ON THE INDEPENDENCE OF CERTAIN ESTIMATES OF VARIANCE'
By ALLEN T. Cralc

1. Introduction. It is well known that a necessary and sufficient condition
that several statistics be independent in the probability sense, is that the char-
acteristic function of the joint distribution of these statistics shall equal identi-
cally the product of the characteristic functions of the distributions of the
individual statistics. Thus, if z;, 22, ---, 2y are N independently observed
values of a variable z which is subject to the distribution function f(z), and if
8,,0,, .-, 0, are s statistics, each computed from the N observed values of z,
the characteristic function of the joint distribution of the s statistics is given by

¢(t1, tz, e, ta) = / . /e-‘t101+...+.’t.0af(xl) . f(xh') de . dxl.

Here, i = 4/—1 and the limits of integration are taken so as to include all
admissible values of . Since the characteristic function of the distribution of
0,,v=12 ..., s isgiven by

o) = [ o [ @) Son) da -

the necessary and sufficient condition for the independence of the s statistics
can be written

€)) eltr, -+ t) = @its) -+ eults),
for all real valuesof ¢, ,t2, --- ¢, .

An important phase of sampling theory in statistics is that in which the
variable z is subject to the normal distribution function

z?
f@) = a\l/z—e_m, —o <z< o,
™

and 6, ---, 0, are s real symmetric quadratic forms in the N independently
observed values of x. That is,

N N

0 = Z E ik Tj Tk

=1 k=1
N

N
0 = 2, 2 buzizi,
. k=1

i=1

. N N
0, = Z Z Dix Ti Tk,

i=1 k=1

1 Presented to the Institute of Mathematical Statistics on December 30, 1937, at the
invitation of the progam committee. In the paper, we discuss, from a slightly different
point of view, somie of the material found in the references given at the close of the paper.
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so that

1 N ) L
2 by oeo by =<____) / / Tdzy .- dx;
() ¢(1 ) 6‘\/21' - —we TN X1

where T = ¢, Z Z airTiTk + -+ + s Z E PikZi Tk — 27%2 Z‘v? If

Ay, -+, A, denote the real symmetric matrices of the s quadratic forms, the
charactfsristic function can be written

¢(t11 ) ts) = II — 21:0’2t1Ax —_ e — 2i62t,A. I_i,

where I is the unit matrix of order N and the vertical bars indicate the deter-
minant of the matrix within them. Similarly, the characteristic function of
the distribution of 6, is given by

oot = | I — 2id*t, 4, |7,

so that a necessary and sufficient condition for the independence of the s real
symmetric quadratic forms can be written

(3) | I — 2t Ay — - — 2ic’t, A, | = I]|1 — 2ic’t, A, ]|,
v=1

for all real values of ¢, , &5, --- , ¢s.

Although equation (3) is fundamental and is of considerable value in certain
problems, it should be remarked that it is frequently rather tedious to use.
This suggests that by strengthening the hypotheses, it may be possible to
establish another necessary and sufficient condition which, in certain cases,
may be easier to use.

2. Certain quadratic forms. In order to lead up to such a theorem as that
suggested at the close of the last section, we first consider two theorems regard-
ing real symmetric matrices.

Theorem 1. Let Ay, As, -+ -, As be s real symmetric matrices, each of order N,
such that A, + As + --- 4+ A, = I, where I is the unit maitriz of order N. Let
r,v =12 ... s, berespectively the ranks of the matrices A, . Ifri 4 ro 4 ---
+ 7, = N, each of the non-zero roots of the characteristic equations® of the matrices
A, s +1. .

If s = 2, the theorem is almost self-evident. For the characteristic equation
of A2is| A2 — N | = 0, which, since A; + A, = I, can be written | I — A; —

2 By the characteristic equation of the square matrix 4 is meant the algebraic equation
of degree N in \.]A — X[ | = 0. If A is real and symmetric and the rank of 4 is r, the
characteristic equation has exactly r real non-zero roots and N — r zero roots. Cf. Kowa-
lewski, Einfithrung in die Determinanten-Theorie (1909) pp. 126-128.
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M|=0o0r|A4; — (1 — NI | = 0. But the last equation is the characteristic
equation of A; with N replaced by 1 — X. Thus the roots of the equation
| Ay — N | = 0 are one minus the roots of | A — M | = 0. Since the equation
| A2 — NI | = 0 has N — 3 zero roots, the equation | A, — M| = Ohas N — r,
roots equal to +1. But 7, = N — 73 so that all the non-zero roots of | 4, —
M| = 0are +1. A similar statement holds for the roots of | A, — A | = 0.

In general, we have A, 4+ A2+ --- + A, =ITandrn 4+ 7+ --- 4+ 7, = N.
Let By = Ay + As + --- + A, and denote by R, the rank of B;. Thus’
Ri<ro4+rs+ --- +r,. NowA:+ By =Iand theequation| 4, — N[ | =0
has exactly N — r; zero roots. Since the roots of | By — M | = 0 are one minus
the roots of | Ay — M | = 0, the first of these two equations has at least N — ny
non-zerorootssothat Ry > N —nn=r+r34+ -+ +17,. Fromra+r; 4 ---
+7r <R <71+ 13+ -+ 4+ r, we deduce the equality so that the argument
in the case of s = 2 applies to the matrices A; and B,. In particular, then,
each of the non-zero roots of | Ay — N | = 0is +1. By writing B: = 4, +
As+ -+ + A,,B; = A, + A2 + Ay + --- + A,, and so on, and repeating
the argument in each instance, we see that the theorem holds.

Theorem 1I. Let Ay, Az, ---, A, be s real symmetric matrices which satisfy
the conditions of Theorem 1. There then exist s — 1 real orthogonal matrices of
order N,say Ly, Ly, - -, L,—,, such that each of the s matrices

Ly - LiA,Ly -+ Loy, v=12---,8

is a diagonal matriz* with the r, non-zero elements on the principal diagonal equal
to + 1. Necessarily, the sum of these s matrices vs the identity matriz.

In proof of the theorem we shall, to save space, restrict ourselves to the case
of s = 3, although the method we use will be readily seen to be entirely general.
Since A4, is real and symmetric and since, by Theorem I, the r; non-zero roots of
the characteristic equation of A, are 41, there exists a real orthogonal matrix of
order N, say L, , such that

L;AlLl =0 0--- 1:

where L; is the conjugate of L, and where, merely as a convenience of notation,
we have placed the r, non-vanishing elements of the principal diagonal in the
first 7, rows and columns. If then, in both members of the equation 4, 4+ A; +
As = I, we multiply on the left by L1 and on the right by L, , we have

3 Cf. B6cher, Introduction to Higher Algebra (1921) p. 62.
¢ By a diagonal matrix we mean a matrix whose elements not on the principal diagonal
are zero.
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1 0---00---0

4 e 4 L L+ LA L = 1,

since LiIL, = ILiL, = I. The matrices LyAsL;, and LiA;L, are real, sym-
metric, and the ranks are r, and r;, since L, is non-singular. Moreover, the
non-zero roots of the characteristic equations of the two matrices are 4-1; for
| LiAsLy — M| = |Li(4s — NM)L,| = | L1 || 42 — M || L |, and similarly
for the matrix LiAsL,. Now if a real symmetric matrix is positive definite,
that is, if all the non-zero roots of its,characteristic equation are positive, then®
all the elements on the principal diagonal are positive or zero, and, if an element
on the principal diagonal is zero, all the elements in the row and column in which
that element lies are zero. These two facts regarding a real symmetric positive
definite matrix, in conjunction with equation (4), require that the matrices
L1A:L, and L;AsL, be of the forms

0.0 0-cvvvnn. 0 0-... 0 [ 0
0.0 0-cevnnn. 0 0...0; 0-cvvvvnn 0
0..-0 brl—f 1,r141 °°° br1+l.N 0..-0 Cri41l,r141 * ** Cry41,N
0---0 bwrn byw 0.0 cwrpp1---: Can

respectively. Now the real symmetric matrix
'br1+l.r1+l e br1+l,N
C = . .
bwyrggr vveee byn

is of order N — ry, its rank is r2, and its characteristic equation has r; roots
equal to 41. There then exists a real orthogonal matrix M of order N — r, , say

M — mr1+l,r1+l M mr1+l,N ,
MNyg1 o Myy
such that .

1 0---0{0---0

0 1---0:
M'CM = 0 O...lgo...o
0.-.... 00 0
0..... deesenae 0

8 Cf. Cullis, Matrices and Determinoids (1918) vol. 2, p. 302.
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Again, to simplify the notation, we have placed the r, non-vanishing elements of

the principal diagonal in the first r, rows and columns.

matrix of order N

L,

0.0 0....
1...0

01 0....
..... 0 My 41,7141
ceee 0 MN, 141 -+

Consider the orthogonal

It is evident that Ly(L1A1L;)Ls = LiA;L;. If then, both members of L14,L; +
LiAsLy + LiAsL, = I are multiplied on the left by Ly and on the right by Ls,

we get
‘ 0..-0/0-----. 0.--0
1 0..-000---0
: s 0...0: 0..-0
0 cvvne 1:0...0 .
......................... i 4+/0---0i1 0.-.0/
() 00.--0 .
; : D0 T
0 ccvevenennans 0 : : :
0 [ P 0
0... 0 0 covvnnn 0
0-v 0 0eeerrnnn 0
| ‘ = 1.
0 e 0 dr1+l,r1+1 M drl+l N
0---0 dyysg1y, -+ dyw

From this last equation, it follows that d;x = 0,7 = k, dj; = 0, j

7'|+1,

ooy +4+mnandd;;=1,j=r+rn+1,...,N. The third matrix in the
left member of preceding equation then takes the form

0 e 000 venennnnnn 0

0.

0 0.0 :
0.0 0

0 cvvenennnn oo ...... 1
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This establishes Theorem II when s = 3. The procedure may be continued
in a fairly obvious manner so as to justify the theorem for any finite positive
integer s.

With the aid of Theorems I and II, we are now able to state and prove a very
useful theorem on the independence of certain quadratic forms of normally
and independently distributed variables. The theorem follows.

Theorem III. Let xy, 22, ---, zy be N independent values of a normally
distributed variable x and let 6,, - - -, 0, be s real symmetric quadratic forms in

8 N
these N variables, where > 0= 2. Ifr,rs, -, 1, denole respectively the
1 1

ranks of the quadratic forms, a necessary and sujficient condition that the s forms be
independent in the probability sense is that ry + 12 + -+ + 7, = N.

Consider the characteristic function of the joint distribution of the s forms as
given by equation (2). In accordance with Theorem II, we can successively
introduce new variables by performing real linear transformations with orthog-
onal matrices L, Ls, --- , L, respectively in such a way that® T becomes

T ri+re N l N
T=6Xyi+ht > g+ -+ Yi — 555 2u Vi

1 ri+l rite -1+l 10° 1

Since each transformation is orthogonal, the absolute value of the Jacobian in
each instance is unity. Thus the right member of (2) can now be written as the
product of s sets of integrals, the sets containing 7, rz, ..., 7, integrals re-

spectively. That is,
‘P(tl )ttty t-') = (’l(tl) ce (Pa(ta),

which is equation (1). Hence the theorem.
Under the conditions of Theorem III, the characteristic function of the
distribution of 6, is found by direct integration to be

Ty

‘Pv(tv) = (1 - 2'i°'2tv)—?~

¢ If the variables in a symmetric quadratic form with matrix A are transformed by a
linear transformation with matrix B, the new form has the matrix B’ AB. Cf. Bocher,
p. 129. It should be remarked that these s — 1 successive orthogonal transformations can
be combined into a single orthogonal transformation with matrix L = L1L; -+« L,y . For
if, by means of a linear transformation with matrix L, , we pass from the variablesz:, ---,
Zy to the variables z; , -+, zy , in which the old variables are expressed explicitly in terms
of the new, and thence to variables z7, -+ , y by means of a linear transformation with
matrix L, , the transformation with matrix LiL; will carry us directly from the z’s to the
z”’s. This extends to any finite number of transformations. Since theproduct of any two
orthogonal matrices is an orthogonal matrix (and hence the product of a finite number of
them), we see that the remark is justified. Cf. Bécher, p. 68 and Kowalewski, p.161. Note
that Bocher expresses the new variables explicitly in terms of the old.
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Thus,

1.6,) d6, = de, 51; / e % o, (L) dt,

@O

Ty o? o2 ’
2? I‘(%)

so that the variables 8,/0” are distributed in accordance with Chi-square dis-
tributions with r, degrees of freedom.” Accordingly, when the conditions of
Theorem III are satisfied, we may deduce not merely the mutual independence
of the 6, but also the nature of their distributions.

3. Applications to the analysis of variance. In the analysis of variance,
N = ab independently observed values of a normally distributed variable are
classified into a rows and b columns in accordance with some relevant scheme:

Tn, Ziz, -+, T1b
x?l;xﬁy”’,%b

Zal, %oz, *++ , Tab .

With the notation Z,., Z.x , £ to denote respectively the arithmetic mean of the
Jjth row, the kth column, and the entire set, it is readily seen that

a b a b a b
Zl:Zl:(x,-k—a':)2=bZIZ(ff. —i)’+a21:(i.k—-a':)2+21321‘,

6))
(xn — & — Za + 2)°

=6, + 6, + 63
is an identity in the N = ab values of z. It is quite straightforward to exhibit

each of the three terms in the right member of (5) as a real symmetric quadratic
form in the N variables zj and to show that the ranksarer, =a — 1,7, = b — 1,

r3 = (@ — 1)(b — 1). By the device of adding 6, = al_b O > zp)’ = Nit to

both members of (5), we have D > 2fx = 6, + 6, + 65 + 6:. Moreover, the rank
of §4isry = 1. Thusr + 2 + 73 + r4 = ab = N and, by Theorem III, we see
that the four quadratic forms are mutually independent. In particular, 6, , 6
and 6; are independent, and each, measured in units of ¢°, is distributed as is
Chi-square with its appropriate number of degrees of freedom.

TaE UNIVERSITY OF Iowa.

" By the number of degrees of freedom of a real symmetric quadratic form of normally
and independently distributed variables, we mean the rank of the matrix of the form.
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