THE FUNDAMENTAL NATURE AND PROOF OF SHEPPARD’S

In the course of our discussion of moment adjustments, we shall have occasion
to refer to the following lengthy distribution of discrete variates. By selecting

Distribution of the number of items correctly recorded by 244 students in a five
minute code transcription test*

EDITORIAL

ADJUSTMENTS

TABLE 1

Score Freq Score Freq. Score Freq.
z f z f z /
64 1 94 3 119 1
66 2 95 5 120 2
68 2 96 3 121 6
69 1 97 3 122 2
70 1 98 12 123 3
71 3 99 4 124 2
72 3 100 5 125 6
73 3 101 6 126 3
76 1 102 8 127 4
77 2 103 6 128 2
78 3 104 8 130 2
79 1 105 9 131 1
80 2 106 5 132 5
82 2 107 3 133 1
83 3 108 3 134 1
84 2 109 4 136 1
85 6 110 2 138 1
86 3 111 4 140 1
87 1 112 7 141 1
88 2 113 5 142 2
89 4 114 5 144 2
90 4 115 7 153 1
91 5 116 8 155 1
92 2 117 3
93 4 118 2 Total 244

* I am indebted to Professor J. A. Gengerelli, of the Department of Psychology of

Univ. of California at Los Angeles, for these data.
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the provisional mean, M, = 105, we find that
Tz f= —129 T2 f = —52 005
Zarf =77 591 Zz2tf = 69 239 951.

Let, us now form the nine possible distributions of grouped-discrete variates
that arise from the nine possible ‘‘groupings of nine.” These are presented
in table 2.

TABLE 2
Distributions derived from the data of table 1 by making the nine possible
“Broupings of nine”’

First significant class interval of distribution

O (2 (3) (4) (5) (6) §Y) (8 (9)
64-72 63-71 62-70 61-69 60-68 | 59-67 58-66 57-65 | 56-64
13 10 7 6 5 3 3 1 1
12 15 16 16 14 14 13 15 15
27 23 21 20 22 21 16 14 11
41 41 33 32 30 28 31 29 30
53 54 63 61 55 52 49 45 41
45 45 40 38 42 45 44 48 52
27 27 29 34 36 39 40 42 43
16 19 24 25 23 24 28 30 29

8 6 7 6 10 10 12 11 13
1 2 2 4 5 6 6 7 7
1 2 2 2 2 2 2 2 1

1

Let us now compute the values of Zzf, 2%, Zz% and Zz/f for each of the
distributions of table 2, selecting Mo = 105 in each instance in order to facilitate
a comparison of these results with those for table 1. Thus, in spite of what
would otherwise be called poor computing technique, we shall use the following
class marks as values of z for the first distribution above; —37, —28, —19, .-,
35, 44, 53. For the second we shall likewise use, —38, —29, —20, - - ., 34, 43,

52, respectively.
TABLE 3

Summations derived from the distributions listed in table 2, using Mo = 105

Dist. Sz f Sz Sy Zatf

(1) — 181 77 149 — 134 191 | 69 063 265
(@) — 218 78 466 — 54 602 | 74 519 062
3) — 1m 77 769 2 889 | 71 465 409
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'TABLE 3—Continued

Dist. Zzf Zx?f Zrf Zzif

@) — 139 79 747 — 923 311 | 74 171 443
(5) — 104 81 934 19 666 | 76 143 874
(6) — 87 80 145 16 551 | 72 467 541
0 — 52 80 302 — 36 118 | 71 851 930
(8) — 89 78 553 — 101 357 | 68 426 497
(9) — 180 78 894 — 180 792 | 73 155 150

Average — 129 79 2172 | — 54 585 | 72 362 785%

The fact that the average of the values of Zzf appearing in table 3 suggests
that no adjustments of the first moment is necessary and that the variations
in the nine values for Zzf may be regarded as accidental errors and attributed to
grouping. An attempt to account for this phenomenon and also for the fact
that the averages of the higher order summations of table 3 do not likewise agree
with the corresponding summations of table 1 lead us directly to formulae for
Sheppard’s adjustments.

For the moment, let us concentrate our intention upon a single variate, 2o,
and its associated frequency, f., that are a part of a distribution of discrete
variates, such as table 1. Suppose we were to form the k different distributions
arising from the & possible “groupings of k.”” In one of these distributions,
7o will rest in the first position of a class interval: the limits of this class are zo
and (zo + k — 1) and the class mark is therefore [z + 3(k — 1)]. The
contribution of the variate, zo, to Zz*f for this particular distribution is therefore

[xo + %(k - 1)]".{29-

If z, rests in the second position of a class, the limits of this class will be
(w0 — 1) and (zo + k — 2) and the corresponding class mark is [z 4 $(¢ — 3)]
and the contribution of o to Zz*f for this distribution is

[xo + %(k - 3)]”,,‘30-

The ezpected value of Zz* f arising from the k different groupings of variates is
therefore,

Ira 2 k
® ESon=iTersSere s 2l

where Y, z* f refers to that distribution in which a specified zo rests in the ¢-th
position in the class in which it occurs. ‘The contribution of z, to this expected

value is therefore
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@ 3lz+3®—DF+lot 30— + Lot 3G OF+ - ) fa,

this series consisting obviously of k terms.
Expanding each term of (2) by the binomial theorem yields

| 1 (k=1 s (k=1 -
- Clx 1(—5—-)-{-.0 2(lcT) —_— C;xo 8(-’0—2—1

Ty — .C‘xa_l (k___j) + .Caz c—z k —2' 3)2 _ .ng"" (k _2, 3

N

2

Ei

zd — Crzy? (k ) + Gzt ("’_.__)2 — Cyzd™? (k___5)8 + .-
R 2 2 J

ete.

) -

Since s is an integer, series (2) may be written as the sum of the (s 4 1) terms
of the series

3) 28 8o — iz 81+ Cazi™® S — Cs 2 S+ o 1fas

() + (5 + (5 o]

where

8=+

By the Euler-Maclaurin Sum Formula we have

E,x'_ +1

b7+ — a2#t) 3 (7 + 0) + 2 p (b1 — @)

f’ p(ﬂ) (bﬂ-‘ —_ ap—3) + g p(5) (br‘5 — ap—5) +

where p® = p(p — 1) (p — 2) (p — 3) --- to ¢ factors. In our expression for
S;, a = } (k — 1) = —b, and therefore S; equals zero when ¢ is an odd integer.
For even values of 7,

e R BT

—_ 1\+s
_%im(’“2) +Bli (»(’“21) _}

€Y
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so that
Se=1

1
Sz—ﬁ(k2— 1)

S = gps (B — 1) (362 = 7)

1

= —_— 2 4 __ 2
1344 (k2 — 1) (3k* — 18Kk% 4 31)

Ss

ete.

Since expression (3) represents the contribution of any variate, 2y, to the
expected value defined by (1), we may obtain by summation

B) B zf)=2af+-8 Lo f+ -8 wf+ -

To illustrate: if we desire to shorten the distribution of table 1 by forming class
intervals of dimension 9,

1 236

1 20 _ 1 0 : _

and by formula (5),
EQXzf)=2zf=—129
EC o f) = St f +4Cs- 8- 3 f = 77591 + 339 . 244 = 7921728

EQX Bf) =22 f+4Ce-8-2 af= —52005+3-?(— 129) = — 54585

BT o)=L+ % L+ 08 LS

— 69239951 + 6 - 339 . 77501 + 2—29 . 244 = 72362785 .

Since these expected values are identical with those computed directly in table 3,
we see that formula (5) provides the adjustments necessary to eliminate the
effect of the systematic errors caused by grouping.

Dividing both sides of (5) by Zf yields

(6) E(F:) = I‘: 4+ Ce- 8- M:—2 + Cs - S4IJ:_4 + Cs - Ss - p,:__G + .-,
that is
E(u1) = u

’ ’ 1
E(us) = w2 + 13 (k —1)
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Blup) = i + o5 (B — 1) ]

) = ul + 75 (8 — D uf + ors (8 — 1) (3 = 7)

EGud) = i + 79 (8 — 1) j 4+ 5o (8 = 1) (38 = 7 ui

ete.

In numerical computations we generally prefer to select the class interval
as the unit of z and in this case we have

E(u1) = w1
4 4 1 1
E(uz) = p2 + ﬁ(l - P)

’

’ 3 1
E(#;)=Ila +T§ I—P)"l

4 4 4 1
= i 0D+ (- )6

ete.

Ordinarily we are interested in estimating the values of the moments that
would have been obtained if we had not used the time-saving device of grouping
the variates and therefore we solve the previous set of equations for the moments
of the ungrouped distribution and obtain

(1 = E(u1)
’ 1 1
F; = E(us) — T2—<1 - P)

M uh= B - 5 (1 3) B

pe = E(ug) — %(l —%) E(us) + 2—1()(1 - 701'5) (7 - %)

ete.

In general we may write, corresponding to formula (6),
®)  ul=EGu) — 1+ Py Eies) + :Co- Pu- B(uiod) — -+

where

1 1
P"fé(l"ﬁ)
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1 1\(, 3
P‘“z%(l“iz (“p)
1. 1 18 3
P"m(l“k—z <31_755+F>

1 1 239 55 5

~ 11520 k")
1 1 1636 410 52 3
P“'3"3—‘792(1"125)<2555“T+F“F+E)
1 1 010573 233570 32410
Pu = seoi000 (1 “7{2) (1414477 T T TE T TR
2625 105
)

In actual problems we do not know the exact values of the expectations
involved in formulae (7) and (8), and are forced to obtain mere approximations
by utilizing in their stead the corresponding moments computed from the
single chance grouped distribution. These approximations correspond to those
employed in the theory of probable error, namely, substitutions of the moments
derived from a single sample for the corresponding expected moments of the
parent population.

The adjustments so far considered may properly be referred to as Sheppard’s
adjustments about a fized point. At first thought it might appear that we might
obtain corresponding formulae for the expectations of moments about the mean
by merely dropping the primes in formula (6) and obtain, for example,

= Blu) — 35 (02— 1),

but unfortunately this is not true. For example, the exact value for the variance
of the distribution of table 1 is 18915563/244%. Using the summations of
table 3 and computing the variance for each of the nine groupings yields

E(w) = 9—513@[18791595 + 19098180 + 18963315 + 19438947
) + 19981080 + 19547811 + 19590984 + 19159011 4 19217736]

= 19309851/2442.

. 1, _ 1 _ .
Since Pl * - 1) = P (92 — 1) = 20/3 we see that

L e
pe < E(ps) — ﬁ(k - 1.

In the theory of sampling we differentiate between the standard errors of
moments about a fixed point and the standard error of moments about the mean
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of the sample. Apparently writers on the subject of Sheppard’s adjustments

have overlooked the case of adjustments about the mean, although the solution
for the second moment is readily obtained as follows:

E(u) = E(uy — M = E(u;) — E(M?)
= up+ o B = 1) — S (M 4+ MI 4 o 4 M),

where M ; represents the mean of the ¢-th of the k different grouped distributions.
Since '

1
M2=M;—M2=M;—E(M1+M2+ o4 M),

B(u) = w+ 758 = 1
_[M§+M§+ ---+MZ_<M1+M2+ ---+Mk)2]
k k )

But since for any set of k variates

g (_2_)
v k k ?

we have that

(10) ) = iy + 35 (F = 1) = o
Referring back to table 3 we find that
2 7856
M 3.(244)

and the numerical results now satisfy equation (10).

For the benefit of those interested in unsolved problems of mathematical
statistics we may say that nothing appears to have been written as yet on the
most important problem associated with the systematic errors due to grouping.
It is of course desirable to eliminate these systematic errors introduced by
grouping, but it is even more important to investigate the distribution of the
accidental errors that remain after the systematic errors have been eliminated.
For example it is gratifying to know that no systematic errors are present in the
Zzf column of table 3 and that equation (6) will enable us to add a constant to
each summation of the Zz3f column so that the mean of these adjusted values
will agree with the value Z2%f = — 52005 obtained in table 1. It is rather dis-
concerting, however, to realize that in actual practice we may in the case of
discrete variates and must in the case of continuous variates select an arbitrary
set of class limits for our recorded data, and that after adjustments for grouping
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have been made, our estimates of the true values of the moments of the distri-
bution will—as in table 3—depend so much upon the choice of these limits.
Thus, the standard error of the mean attributed to grouping is

1 /7856 _
0'"—2—4—4/‘/—3——-—0.21,

which is about twenty percent as large as the approximation for the standard
error of the mean due to sampling from an infinite parent population, namely,

g
Oy = —'\/—N-__ 1.15.

If one will take the trouble to compute the values of us and p4 for each of the
distributions of table 2, utilizing the summations of table 3, and then compute
and compare the values of g,, and o,, due to grouping with the corresponding
functions associated with sampling, he will realize the seriousness of the situation.

SuMMARY

~ The formula for Sheppard’s adjustments for distributions of grouped discrete
variates was first given without proof in the Editorial of Vol. 1, No. 1 of the
Annals (page 111). The method used to develop the general formula was
extremely laborious and paralleled the method used for the case of continuous
variates in the Handbook of Mathematical Statistics, Chapter 7, except that the
calculus of finite differences was employed. A more satisfactory proof of this
formula was presented by Dr. J. R. Abernethy in Vol. 4, No. 4 of the Annals
in an article entitled “On the Elimination of Systematic Errors Due to Grouping.”
An extremely elegant development of the same formula and an extension to the
case of two variables appears elsewhere in this volume by Professor C. C. Craig.
From the point of view of expectations, all of these developments are adjust-
ments about a fixed point, although this fixed point may be selected arbitrarily
at the mean of the distribution in question. The obtafining of formulae for the
adjustments about the mean of each grouping and the distribution of the
accidental errors that remain after these systematic errors have been removed
has apparently been neglected to date and should interest students of mathe-
matical statistics.

From a mathematical standpoint, the development of this paper is the
simplest of all that have appeargd to date: the adjustments for the first four
moments can be worked out with the aid of the binomial considerations leading
to formula (3) and the following well known formulae for the sums of the powers

of the first n integers:

8, = n(n ;— 1) S, = nz(n;- 1)2

S = nin4+ 1D2n + 1) S, = n(n 4+ 1)(2n 4+ 1)(3n% + 3n — 1)
2 6 e 30
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One should note that the condition of high contact is not required in this
paper or in the developments of Abernethy or Craig. The results of the three
preceding papers agree with those obtained about a fixed point in this paper,
but fail to hold for the case of expectations about the mean, if we accept the

following definition:
1
E(I‘O)="C'(I‘0:l+l-‘a:2+"‘+lln:k), (8=23,---)

where pu,; designates the s-th moment computed about the mean of the i-th
grouped distribution, (1 < ¢ < k).
H. C. CarvER.



