is 0,
that is ¢(0, 0, .--, 0) = 0.

(5) We now have

k¢(x1, Ty * - ,xn) = kxl[.ai-] + .- + kx"[_a.?_]’

0x; 0Zs

or on dividing by k,
¢(xl)x2} e ,xn) = xl[%] + cee + x”[_a_(ﬁ].

0z 0%y

(6) In this last equation let k — 0: then each of the quantities [g‘—:—] tends
s

to a value which is independent of the z’s and we can write (1, Ty -+ 5 Tn) =
a1 + -+ + cuz, where the c’s are independent of the z’s.
(7) By Axiom III the ¢’s must all be equal, so

¢(x1,a:2, LR ,x,,) = C(xl +xz+ cee +x")'
(8) From Axiom I we have
¢(931+h,xz+h, oo ,x,.+h) = ¢(x1,x2, e ,xn) + h.
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(9) If in thislast equation we let the z; all approach zero then we have cnh = h

and therefore ¢ = ;lb-and finally

¢(xl,x2, coe ,xn) =1!;-(x1+x2+ cee +xn)

which states that ¢ = the most probable value = the Arithmetic Mean.

It should be noted that the first six steps involve only Axioms IT and IV. Of
these first six steps the second and sixth are questionable.

The sixth step involves the tacit assumption that the partial derivatives are
functions of k. These partial derivatives are not necessarily functions of k and

the example given above, viz, f = z + & £ is a function whose partial deriva-
M2

tives are independent of k; in fact no function of the form

t1=n

j=o 2 (Z; — a':)"

+ zai i=n

= Z (z: — 21

i=1

F =

8

will satisfy the tacit assumption involved in the sixth step; nor is F the most gen-
eral function which will not satisfy the tacit assumption, thus take for example

Qs g
—tf
bugps + cuz

Consider now the second step. Take the function ¢(y1, ys, - -+, ¥a) =
k¢(z, 22, - - - ,2,). Then, by Axiom II, we have y; = kx;. Apply the Theorem
of the Mean Value to ¢(y;) instead of ¢(x:). Then ¢(y1, ¥z, --- , Yn) =
(0,0, ---,0) + un [%] + -+ Ya [%’] Now if we replace y; by kx;

1 n
we obtain the equation given in the second step except that the square brackets

a¢(k$1, kxz, sy kxu):l [2&?_] .
are now of the form [ a(kz) and not o, as given by

Whittaker and Robinson. It is difficult to decide whether by [g—:] Whittaker
]

F

z+

and Robinson mean

[a¢(kxl, kg -, kx,.)] or [a¢(x1, Ty -, x,.)]

0x; ox;

These last two expressions are not equal. To make the second step more clear
it is necessary to demonstrate that

[a¢(’cx1, kxz, crcy kxn)] _ [a¢(x1’ xﬁ) R ] xn)]
a(kz;) - o ’
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and this has not been done. In order to demonstrate this equality further use
must be made of Axiom II. It appears that the questionable features of the
second step may be overcome by starting with the equation implied by Axiom
II, thus

o(kz1, kxsy - - -, k) = kd(m1, T2y + -+ , Tn);

in other words ¢ is a homogeneous function of degree 1. Therefore use can be
made of Euler’s Theorem on homogeneous forms. In this way we obtain:

which is an abbreviation of the last equation given in the fifth step.
Now, making further use of Axiom II we have:

1
B, 2, oy 0) = bogor ¢ a, o, 20).

a¢(kxl) kxz, M) kxn) — 0
3(kx;) = a(kx)

It follows that

a¢(xl; Toy -+ - Tn) _ ad’(kxb kxs, - - -, kx,)
ax; - a(kx,') ’

From this development we conclude that for any function whatever which satis-
fies Axiom II the last equation of the fifth step cannot possibly involve k.

In order to overcome the defect in the sixth step it is necessary to make a more
restrictive assumption. If in place of Axiom IV, we assume that “The most
probable value, regarded as a function of the individual measures, has first partial
derivatives with respect to them which are constant,” then the equation given in the
sixth step can be rigorously established.

After the equation of the sixth step is rigorously established there remains an
objection in the seventh step. The axioms do not explicitly state that the n
observations must be functionally independent. Therefore suppose the z; are
functionally dependent according to the relation z; = y:z where the y; are all

constant. Then the function f = & 4 -Zi’ will have partial derivatives with
2

respect to the x; which are unequal and constant; yet at the same time the
function f is a symmetrical expression of the n variables.

Hence in order to establish the postulate of the Arithmetic Mean along the
lines followed by Whittaker and Robinson it is necessary to make another restric-
tive assumption slightly different from that proposed in the last paragraph but
one, and assume (in addition to Axioms I and II) that the function has partial
dertvatives with respect to the x; which are equal.
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Part 2

The first original paper consulted was one by Schiaparelli.? In this paper nine
propositions are presented four of which are also called lemmas. From a strict
mathematical point of view the four propositions which Schiaparelli calls lemmas
are really postulates. Schiaparelli discusses these four lemmas at length; three
of these lemmas are the first three axioms given in Whittaker and Robinson’s
book. The fourth one is: “When, in the function ¢, all the variables (z;) take
the same value a, the function itself becomes equal to a,” (This, as a matter of
fact, is the definition of an average).

In his discussion of these lemmas, which are based partly on practical and
partly on philosophical grounds, Schiaparelli points out that they are justified
from the practical or statistical nature of the problem involved in arriving at the
most probable value (Schiaparelli uses the term “true value’) of a set of obser-
vations. In the present writer’s opinion, these discussions are the most excel-
lent part of Schiaparelli’s paper. These discussions are even more significant in
view of the fact that the later writers on this subject make no attempt whatso-
ever to justify the use of their postulates.

Schiaparelli remarks that we should have no reason for not expecting that a
small change in a single observation should produce a small change in the func-
tion ¢; but he does not make this remark in the form of an explicit postulate.
This could have been done and, moreover, such a postulate of continuity could
be justified from the practical nature of the problem. It seems that a more
elegant procedure would have been to deduce the continuity of the function and
its derivatives from Axioms I and II. It will be shown later that this is possible.
From his remark on the continuity of the function, Schiaparelli concludes that
the partial derivatives of ¢ with respect to the z; exist and are continuous. His
method of arriving at this conclusion is not valid, for it is well known that an
arbitrarily assumed function may be everywhere continuous and yet possess a
derivative at no point.

Schiaparelli’s Proposition III states: ‘“When in the function ¢ all the z; take

the same value, then the g—: become equal to each other.” This Proposition is
s

false. To show this, consider the function

gy b
f=a4l

where the

Bus[(zs —2)? — pal — 2ps(zy — %) )
np;

f 1
o n T

2 Giovanni Schiaparelli—Come si possa giustificare 1’uso della media aritmetica nel cal-
colo die risultati d’osservazione, Rendiconti Reale Instituto Lombardo di Scienze e lettere,
Vol. XL (1907), pp 752-764.
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Now, when the z; all approach a then both f and % become indeterminate
3
forms. However, in this case f takes an indeterminate form which can be
ol
K2

evaluated and it can be shown tha will always have the value zero, i.e., f

will have the value a when all the z; = a; while the 5"’!_ can take any value

T

whatever and in general the % will not be equal when the z; — a. To illus-

£

trate: Consider the observations y; = 1,ys = 3, ys = 4 then § = 8/3 and
uz = 14/9 and ps = —20/27 whence f = 8/3-10/21. Now assume that these
three observations all approach 2 in a certain way, i.e., let z; = 2+ (y: — 2)z.
Then £ =2 4 (7 — 2)z2 = 2 4+ (2/3)z.
(@) = 2 3 (g — 9 = (14/9)2
and
pa(ed = 23 2 (s — 9 = (~20/20)2

whence f = 2 4 (2/3)z — (10/21)z. Clearly as z — 0 the z; > 2 and f — 2.
However,

LA _1,
0% _|z,m2+(1—2)z 3 294’
o] _1_25
0% |ormtrms 3 294’
LA _1, 12
0%s_|opmtti—nz 3 | 204 °
Thus the -91 are not functions of z and as the z; — 2 the % remain constant
and unequal.
From his conclusion that thp derivatives of ¢ exist and from Axiom I, Schia-

parelli obtains the equation, E %:l = 1, (this equation being his Proposition

i=1 0%
V) in the following way: Since the derivatives of ¢ exist, then. by the Theorem
of the mean value,

@+ hyx2+ hyxs+hy -, 2.+ h)

_ .. 9% 9% , .., 9
_ b 3y - 22) +h<ax1+axz P ax,,)' 4)

By Axiom I:
¢@ + hy a4 Ry oo Ta+ h) = $(T1, 2y -, Za) + D
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Whence Y, 9% = 1. Now this equation is correct but the above proof of it
t=1 )

is not convincing. Clearly, according to the Theorem of the mean value, in
equation (A) it is necessary to replace each z; in the %‘% by 6z; where 9 is
between 0 and 1.

Schiaparelli’s Proposition VII states in effect that the %2 are invariant under

T

the transformation z\= z; 4 h where h is constant, and his Proposition IX

states that the % are invariant under the transformation z; = kz; where k is
3

a constant. These two propositions are correct and are correctly established.
Making use of his Propositions IIT (which is false), V, VII and IX, Schiaparelli
proceeds to the establishment of the postulate of the Arithmetic Mean, as

follows:
Let a = ¢(z:). As the z; vary, then a varies but for a particular set of z;

then a is a constant. Now by Axiom I we have
a+m—-—1a=¢xz+ m—-1)a,z2+ (m—1)a,--- ,z.4+(m—-1)a) =ma
for all values of m > 1. Then by Axiom II:

a=¢(x1+(m—1)a s+ (m—1)a .”,x,.-l-(m—l)a)

m ’ m ’ m

_ [t —a T2 —a  ZTn—g
—¢( poo + a, poo +a---, poo +a).

And by Propositions VII and IX, the -g% are unchanged during the above trans-

formations. Hence the last equation is true when m — « and by Proposition

III (false) the g—: = 71_1,8’8 when m — «, ¢(z;) = a. In this final proof Schia-
3

parelli gives a geometric illustration of each step.

It is both interesting and strange to know that in closing his paper Schia-
parelli does not claim that the Arithmetic Mean is the only function which
will satisfy all of his postulates. In fact he himself points out that the func-

t=n

tion ¢, implicitly defined by the equation > (¢ — 2;)™ = 0 where m is an

i=1
odd integer > 1 will satisfy all of his postulates. Furthermore he points out
that this function will not satisfy his Proposition III. Schiaparelli’s object
was to establish the postulate of the Arithmetic Mean without any appeal to
the concept of probability. To accomplish this he made four assumptions each
of which he justified by a priori reasoning. Then he proceeded with the above
proof. Why he should have been satisfied with his own proof after perceiving

t1=n

the function defined by Y. (¢ — z)™ = 0 is hard to understand.

t=1
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The second paper® consulted was also by Schiaparelli. It is merely an
abridged form of the one just discussed. Schiaparelli wrote two earlier papers on
this same subject (altogether Schiaparelli wrote four papers on it) but it was
inferred from the footnotes in his paper, which has just been discussed at length,
that it contained all of the material of the two earlier papers with which he him-
self was satisfied. Therefore Schiaparelli’s two earlier papers were not con-
sulted.

The third paper consulted was that by Broggi.t Broggi states that the pur-
pose of his paper is to establish the postulate of the Arithmetic Mean by purely
analytic methods which are more brief than Schiaparelli’s method. Broggi
words the assumptions upon which he bases his proof as follows;

1. ¢isasymmetric function of its » variables;

2. The partial derivatives are single-valued and finite;

3. We have ¢(kxy, kxg, - - - , kxn) = kd(21, Ta, -+« , Ta);

4. We have ¢(z1 + h,xa + hy -+ , Zs + h) = ¢(21, X2, - -+ , Zs) + h, that is
to say for 2:

¢ 3¢ d¢
-—+-a;;+°“+———1- (a)

oz 0z,

Broggi does not explain why he used the postulate 2 but presumably it was in

order to exclude the function defined by f (¢ — z;)™ = 0. Consider -the
special case where m = 3. Then n¢® — 3:1;12:6; + 3¢ 22! — 222 = 0. Let
%—? Zx? - 28 — 71& Zz?. Also put R =
(p/3)* + (¢/2)? and let A be the real cube root of — ¢/2 + /R and B be the
real cube root of — ¢/2 — A/R. Then the three branches of ¢ can be explicitly
written

p=3<£2x3—£2)andq=

h=A+B+%
¢2 = wA + w*B + &
63 = 4 + 0B + &

where w and »? dre the two complex cube roots of unity. Now while ¢ does not
satisfy the postulate that the function be single valued, ¢, satisfies this postulate
as well as all the others and so does ¢: and also ¢;. Hence, Broggi’s failure to

t=n

comment at length on the function Y, (¢ — z:)™ = 0 is unsatisfying. Asa

t=1

matter of fact Broggi fails to point out any of the defects of Schiaparelli’s

3 Giovanni Schiaparelli—Come si possa giustificare 1’'uso della, media aritmetica nel
calcolo delle misure, senza fare alcuna ipotesi sulla legge di probabilitd degli errori acci-
dentali, Astronomische Nachrichten, Band 176 (1907) pp. 206-212.

4 Ugo Broggi—Sur Le Principe De La Moyenne Arithmetique, L’Enseignement Mathe-
matique, XTI (1909) pp. 14-17.
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paper, with the possible exception that he shows Schiaparelli’s postulate which
states ¢ = @ when each of the z; = a to be a consequence of Axioms I and II.
This is done so casually that it makes one wonder whether Broggi really was
aware of the fact that Schiaparelli’s postulates are not independent.

Broggi proves the Lemma: ‘A homogeneous function of the first degree which
is a solution of the equation of partial derivatives (a) is an integral function.”
This Lemma is correct and is correctly proved but its wording is apt to be mis-
leading; in fact it appears that its true meaning was not clear to Broggi himself.

4

For, while the function ¢ cannot be of the form " where ¢ i§ a homogeneous

function of the pt* degree which satisfies Axiom I and x a homogeneous func-
tion of the (p — 1)t degree which also satisfies Axiom I, the Lemma does not

mean and Broggi has not proved that ¢ cannot be of the form ¢ = Q@ + ;é where

Q is an integral function satisfying Axioms I and II and ¥ and x are homogene-
ous functions of the p* and (p — 1)*» degrees respectively which are invariant
under the transformation specified in Axiom I. By reason of this oversight,
Broggi concludes that any function satisfying Axioms I and II must be linear
in its n variables, a conclusion which is erroneous.

The fourth paper consulted was that by Schimmack.? Schimmack’s paper is
in three sections. The first section contains the proof which is essentially that
which Whittaker and Robinson give. In the second section Schimmack gives a
different proof, from a set of new postulates. The new set of postulates is:

Axiom I’ = Axiom I.

Axiom IT’—The most probable value is independent of the sense of directivn
of the scale upon which the observed values (and the most probable value) are
reckoned, that is to say,

¢(_x1; —T2y -0, _xn) = —¢($1, Tgy « - yxn)-

Axiom ITI’ = Axiom III.

Axiom IV’—If from 7 observed values, the most probable value be computed
and if one obtains an additional observed value then the most probable value of
the n -+ 1 observed values is the same as the most probable value of n 4 1
quantities consisting of the initial most-probable value counted n times and the
(n 4 1)t observed value, namely:

¢ﬂ+1(x1: ) xn+l) = ¢'v+1(¢m ceey Pny xn+1)-

In explaining the object of this second section, Schimmack says that postulat-
ing the existence of the derivatives (Axiom IV) seems unjustified and ought to
be avoided and only such axioms made which the intrinsic character of the prob-
lem justifies. In connection with this statement of Schimmack’s it appears that
the intrinsic character of the problem certainly does not justify Axiom IV’. In

s Rudolf Schimmack—Der Satz vom arithmetischen Mittel in axiomatischer Begriin-
dung, Mathematische Annalen, Band 68.(1909) pp. 125132, 304.
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fact, Axiom IV’ appears to be quite artificial. Moreover, Schimmack does not
attempt to justify Axiom IV’ by a priori reasoning as Schiaparelli does for
Axioms I, II, and III, While, if the Arithmetic Mean is the most probable
value, Axiom IV’ follows, since it is a property of the Arithmetic Mean, it does
not seem to be in keeping with the intrinsic character of the problem to use this
property as a starting point for later deductions.

As regards Schimmack’s objections to Axiom IV, all of the conditions specified
by it can be deduced from the first two Axioms except that the derivatives must
be single-valued. To show that this is true, consider an arbitrary function
which satisfies Axioms I and II. Let this function be ¢(xy, 23, - - - , z.). Wedo
not know that ¢ is continuous or that ¢ has any derivatives. All we assume is
that ¢ catisfies the first three Axioms and it is here proven that ¢ must be con-
tinuous and have continuous partial derivatives. By Axiom I we can give
increments to the z;; hence we give each z; the same increment, Az, and then
subtract ¢ and we have: ¢(x1 + Az, 22 + Az, - - - , 2y + AZ) — ¢(T1, Za, - - - , Tn) =
A¢ but by Axiom I, Ap = Az. Therefore —i—% =1= Z—: In other words, the
total derivative of ¢ exists and is constant. Therefore the total derivative of
¢ is continuous. But since the total derivative exists, all of the partial deriva~
tives exist. By Axiom II, ¢ is a homogeneous function of the first degree.

Applying Euler’s Theorem for homogeneous forms, we have ¢ = z; -g% + :cz%z—;
1

+ oo Sz, a%;di Since the total derivative of ¢ is everywhere continuous,

n

¢ is also everywhere continuous. Thus, the right hand side of the above equa~
tion is everywhere continuous and each partial derivative is therefore everywhere
continuous.

As regards that part of Axiom IV which requires the g:-i to be single valued,
1

it would seem more satisfactory to postulate that the function ¢ is single-valued,
for the single-valuedness of a derivative does not insure the single-valuedness
of the integral while the single-valuedness of a function does insure the single-
valuedness of the derivative where the derivative exists.

In the third section of his paper, Schimmack shows Axioms I, II, ITI, and IV
to be independent, and likewise Axioms I, IT’, IIT and IV’.

Schimmack does not mention any of the questionable features of Schiaparelli’s
and Broggi’s papers.

The fifth paper consulted was that by Suto.® Suto’s assumptions are:

1°. ¢(z, , -+ , ) = « (This is Schiaparelli’s).

2°. 4’(771 + Y T2+ Y2y oo, T + yﬂ) - ¢(x1) Toy =0y xﬂ) depends on the
values of y1, ¥z, - - , Yn Only.

3°. = Axiom III = Axiom IIT'.

¢ Onosaburo Suto—Law of the Arithmetical Mear, Tohoku Mathematical Journal, Vol.
6 (1914) pp. 79-81.
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Suto says he believes these assumptions to be more simple and natural than
Schimmack’s Axioms I’-IV’. However, assumption 2° appears to be quite
artificial and very restrictive. Suto does not even attempt to justify it by a
priort reasoning.

Suto shows his three Axioms to be independent. It is interesting to know that
Suto has established the postulate of the Arithmetic Mean rigorously using only
three postulates while Schiaparelli, Broggi and Schimmack failed using four
postulates. In this connection it should be observed that when Axiom IV as
given by Whittaker and Robinson is replaced by “The most probable value,
regarded as a function of the individual measures, has first partial derivatives
with respect to them which are equal’”’ as suggested at the end of Part 1, then
Axiom IIT can be deduced as a consequence of Axioms I, IT and the reworded
Axiom IV, so that three Axioms only are sufficient to deduce the postulate of the
Arithmetic Mean. However, it would be difficult to justify the reworded Axiom
IV from the nature of this problem of the Arithmetic Mean.

Suto does not point out any of the defects of the preceding papers.

The last paper consulted was that by Beetle.” It deals with the third section
of Schimmack’s paper. Beetle also fails to point out any of the defects of the
preceding papers.

Conclusion

The postulate of the Arithmetic Mean can be rigorously established, without
the use of the concept of probability, if sufficiently restrictive assumptions are
made. The writers making sufficiently restrictive assumptions have failed to
justify the use of them. Several proofs of the postulate of the Arithmetic
Mean are clearly erroneous. The existing attempts to establish the postulate of
the Arithmetic Mean without any appeal to the concept of probability are,
therefore, unsatisfactory.
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