THE TYPE B GRAM-CHARLIER SERIES
By LEo A. AroiaN

While much attention has been devoted to the Type A Gram-Charlier series
for the graduation of frequency curves, the Type B series has been somewhat
neglected. However the numerical examples to be presented later will show
that the Type B series is very useful for the graduation of skew frequency
curves. Wicksell' has demonstrated that the Gram-Charlier series may be
developed from the same law of probability which forms the basis of the Pearson
system of frequency curves. Rietz’ following Wicksell gives a derivation of the
Gram-Charlier series based on the binomial (g + p)". Jordan® gives a method
for fitting Type B based on certain orthogonal polynomials which he calls G.
He uses factorial moments because of the resulting ease in finding the values’
of the constants.

We shall consider the Type B series for a distribution of equally distanced
ordinates at non-negative values of z. We shall find the values of the first few
terms of the series and shall also shew how the values of later coefficients may
easily be found. We write the Type B series in the form

(1) F(z) = co + add(@) + e (z) + e’ (x) + cd'y(z) + esA’N(z) + s (z)

where

e"m’

z!

Y(z) = , m = p1, the mean,

2
AY(x) = Y(z) — y(x — 1) forz=0,1,2 ...s.

Let f(z) give the ordinates of the observed distribution of relative frequencies,
so that Zf(x) = 1. To determine the coefficients ¢y, ¢;,¢s, - -, ¢s, we have,
using the method of moments,

e (@) + i (z) + AY(z) + cAY(@) +..... + dY(2)] = 2f(z) = 1.
Salep(z) + ady(x) +.......... e + A% (2)] = Zzf(x) = m.
See(®) +Fed(@) Foo + cd(2)] = 22 () = ps.

(B) Zael(@) Fvoeeeee e + A% (2)] = Z2%(x) = us.
SE () o + cA’Y(2)] = Z2¥(x) = ps.
SELCW(E) Ao + cd(@)] = 22’ (@) = us.
S (@) 4 + AW (2)] = Z2f(x) = pe.

183

[

s
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%%
The Annals of Mathematical Statistics. IIKOIRS ®

WWWw.jstor.org



184 LEO A. AROIAN

Hence we must find the values of
z=3 - n=.0’1,2,3...
(4) z;oxA¢(x)! p=0,1,2’3'..
defining A%(zr) = y(r). We assume that we are dealing with distributions

in which s is large, and that the error involved in substituting Y z"A”y(z) for
. z=0

> z"APy(z) is pegligible. To find these summations in a straightforward
=0

manner would involve too much labor, so we shall briefly discuss some properties
of the generating function, y(z) = ¢ x’m , the Poisson exponential, very useful

in the graduation of frequency distributions of rare events. The first eight
moments about the origin are:

po=1=2¢@), wm=m=ZIay(x), wp=m+m =23aY()
ps = m + 3m* + m’ = Z2(z)
ue = m + Tm* + 6m® + m' = 22y (z)
(5) us = m + 15 m* + 25m’ + 10m’ + m’ = 22’y (z)
ps = m + 31m* + 90m® + 65m* + 15m° + m® = Zz'Y(z)
ur = m + 63m® + 301m® + 350 m* + 140m° + 21m® + m’ = Z2'Y(z)
ps = m + 127m* + 966m’ + 1701m* + 1050m° + 256m°® + 28m’ + m®

= 22'y(z)
These may be found by the formula given by Jordan,®
r r . dus
(6) Meg1 = m( s + a‘;z)
. dy(x) ()
Proof: = m v(x).

We multiply by z" and sum, giving (6). This result may readily be proved also
by means of recursion formulas without differentiation. Now we must find the

values of
& . n=012 -
;ZA¢(Z) p=1,2,3,-..
We do this by proving

= n s+l d = n s
) 2, 2" AMY(e) = — o 20 2" ANY(a).
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Now
® W) _ 4o — 1)~ y@) = —24(@).
Hence

2wy = & v - (v - v
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+ (;>¢(x -2+ o+ (=D — s)],

since 2'9(0) = v(@) - ({)e = 0+ (¥ =D+ - + (~D¥a = 9.

Then by (8)

J(:—,,,A"”(x) = ['l'(w —1) — ¥() — (f) Yz —2) + (i’) Wz —1)

+ (;)w -3 — (;)m — Dt (DY —5—1)

— (-Dve-9 ],

© —A¢<x)_—¢<x)+(*‘+1) @w—1) - (s+l)¢<x—2>+

— (=D'¥(z—-s—1.

——[¢(x)—(s+l)¢( )+ s+1)¢(x—2)+

+ (=)' —s— 1)].

= —A"Y(2).
We multiply (9) by =", sum with respect to z, giving (7).
Thus by use of (7) and (5) we get:
IAY@) =0, p=1,23, -

SrAy(r) = —ZTmn = —1.

Ay (z) = _8 T2 y(z) = —Edﬁ (m+m’) = —2m — 1.

(10) dm
22AY(z) = —3m® — 6m — 1.
SeAY(z) = —4m® — 18m® — 14m — 1.
SrAY(z) = —b5m' — 40m® — T5m’ — 30m — 1.



186

(10)
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SAY(z) = —6m’ — 75m' — 260m° — 270m’.— 62m — 1.
SeA¥(z) = 0, Z2'A%(x) = 2, Z2’A(x) = 6m + 6.
Sz'a%(z) = 12m° 4 36m + 14.

=AY (z) = 20m® 4 120m° + 150m + 30.

22'A%(z) = 30m* + 300m® + 780 m’ + 540m + 62.
SeA(x) = 0, Z2'A%(x) = 0, Z2’A%(z) = —6.
S2'A%N(z) = —24m — 36, Z2'A%(z) = —60m’ — 240m — 150.
=A% (z) = —120m® — 900m’ — 1560m — 540.

SzA'Y(z) = 0, Zz'AY(z) = 0, Z2'Aly(z) = 24.
T2AY(z) = 120m 4 240, =z’A'Y(z) = 0.

=2'A'Y(z) = 360m’ + 1800m + 1560.

S2A’(z) = 0, ZzA%(r) = 0.

=A% (x) = 0, Za'A%y(x) = 0.

S22 (@) = 0, Z2’A%(r) = 0.

=2'A%(z) = 0, Zz'A’y(z) = 0.

SEAY(z) = —120, Zz°A%Y(x) = 0.

S2A%(z) = —720m — 1800, Zz'A’y(x) = 720.

Finally we substitute from (5) and (10) into (3), and for u»n we substitute

, n
l‘n":z

1)

n

< )y,,_,m'. Hence
=0 \T
Cy = 1
C = 0

C2 3 (ue — m).

C3 = -—?%" (#3 —_ 3#2 + 2m)

e = 41'[,“ — 6us + m(11 — 6m) + 3m(m — 2)].

e = -—51—'[;/.5 _ 10 — us(10m — 25) + 50 (m — 1) — dm(5m — 6)].

e = él‘v[““  15us + (85 — 15m) + us(130m — 225) +. ua(45m® — 375m

+ 274) — 15m° 4 130m® — 120m).

It may be asked whether criteria may be given as guides for the use of Type B.
In general Type B may be tried if either the skewness of the distribution to be
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fitted is considerable, a3 = ﬁ; > .6, orif m = p; = ps approximately. The
)

latter condition strictly would mean that y(z) alone is sufficient for a good
graduation, if the fourth moment, ps, is not used. The examples which follow
are arranged to facilitate comparison with the Pearson system of frequency
curves. We have an example each of Type I, III, IV, V, VI, and an example of
the normal curve.

Type I. Table 1. Here o3 > .6 although m # pp 5 ps. The first four
moments, unadjusted, give an excellent fit by Type B, which is not quite as good
as Type I. The degrees of freedom, according to Fisher,! have been taken into
consideration here in applying the 2” test. The two classes 13, 14, were grouped
together for the z* test. The actual numerical work is easily done on a cal-
culating machine, although logarithms are necessary to find the value of e™™.
This example and the remaining are all taken from Elderton® with the exception
of Type IV which is from A. Fisher.’

Type III. Table 2. The unadjusted moments are used. Here a3 = 2.0833
> .6, and m = p, approximately. The fit by Type B is slightly better than that
by Type III.. We have for Type III P(2* > 12.8) = .007, n = 3, while for Type
B, P(z") > 9.4 = .025 n = 3. Moreover the standard error of prediction for
Type III is 11.2 and for Type Bis 7.7.

Type IV. Table3. The rough moments were used. Although a5 = .48 < .6,
Type B gives a fine fit since m = p» = p; approximately. Here the results are
given for Type B using 2, 3, and 4 terms of the series. This was done to show
how the distribution changes with the addition of more terms. The superiority
of Type B over Type IV is evident. The results for Type IV are taken from the
class notes of Professor C. C. Craig.

Type V. Table 4. Using the adjusted moments we have a comparison among
Types V, A, and B. While the graduations may seem satisfactory, the z* test
shows that the fit is poor in each case. The order of merit is Type V, Type B,
and then Type A. The negative frequencies which appear in Type B may be
due to the use of the adjusted moments. If we use the rough moments, the
negative frequencies disappear. On the whole the fit by means of the adjusted
moments is superior.

Type VI. Table 5. Type VI using the adjusted moments gives an excellent
fit. Even though a3 is considerable, and p; = ps approximately, four moments
with Type B give a poor fit, and five moments, adjusted, achieve a very small
gain. Five moments using the unadjusted moments give some improvement,
but the —2 frequency in the first class is objectionable.

Normal Curve. Table 6. The normal curve provides a fine fit. P(z* > .9) =
.96, n = 6. The first two and the last two classes were grouped together for the
test. The fit by Type B is less probable, P(z* > 8) = .15, n = 5. Type B has
two discrepancies, the negative frequencies, and the fact that the total fre-
quencies (neglecting the —1) is 352. That Type B does so well is in itself
quite amazing!
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TABLE 1
z Actual frequency Frecl> ency computed| Frequency given
earson Type I by Type B
0 34 44 42 .4
1 145 137 121.3
2 156 149 168.7
3 145 142 156.8
4 123 127 120.5
5 103 108 94.9
6 86 88 82.9
7 71 69 72.2
8 55 51 56.7
9 37 36 38.0
10 21 24 23.1
11 13 14 12.0
12 7 7 5.7
13 3 3 2.4
14 1 1 .9
= 4.175 a3 = .712247 Type I P(z? > 4.36) =
= 7.66237 ay = 2.95214 n (number of degrees of
= 15.1069 ¢ = 1.74368 -freedom) = 9
173.326 cs = —.078298 Type B P(z% > 9.67) = .37
¢ = +.094592 n= 9
F(z) = y(x) +1.74368 A% (z) — .078298 AdY(x) + .094592 AY(x).
TABLE 2
z Actual frequency Fre u;nc;p:omg{»uted Fegrl;ei;):y by
0 44 59 48.1
1 135 111 121.6
2 45 45 58.5
3 12 20 10.4
4 8 9 3.5
5 3 4 4.3
6 1 2 2.9
7 3 1 1.2
m=1.33466 a3 =—1_-=2.0833 &= .05356
pe = 1.44179 k2 cs = —.32510
us = 3.60662
F(z) = ¢(z) + .05356A%(z) — .32510A%(x)
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TABLE 3
Number of alpha particles from a bar of polonium in intervals of 3 of one minute
z Frequenoy | TypeIV | VP00 | YD | ¥a
0 57 50 49.5 49.0 58.2
1 203 183 201.3 201.0 199.8
2 383 392 403.4 404.3 386.1
3 525 544 532.3 533.8 523.9
4 532 539 520.6 521.5 532.1
5 408 417 402.6 402.5 418.2
6 273 250 254.8 254 .4 260.2
7 139 131 T 137.1 136.7 134.0
8 45 61 64.0 63.9 56.7
9 27 26 26.1 26.2 22.9
10 10 12 9.4 9.6 8.6
11 4 4 3.0 3.1 3.6
12 0 1 .9 .9 1.6
13 1 0 .2 .2 .8
14 1 0 .0 .0 .3
m = 3.87155 ay = 47844
pr = 3.69477 ay = 3.506536
ps = 3.39791
e = 47.86888

F(z) = ¢(x) — .08839A%(z) — .00930A%(x) + .16810A%(x).

Type B, 4 terms P(z* > 4.50) = .72, n = 7
Type IV P(x2>10.8) = .15,n =7
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TABLE 4
Mortality Among Female Nominees
| Dewns | OISR | Typea | TYEOR | TVECD | Flfom | 5Veme
0 4 4 2 1.4 —-6.9 -4 4.1
1 18 10 15 26.3 7.1 9.4 13.1
t 2 53 80 78 109.7 100.1 84.6 77.4
3 265 261 235 248.3 268.4 252.3 242.5
4 438 441 426 379.5 418.8 425.9 427.4
5 525 480 521 432.7 461.0 484.0 494.1
6 342 381 411 388.8 388.4 402.6 408.1
7 253 247 225 285.4 263.5 259.0 253.9
8 128 137 107 170.8 145.5 132.2 124.9
9 82 68 66 84.3 68.3 58.6 54.1
10 28 32 44 32.9 28.2 26.2 26.4
11 12 14 22 8.6 11.0 13.9 16.4
12 8 6 8 -.01 4.7 8.2 10.7
13 5 3 2 -2.1 2.1 4.3 5.9
14 1 1 0 -1.5 1.3 2.0 2.5
Adjusted moments: Rough moments:

m = 5.30435 o3 = .703564 m = 5.30435

pe = 3.573345 a4 = 3.996196 v, = 3.65668

py = +4.752437 v; = 4.752437

ps = 51.02659 v, = 52.85276

ps = 193.439125 vs = 197.39949

Type A: f(f) = o(t) + 117261 ©3(t) + .04150844(t)
Type B: F(z) = y(x) — .86550A%(x) — .77352A%(x)
+ .02814A%(x) + .57459A%(x)
Using uncorrected moments
Type B: F(z) = y(z) — .82384A%(z) — .73185A%)(x)
+ .03192A%(x) 4 .94033A%(z)
(last column above)
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TABLE 5
x Frequency Type VI I{gmes g{g_?nlg
0 1 1 -9.5 -2.0
1 56 50 83.2 69.9
2 167 168 141.6 143.1
3 98 100 102.3 110.7
4 34 36 41.5 40.2
5 9 10 8.7 4.6
6 2 2 .05 2.0
7 1 .5 - .4 1.0
Corrected moments: Rough moments:
m = 2.402174 m = 2.402174
p2 = .928835 pe = 1.012169
us = .893096 us = .893096
pe = 4.088800 w = 4.313176
us = 11.28304
a3 = .87704
oy = 4.2101

Type B, adjusted moments: _
F(z) = ¢(x) — .73667A%(x) — .48516A% (z) — .06424A%(z) 4 .10365A%(x)
*Type B, rough moments:

F(z) = ¢(x) — .69805A%0(x) — .44654A%(x) — .06587A%(z) 4 .15165A%(x)

* This is used in last column of above. There is a slight error here, which however will
not affect the results materially. The third decimal place may be slightly wrong.



192 LEO A. AROIAN

TABLE 6
Normal curve

z Frequency Normal curve Type B
0 .6 .6 2.3
1 2.8 2.7 4.7
2 11.5 10.9 8.7
3 27.7 30.1 25.2
4 59.1 58.4 55.2
5 84.7 80.1 79.5
6 74.1 76.9 80.1
7 50.5 52.2 58.1
8 23.2 25.0 29.7
9 12.2 8.4 8.6
10 1.3 2.4 —-.9

Moments corrected:

m = 5.393443

pe = 2.769635

ug = .029805, uy = 22.40663

ag = .0064

as = 2.920997

Type B: F(z) = ¢(x) — 1.3119A%(z) — .4179A%(z) + 2.1625A4%(z)
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