ON COMBINED EXPANSIONS OF PRODUCTS OF SYMMETRIC POWER
SUMS AND OF SUMS OF SYMMETRIC POWER PRODUCTS
WITH APPLICATIONS TO SAMPLING (Continued)

By PauL S. DwyEer

PART II. THE FUNDAMENTALS OF SAMPLING
Introduction

We consider a population of N variates in which every individual possesses a
common attribute. Let the variate z; be the measure of such an attribute for

individual 2. From the N variates it is possible to form (IZ) different samples
where each sample consists of » variates, n < N.

Each sample has its mean, variance, etc. so that there are (Z) means, (]Z)
variances, etc. The fundamental sampling problem, as interpreted here, is to

find the relation between the moments of the (Z) means, and the moments of

the (?:) variances in terms of the moments of the moments of the universe.

Numerous attempts have been made to solve this problem, but each has been
restricted in some way. It is the aim of Part II to indicate an approach which is
broad enough to include many of the fundamental variations.

The first chapter is devoted to a listing of criteria which should be satisfied
by a theoretical development which is to be considered sufficiently general.
These criteria might be applied to other statistics but the theory developed
here is limited to those statistics which are moments (or functions of moments) of
moments. The first chapter continues with an account of the more significant
papers which have contributed to a general solution of the problem. No attempt
is made to indicate a complete history, but rather there is presented a brief
summary of a number of the most significant contributions.

The second chapter is devoted to definitions and notation. An attempt has
been made to use conventional notation whenever it is suitable.

The third chapter deals with some of the fundamental principles which are
used in the general approach. It presents a crucial part of the argument
as it shows how various types of sampling problems can be reduced to Carver
functions.

The last three chapters deal with specific applications to some of the simpler
problems. Chapter IV discusses the case of moments of the mean of the sample.
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98 PAUL 8. DWYER

Chapter V considers the mean of the variance and the variance of the variance,
while Chapter VI gives a large number of formulas, implicitly, in tabular form.

Chapter I. A Brief History of Previous Contributions

In order to assist the reader in getting a perspective with reference to previous
mathematical work on the relations between the moments of the moments of
the sample and the moments of the complete set of measures (universe), a list of
criteria’ is suggested below which might be applied to each contribution. These
criteria group themselves naturally into two classes. The first eight questions
can be answered categorically, while the remainder are less definite in nature
and are not so subject to categorical answers.

1. The Criteria. 1. Does the method apply to one type of frequency distri-
bution only or is it broad enough in scope to include any distribution law?

2. Is there any restriction as to the size of the sample?

3. Isthere any restriction as to the size of the universe?

4. Is there any restriction as to the nature of the correlation between ob-
servations? More specifically, is the method applicable only to some particular
law of formation of the sample such as ‘‘drawing with replacements,” “drawing
without replacements,” etc., or is it broad enough in scope to allow application
to other orderly replacement laws?

5. Is the application limited to one characteristic (variable) or can a large
number of characteristics be treated simultaneously?

6. Is it necessary that the universe maintain the same frequency distribution
during the formation of the sample or may it assume a different frequency
distribution before each drawing?

7. Does the method produce exact, rather than approximate, formulas?

8. Does the method permit approximations to a required degree of accuracy?

9. Does the method enable the author to write general laws in a compact
form? More specifically, can he express, in a form which is not too symbolic,
any moment of a given sample moment? If not, what order of moments can
be expressed?

10. Is the notation such that the general case can be turned into the more
important special cases with relative ease?

11. Does the development lead logically to the introduction of new moment
functions (such as the semi-invariant of Thiele [B’; 209] or the &k functions of
R. A. Fisher [23; 203]) which are useful in condensing the results?

12. Is a combinatorial analysis provided so that any given formula, or any
part of it, can be checked for accuracy without too much effort?

2. Review of previous results. The articles below have been examined with
the criteria in mind. No attempt is made to write specific answers to all the

1 Many of these criteria have been suggested, in less explicit form by Tchouproff (15;
461-471). The ‘“Introduction” of his Metron paper is recommended for use as a supple-
ment to the present chapter.
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criteria in each case, but rather to indicate the important features of each
contribution.

The papers discussed by no means cover all the work on moments of moments,
although a rather complete bibliographical background is available to the reader
who desires to examine the bibliographies attached to the articles mentioned.
Undoubtedly the importance of the articles written in English has been over-
emphasized. Since the important contributions of non-English writers (such as
Thiele and Tchouproff) have eventually appeared in English, it does no serious
harm to refer to the English versions even though the results may have been
partially antedated by the author in some other language.

A large number of the earlier results on moments of moments were limited to a
special case of the problem, usually the case in which the universe is infinite
and normal. The present summary deals with those authors who, during the
past four decades, have made real contributions to the problem of generalization.
A detailed account of the history of moments of moments would include many
valuable contributions which are not included here.

It seems expedient to start with Pearson’s article “On the Probable Error of
Frequency Constants’’ [2] which appeared at the opening of the century..
Although by no means the first article in the field, it presented a rather complete
set of formulas for the case of moments of moments. One advantage of these
formulas is that they are relatively brief and yet this brevity results from the
fact that they are approximate. The original paper dealt with the univariate
case, but it was followed by a later one [6] which discussed the case of more than
one variable.

These formulas have played an important réle in that they have assisted in
making it clear that the moments of moments of samples must be estimated if
one is to be permitted to draw conclusions from his sampling moments and that
it is possible to work out formulas which serve as the basis of those estimates.

Of great importance also was the contribution of T. N. Thiele to the sampling
problem. Adapting certain ideas of Laplace, he used semi-invariants in which
to express his results which he published in English in 1903 in “The Theory of
Observations’ [B’; 209]. He took the case of the infinite parent and any law of
distribution and then worked out moments through the fourth of the variance.

An earlier contribution of the introductory period was that of Karl Pearson
in 1899 [1]. This paper is significant in that it provides formulas for the four
moments of the mean when sampling is from a finite universe. The universe is
not general, but obeys a simple frequency law.

Another article of this period was that of Robert Henderson (1904) in which
the first four moments of the mean were given for an infinite universe with any
frequency law. This article, which was first published in Transactions of the
Actuarial Society of America [3], was considered so important that it was re-
published in 1907 in the British Journal of the Institute of Actuaries. Henderson
gave, in addition to the first four moments of the mean, first moments of ms , ms ,
my although the last of these formulas is erroneous.
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Another important contribution of this period was that of “Student” in
1908 [5]. He was interested in the properties of the normal distribution, but
did not assume normality in his general derivation. He took an infinite popula-
tion and wrote the formula for the variance of the variance. In this result he
inserted the condition for normality. His further argument in the normal case
implied the development of corresponding formulas for the higher moments of
the variance, but he did not publish them as they were incidental to his main
attack. The semi-invariant equivalent of these results had been previously
given by Thiele [B’; 209-210].

The real contribution of ‘‘Student” to the general problem of moments of
moments was his method, for it is his method which has been utilized by later
writers. ‘‘Student’s”” method has the advantage that the development involves
algebraic processes only. Contributions of Neyman, Church, Pepper, Carver,
and the present writer are based upon it.

An important development during the next decade, 1908-1918, was the
establishment of the first four moments of the mean when the samples were
drawn from a finite parent without replacement. It appears that a number of
men worked this problem independently. For example, one might examine the
results of Pearson [4], Isserlis [7, 8], Mortara [C], Tchouproff [11], and Edge-
worth [9]. Probably the best English presentations of that era were those of
Isserlis [8] and Edgeworth [9] which appear in the same volume of the Journal
of the Royal Statistical Society.

A most prolific writer on sampling during the next decade was the Russian,
Tchouproff, who had been publishing in Russian and Scandinavian journals
[10], [11]. His most valuable contributions were published in 1918-1923 in
Biometrika (in English) and in Metron (in English).

The first series of articles was published in three different numbers of Bio-
metrika in the years 1918-19 [12]. Tchouproff assumed an infinite universe
and used the method of mathematical expectation. At first glance the most
characteristic aspect of his work appears to be the complicated notation which
he used. This notation was adopted because he undertook a much more general
problem than had previously been attempted and hence needed to make new
distinctions. Although he limited himself to the infinite case and one variable,
he worked out the theory with the freedom that the frequency distribution of the
universe might change between drawings. In the special case in which the
populations are the same, he worked out the moments of the variance as far as
the fourth. The chief criticism of his work concerns the complicated notation
which seems to have been difficult to follow critically. A mistake in one of his
formulas was not discovered for some years and then not by examination of his
reasoning, but through the application of his results to an actual problem [17].

It is perhaps appropriate to insert here that in 1934 Feldman [30] rewrote the
material of the second Biometrika article by simplifying the notation and extend-
ing the argument to the case of two (and more) variables.

Tchouproff continued to generalize his work and in the 1923 volume of Metron
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[15] there appeared a series of articles in which there were no restrictions as to
the size of the sample, no restrictions as to the type of sampling distribution
(in fact the sampling distribution might vary between successive drawings),
and no restrictions as to the law of replacement, or more generally as he expressed
it, “no restriction as to the nature of the correlation between observations.”
Criterion number 5 is the only one of the first eight criteria which is not satisfied
in as much as the approach is limited to that of a single variable. Also the
notation was extremely complicated and, although Tchouproff gave general
formulas for moments of moments, these formulas are so symbolic in form that
he did not find it expedient to write out specific formulas beyond the variance
of the variance for such an important special case as sampling from a finite
parent without replacements.

During the same period J. Splawa-Neyman [14] had been examining the
problem of sampling from a finite parent without replacements. He published
his results in a Polish journal in 1923 [14] and his corrected results two years
later in Biometrika [18]. He gave the well known formulas for the first four
moments of the mean and a formula for the variance of the variance. He also
gave some simple correlation formulas such as the correlation between the mean
and the variance.

At this time the basic problem of moments of moments, at least as it was
interpreted by Pearson and his followers, was the establishment of the first four
moments of the given moment of the sample so that a Pearson curve could be
fitted. A. E. R. Church, a worker in Pearson’s laboratory, was assigned the
task of seeing how the moments of the variance work out in actual practice.
In doing this he became convinced that the formula for the fourth power of the
variance, which had appeared in Tchouproff’s Biometrika article, was incorrect.
He tried to follow the argument of Tchouproff, but apparently was baffled by
the complex notation and finally, at the suggestion of Pearson, decided to carry
through the formula using the method of “Student.” In doing this he dis-
covered a mistake in the Tchouproff formula for the fourth power of the variance.
At the same time he published [17] the formulas for the third and fourth power
of the variance in the more conventional notation of that time.

It might be noted that it is particularly fitting that Church should discover
this error since Tchouproff, as Pearson himself stated in an editorial [13], had
pointed out a number of errors made by the Pearsonian school.

In the next volume of Biometrika there appears an article by Church [19] in
which, among other things, formulas are derived for the third and fourth
moments of the variance in the case of a finite population, sampling without
replacement. Church claimed no particular credit for these formulas. His
point is rather that they are almost valueless from a practical standpoint chiefly
because of their length. The formula for the fourth power of the variance
occupies three and one-half of the large pages of Biometrika and is given with
the apparent aim of indicating, as Pearson said [21; 209], “the practical futility
of the theoretical formulas.”
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Church gave full credit to Neyman for the formula for the variance of the
variance and made no mention of Tchouproff’s Metron work and of the more
general presentation there given. This was particularly unfortunate because
it exposed him to the charge that he ignored non-English authors. This charge
was immediately made by Greenwood and Isserlis [20] who broadened it to
include Neyman and, by implication, Pearson himself. They advocated the
case of Tchouproff who, now dead, was unable to defend himself. They gave a
survey (valuable to the cursive reader) of the pertinent contributions of the
Tchouproff articles and suggested that the ignoring of Tchouproff was par-
ticularly disconcerting since it appears that Tchouproff had gone more than half
way in his cooperation with English writers.

Pearson replied in an interesting article [21] which made it clear that Neyman
established his results independently of Tchouproff and that the language of
Neyman is much simpler than the complicated notation of Tchouproff. Pearson
emphasized that Tchouproff made no attempt to give specific formulas for the
third and fourth moments of the variance in the case of sampling with replace-
ments. Pearson did not answer, at least explicitly, the claim that the Tchoup-
roff formulas are applicable to a more general case in which there is no restriction
as to the nature of the correlation between observations.

The year 1928 was marked by two important contributions. We first mention
that of C. C. Craig who published his thesis in Metron [22]. Extending the
previous results of Thiele, he was able to write the semi-invariant equivalent
of the basic formulas in much less space than their previous moment formulation
had demanded. He was able to write products of sample moments as well as
moments of the moments themselves. His results are limited to an infinite
population and one variable. The bibliography attached to his paper is com-
monly mentioned in later literature for its completeness. For infinite sampling
it might properly be used as a supplement to the bibliography of this Part.

A most important contribution was made by R. A. Fisher [23] who was able
to simplify the infinite sampling formulas greatly. He did this by introducing
the sample function whose expected value is a cumulant (semi-invariant). In
addition to the simplification, his ingenious attack resulted in the following
contributions: (1) the recognition of the one to one correspondence between all
possible independent sampling formulas and the partition of numbers, (2), that
the extension of the multivariate form is accomplished by use of the partitions
of multipartite numbers, (3) the tabulation of numerous new formulas, (4)
the use of a general partition method by which any term in the formulas can be
determined separately.

The further development of the combinatorial analysis was indicated by a
paper by Fisher and Wishart which appeared in 1931 [27]. It was shown how
the more involved patterns could be broken up into simpler ones.

The study of the infinite case was continued by Georgescu [28] who extended
the Craig results. A feature of his work was the utilization of functions which
yielded expansions of formulas in terms of successive degrees of approximation.
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He applied Fisher’s idea of a combinatory analysis to the conventional sample
moment function.

Another paper of this series was that of Wishart [29] who gave a discriptive
account of the contributions of Craig, Fisher, and Georgescu and an indication
of the means of expressing the results of one writer into the language of another.

The work of Joseph Pepper which appeared in Biometrika in 1929 [24] should
be noted. Pepper took the case of the finite parent, sampling without replace-
ment, and two variables, and then gave an extensive list of results. He did not
have a very condensed notation and was forced to assume an infinite universe
for the higher moments which he studied. The important point, for historical
purposes, is that Pepper combined bivariate and finite sampling. It is to be
recalled that Tchouproff himself in his generalized theory gave no results for the
multivariate case.

A significant advance in finite sampling was indicated by the appearance of
Carver’s editorial on “Fundamentals of the Theory of Sampling,” which ap-
peared in the first volume of the ANNALS OF MATHEMATICAL STATISTICS [25].
Carver took the case of a fihite universe, one variable, and sampling without
replacements. He presented a notation which enabled him to write the various
moments of the mean through the eighth in simple form. He showed by a
number of illustrations that his formula would give known results for cases
both infinite and finite, when the proper restrictions were added. O’Toole [26]
later generalized his results for any moment of the mean.

3. Generalized Carver Functions and Sampling. The use of generalized
Carver functions together with the results of Part I makes possible the presenta-
tion of the general sampling theory in a compact, and yet not too symbolic,
form. It is possible to write the sampling theory so that criteria 1-8 are satisfied
although no attempt is made in the present paper to answer criterion 6. With
reference to criteria 9-11, any affirmative answer must necessarily be tempered
with qualifications as the results are far removed from that ideal solution which
would permit one to determine the actual distribution of any sample moment.
However the use of generalized Carver functions does permit a general concise
statement of results as well as the determination of special cases. The method
is also especially adapted to the introduction of new moment functions and to
the use of partition analysis, although these topics are not emphasized in the
present paper. In general it may be said that the use of Carver functions assists
greatly in finding the theoretical sample statistics in the case of finite sampling
since the Carver functions are condensed expressions of the size of the sample
and the size of the parent, since they may be easily checked from symmetrical
considerations, and since they are independent of the moments. They are also
applicable to different replacement laws.

4. The Use of High Moments. Precise agreement between theoretical and
practical sampling does not usually accompany the use of high moments, and
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the practical statistician is apt to agree with Pearson who wrote, ““I have a very
firm conviction that the mathematician who uses high moments may make
interesting contributions to mathematics, but he removes his work from any
contact with actual statistics’ [16; 117]. However since the extent of agreement
between theoretical and actual results is in a sense a measure of the extent to
which theoretical assumptions are actually duplicated in the experiment, it
does seem sensible to discover what relations exist in the ideal theoretical case.
Thiele implicitly supported the theoretical use of high moments (even in studying
actual problems) when he wrote [B’; 13]:

“Therefore the general rule of the formation of good laws of presumptive
errors must be:

1. In determining \; , and \; rely almost entirely upon the actual values.

2. As to the half-invariants with high indices, say A\¢ upwards, rely as ex-
clusively upon theoretical considerations.

3....”

A more explicit advocate is R. A. Fisher who wrote [23; 200], ““In the present
state of our knowledge any information, however incomplete, as to sampling
distributions is likely to be of frequent use, irrespective of the fact that moment
functions only provide statistical estimates of high efficiency for a special type of
distribution.”

Chapter II. Notation and Definition

The present chapter gives the fundamental definitions and appropriate
notation. An attempt has been made to combine the most desirable features
of the different notations of earlier writers.

5. Ordered Sample. An ordered sample is a sample in which distinction is
made as to the order in which the variate enters the growing sample. Thus
the sample found by drawing z, and then z, is the same sample as that obtained
by drawing z; and then 2, , but it is a different ordered sample.

In some types of sampling it is possible that a given variate may appear more
than once in the same sample. In general the number of ordered samples
varies with the number of repeated variates. Thus the sample x; 4+ z; results
from but one ordered sample, while z; 4+ . results from either of two ordered

samples.

6. Power Sums. Power sums have the same meaning as in section 11 of
Part I. An adjustment of notation is necessary as we need to distinguish power
sums of the sample from power sums of the universe. The a-th power sum of
the universe is denoted by (A4) while the sample power sum is denoted by (a).
Similarly, bold-faced numerals are used to indicate power sums of the universe,
while light-faced numerals are used to indicate power sums of the sample. The
symbol (4) is used to indicate that the variates are deviations from the mean of
the universe.
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7. Power Product Sums. Power product sums, called power products for
brevity, also have the same meaning as in section 11 of Part I. Large letters
are used to represent the power products of the universe while small letters are
used to indicate the power products of the sample. Thus (. - - - Q.) repre-
sents a power product of the universe while (¢1¢2 - - - ¢,) represents the corre-
sponding power product of the sample. Power products are not used extensively
except in the development of the theory of the next chapter where they play an
important role.

8. Expected Values. If a given statistical function, z is formed for every
possible sample, then the arithmetic mean of the z’s is the expected value of z.

Thus E(z) = _Z:_S(Z_) where the = holds for all possible samples and S is the number

of such samples.

9. Moments. Moments demand precise notation since distinction must be
made between moments of the universe, moments of the sample, moments of
the moments of the sample, and moments about the mean for these cases. In
addition we wish to indicate whether or not the universe is measured about its
mean.

a. Moments of the universe. The conventional u’s are used to indicate the
moments of the universe. In this notation 7 is used to indicate the moment
about the mean of the universe. Thus

(M _ - _M_2z

xt
N N =N T N
The usual formula relating u, and &, [22; 20] may be written

D Y (R P (1)

and

so0 that
@ _ 0w
M2 N —N2 ’

ete.

It is to be noted that, when (1) = 0, @, = pu, .

b. Moments of the sample. We denote the moments of the sample by the
letter m [23; 203].

In much statistical work deviations from the mean of the universe are used in
place of the variates themselves. When the universe moments about the mean
appear, we indicate them with a bar. However in denoting the moments of the



106 PAUL 8. DWYER

samples, the moments of the mean do not appear and some other device is
needed to indicate whether or not the variates are measured about the mean of
the universe. The simple notations m,; and i, are used to indicate that the
variates used are deviations from the mean of the universe. A superprefix is
used to indicate the case in which the variates are not measured about the
mean, 'm,, '#,. The values of 7, (and '/,) are obtained from the values of
m; (and 'm,) by means of the formula

= T 0y o) e (2)

c. Moments of the moments of a sample. Since there are many possible
samples and since a given moment can be computed for each sample, it is
possible to express the expected value of this moment and the expected value of
any power of it. The u’s are used for this purpose. Thus

pr(me) = E(m,)
Mr('mt) = E('mt)r
{3}.
pr(ifig) = E(e)
w('my) = B('my)’.

If the first one of equations {3} represents the whole group, then the values
a-(my), &('m.), (M), and &.('7m,) are indicated by

m) = T (=10 (. 10) smd i (4},

d. Moments of the product of the moments of a sample. The term Zny can be

indicated by E(zy) = uu(z, y). Similarly the expected value of the product of
m, and m, may be indicated by E(m,ms) = pu(m, , ms). In general

r

I‘rlrz-ur.(mau Mayy = -y ma.) = E(ma}m;: R %) {5}

In the case of the product of sample moment functions, when the universe is
not measured about its mean, it is preferable to use a single superprefix, asso-
ciated with the u instead of a number of them associated with each m function.

Thus

ﬂm('ma, Imb s I’mc) = 'Mm(’ma , My, M).

The usual laws for changing from moments to moments about the mean in the
case of the multivariate distributions are available. Thus
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B (Ma , ms) = pu(ma , ms) — pro(ma , Ms)por(ma , Ms). {6}
Bu(ma , my , me) = pu(ma, my , me) — puo(Ma , My , Me)ponr(Ma , My, M)

— p101(Ma , My, Me) poro(ma , Wip , Me)

— pou(ma , my , Mg) paselma y My, mc)

+ 2u100(ma , My , M) poro(a , Mo ; M) poor(ma , ms , ma) {7}

etc.

10. Different Sampling Laws. For theoretical purposes, any law may be used
in the formation of samples as long as it results in finctions of all possible samples
which are symmetrie functions of the variates. Any uniform law of replacement
satisfies this condition and hence might be used in forming samples. Most
statisticians who have worked on the sampling problem have been content to
assume one or the other of two replacement laws. Each of these is “‘natural,”
since it has wide application in the study of aetual sampling.

The two types of sampling which have received general treatment are sampling
from an infinite universe with any law of replacement and sampling from a finite
universe with a law of no replacements. The results of the first type are also
applicable to the case of sampling from a finite universe when replacements are
made after each drawing. These two types of sampling have been characterized
by the terms ‘“sampling from an infinite universe,”’ or ‘“‘sampling from an
unlimited supply” [25; 114] and ‘‘sampling frem a finite universe’” [17], or
“sampling from a limited supply’’ [25; 101].

The theory of moments of moments for the first type of sampling has been
developed to a high degree by such authors as Craig [22], Fisher [23], and
Georgescu [28]. This extensive development has been due in part to the fact
that the assumption of an infinite universe permits application of methods
which are not applicable to the study of finite variation. The probability of
getting a variate remains the same no matter what the law of replacement.
The assumption of an infinite universe at first appears to make the results
inapplicable to all actual problems where the universe is finite. However, if the
universe is large, the assumption of infinite size does not greatly alter the results,
although the extent of the change can not be determined without comparison
with the results of finite sampling. A justification for the use of infinite sam-
pling in actual finite sampling problems is based on the fact that the formulas
resulting from sampling from a finite parent with replacements are the same as
the infinite formulas. Hence the infinite results may be used to characterize
finite sampling if sampling is done with replacement after each drawing. This
clever scheme is somewhat invalidated, in actual sampling, because of the
practicability of replacing and remixing after each drawing. Until someone
demonstrates a technique which is practical and effective in securing randomness,
it must be said that the value of infinite sampling theory as applied to finite
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sampling depends upon the theoretically unsatisfactory assumption that a
finite universe is infinite.

The theory of sampling from a finite universe without replacements has been
developed by such authors as Isserlis [8], Tchouproff [15], Neyman [18], Church
[19], Pepper [24], and Carver [25], although available results are not as extensive
as those mentioned above because of the difficulty of algebraic manipulation
and because of the length of the formulas. The fact is that the probability of
getting a given variate varies with the different drawings. However, a “return
to the bag” is not demanded.

The terms “infinite sampling’’ and “finite sampling’’ are adequate to describe
the two kinds of sampling discussed above, but they are inadequate in the case
of finite sampling if additional replacement laws are introduced. Hence, it
seems preferable to characterize the type of sampling by the replacement law
if the population is finite.

When the Carver functions represent known functions of n and N, it is
possible to use them in writing moment formulas for any orderly replacement
law. For example, it is shown in later sections how Carver functions can be
applied to

1. Finite sampling without replacement,

2. Finite sampling with replacement after each drawing.

3. Finite sampling without replacement up to the n-th drawing before which

the n — 1 withdrawn variates are replaced and mixed.

The Carver function can be used symbolically even in cases in which its
explicit statement in terms of » and N has not been found. In some statistical
formulas the Carver functions cancel, so that the results are independent of the

sampling law.

11. Variable Distribution Laws. It is possible to generalize the theory to
include the case in which the variable takes on a different frequency distribution
after each drawing, i.e., the general Tchouproff formulas can be written in terms
of Carver functions. This theory can also be generalized to include many
variables. In this dissertation, however, it is assumed that the universe remains
the same, aside from the unreplaced variates forming the sample, throughout
the sampling process.

Chapter III. The Application of the Double Expansion Theorem

It is the purpose of this chapter to establish the basic theorems on which the
more specific work of the later chapters is based and to show how the double
expansion theorem is to be applied to the sampling problem.

12. Formulas Concerning Ordered Samples. a. Sampling with replacements.
If the samples of n are taken from a universe of N variates and if the variates are
replaced after each drawing, then the number of possible ordered samples is N™*
since for each of the n drawings there is a choice of N.
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b. Sampling without replacement. If the variate is not replaced after each
drawing, the number of ordered samples is

NN —-1) ... (N—-n+1)=N".

c. Replacement before the last drawing only. In case sampling is with replace-
ment before the last drawing only, the number of ordered samples is

NN —-1) ... (N —n+ 2)N = N*VN.

13. Theorem I. All moments of moment functions of samples can be expressed
in terms of expected values of products of power sums of samples.

By moment functions we mean rational integral isobaric moment functions
[31;22].

The theorem follows at once from the definitions of section 9. From {3}, {4},
{5}, {6}, {7} it is clear that all moments of moment functions of samples are
expressible in terms of the expected values of sample moment functions. But
since the sample moment functions are themselves defined in terms of power
sums of the samples, the theorem follows. For example

fa(n) = pa(iMg) — pi(ma) = E[%) - (—1)7;(21—2]2 - [E{%) - 0;—2—”}]2 {8}

and

(M, m1) = pn(z, mi) — wo(7g, m)por (Mg, my)
00 9] [0 L]

14. Theorem II. All moments of moment functions of samples can be expressed
in terms of expected values of power products of samples.

This follows at once from the application of the multiplication theorem of
Part I to the theorem of section 13. Each product of power sums is expanded
by the multiplication theorem into sums of power products. Thus

() = E[@sz) _ 2200 (nl_)J

n

n: nd nt ' n

_ (l _2, nl4)E(4) + (-% + %)E(31) +(5-Z+ 34> B(22)

-2 6 1
+ (F +;4> E(211) + — B(1111). {10}
15. Theorem II. To every power product form (q:1gs - - - ;) there corresponds
a power product form (Q:iQ: - - - Q).
The argument is simple since the terms of (q:¢; - - - ¢.) are themselves terms of
(@Q: - -- Q). It follows at once that, if (qg2 - - - ¢,) exists, then (Q:Q: - - - Q,)
exists.
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As an illustration, consider the universe consisting of 2, , 2 , 23, x4 , Zs and the

sample consisting of z1, 22, 23, zs. Then the terms of (q19:¢;) = 2 2P xll
T1dxigdi;
5

are all contained in the terms of (Q:Q.Q;) = Z zhaiiall.

T1digdig
16. Theorem IV. If definite k’s can be determined so that
E(g2 -+ ¢) = ko5, (QiQ2 - - - 1), {11}

then it 1s possible to use the double expansion theorem and express the moments of
the moments of the sample in terms of the P functions of Part I and the power sums
(or moments) of the universe.

The double expansion theorem was designed to replace (gig: --- ¢.) by
,,l,,, o0, (@Q2 - -+ Q). It can be used as well to replace E(qigz - - - ¢.) by
koipg.. 0, (Q1Q2 - - - @) if the values of ky,p,...,, can be determined. The results

of such a substitution in terms of the power sums of the universe are then given
by the double expansion theorem. For example

and if E(2) = k,(2) and E(11) = ky;,(11) then
ey @) k(1)
I“..(Iml) = (kz ku) ? + T

( )+ Kll(l)

where K; = ks — ku and Ky = ky .
It then appears that the methods and tables of Chapter I of Part I can be
used in finding expressions for moments of moments, in case kp,p,...p, is known.

Thus

po(17) = E[(:_) _ (1?)151)]2 _ E[(27)2£2) _ 2(2)1(;)(1) " (1)(13;1)(1)]
_ Py(4) + Pu(2)(2) [P 3(4) + 2Px(3)(1) + Px(2)(2) + P 111(2)(1)(1)]
n? nd

+ Py(4) + 4Pu(3)(1) + 3Px(2)(2) + 6Pa(2)(1)(1) + Pun(1)*
nd.

and when (1) = 0

n3
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where
P 4 = k4 bl 4]631 - 3’022 + 12k211 - 6’91111

Py = ks —  3kan + 2kun
P = ks — 2k + kun
Py = kay —  kuu
Py = kuu

as given by {54} of Part I.
The basic problem has thus been reduced to finding k5,...,, such that

E(Qe - q) = kpyoop, (@1Q2 - - Q).

17. Theorem V. The expected value of a sample power sum is always % times

the corresponding universe power sum no matter what the replacement law.

The expected value of the sample power sum is always the same even though
the k’s take on different values for different replacement laws. We note first
that the number of ordered samples, S, depends upon the replacement law.
Now a given sample power sum, (a), has n terms, while the corresponding
power sum of the universe, (4), has N terms. All the a-th powers of the
variates in the universe appear in the ordered samples and, if we add all possible
ordered samples, these terms appear the same number of times. Hence

Y (@) = K(4) and Z(A(;’):k{.

Now the number of the a-th powers of the variate in 3~ (a) is Sn so that each of

the N variates appears -SA—:" times. It follows that Y (a) = %’-‘ (4) and hence

that E(a) = ]%(A). Hence

E(a) = ki(A)  where k5 = {15}

=3

no matter what the law of replacement.
An illustration may serve to clarify the argument. Consider a universe
composed of & , ¥z, x3 and write the six ordered samples. Then

() _ai+aitaitaitaitaitaitastatataitor_,

4) x] + 7z + 25
and

E@ _2_n

@ 3 N
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18. Value of k,,...,, for sampling without replacement. Consider a universe
and all possible ordered samples. Form (QQ: --- Q) and Y (¢:1¢2 - - - ¢»).
Now Z(qiqe - -+ ¢5) is a symmetric function of the variates and consists of
N™n® products, and (Q:Q: -- - Q.) consists of N products. Each of the
N® products is repeated the same number of times in the N”n‘ products of
> (q1z - - - ¢;). To find the number of times such repetition is made, it is only

necessary to divide the total number of terms in E (122 - - - ¢s) by the number of
(), (&)

terms in (Q:Q: - - - Q.) which gives yo— - Hence
N(n) (s)
Y(oe-q) = S (@@ Q) (16}
and, dividing by the number of ordered samples, N,
(s)
E(ig - q) = ]-7:7(—,) (@:Q:---Q.) {17}
so that
(2)
kp...p, = %‘(‘,) {18}

as stated in section 46 of Part I.

Since (qigz - - ¢) = sulse! -+ 8\ M(@uge - -+ ¢.)
and (QQ: - Q) = sils! -+ 8,IM(QQ2 - - Qu)
it follows that

(s)

EM(q1q2 - -+ ¢) = ;LW) M(QQ: --- Q). {19}
Most earlier writers on finite sampling have used the idea expressed in {19}
as the foundation of their work. They have found it necessary to undertake
enormous algebraic manipulation to expand in terms of monomial symmetric
functions and then to expand back in terms of power sums after making the
coefficient adjustment. Such long derivations are not only laborious, but they
are also apt to result in algebraic errors and the results obtained have not
emphasized the symmetry which is inherent in the nature of the problem and
which is very useful in checking calculations. It was Carver who first discovered
the type of symmetric relation involved and who used it in obtaining a compact
statement of the first eight moments of the sample sum in the case of a single
variable. He, too, found it necessary to carry out extensive algebraic manip-
ulations as his reference to ‘lavish use of symmetric functions’” [25; 104]
reveals. His keen insight into the essential nature of this problem led him to
the conclusion that such extensive algebraic manipulation should not be
necessary and that it should be possible to apply P functions to sample moments
of order higher than the first. His confidence that this could be done and his
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encouragement in the task have contributed in a large degree to whatever merit

this dissertation may have.
(s)

With kp,...p, = ]%@ , it is at once possible to write the P function expansions.

Following Carver, we let p; = %, po = Z!\;E_?V_——ll)) , ete. and get, from sections
43 and 44 of Part I,
P, =p Py =p
Py =p— p Py =p — ps
Pi=p — 30 + 20 Py = p2 — 3p3s + 2p4
Py=p1 — Tps+ 1203 — 6ps  Poz = p2 — 203 + p4
ete. ete.

19. Expected Values of Products of Sample Power Sums, S;.mpling Without
Replacement. The tables of Chapter I of Part I are now available for use.
Thus

ps('my) = E('my)’ = nlsE(l)3 = nls[P3(3) + 3Pu(2)(1) + Pw(1)]. {20}

where
p. =" _ 3n(n — l)+ 2n(n — 1)(n — 2)
® "N NWN-1) "NN-1DWN -2
Py = nin — 1) _ nn — 1)(n — 2)
®TNN=1) NN-DWN=2
Py = n(n — 1)(n — 2)
MWENN =D =2

Formula {20} might be written as
1
p('ma) = 5 [PsNuws + 3PulN" s + PV’ ] {21}

We note further that as N — «

NP; —»n, PuN'—>nn — 1), PuN' —nn — 1)(n — 2)
so that

o) = — [ + 3n(n — Dpaps + nln — 100 — Dul] {22}

More generally
Pm1~~mf(Ql)(Q2) e (@) = Pm1-~~mrNr#qll-‘qz R P {23}
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As N approaches infinity this becomes
Pm1--~m'(Ql)(Q2) cet (Qr) = n(r)“thl"qz A {24}

The laws of infinite sampling may be obtained by replacing power sums by
moments and Po,...., by n”. The tables given in a recent paper [31; 30-32)
were obtained from the tables of P functions by this method.

20. Sampling With Replacements. We next consider the case of finite
sampling with replacements after each drawing. This is such a simple case
that the P’s can be determined without finding the k’s.

Consider a universe and the N™ possible ordered samples. Thus the nine
ordered samples of 2 from a universe of 3 are indicated by the subscripts

11 21 31
12 22 32
13 23 33

The samples 11, 22, 33 are not repeated while the others are. The multiplication
theorem can be used in grouping types of product terms as it was in Part I,
but the terms themselves have different interpretation. Thus (1)(1) = (2) +
(11) can be written as (1)(1) = (2) + [11] where the (2) indicates the sum of the
n terms found by multiplying an z by itself, while the [11] indicates the sum of
the n(n — 1) products formed by multiplying one z by another. Since some
of the z’s may be alike, it is possible to have squared terms in [1-1], but they
are not treated as squared terms, but rather as products. For example, if
MD=z+4+u

(1)(1) = x? + xf + It + 1%
so that

(2) = 2} + 71 and [11] = 221 + 771 .

In determining the expected value of (1)(1), we note that
2ZMW=2@+ 201]
nN"

where > holds for the N* possible samples. Now @) = k1 (2) and &y = ¥

so that E(2) = —]7:—,(2) as indicated in Theorem V. Also [11] is composed of

N N N
N"n® products of Z rixy = <Z m)(Z xi)- It follows that

1,7=1 i=1 j=1

do[1-1] = N;’,’;ﬂ (1)(1) and that

n®
E[1.1] = S0 Q).



COMBINED EXPANSIONS 115
n®

e plays the role of Py;.

It appears that
w(tm) = 2 BI(@) + (1]

- 7%[102(2) + Pu()@)]

(2)
where Py, = ]% and Py, = %—5
The corresponding argument holds for the general case. Any product of power
sums can be expanded in terms of (qi¢z --- ¢;). If duplicate variates are
introduced, use the notation [qi¢s - - ¢)). Form [qiq. --- ¢;] for all the N”
ordered samples. Now [g1qz --- ¢.] has n terms and Y [m1gz --- @] =
k(Q)(Q) --- (Q.) has n”N™ terms, while (Q;)(Q:) --- (Q.) has N° terms.

(8) arn
It follows that k = "V, tha

(&) arn
a0l = S @@ - @),

and that "
Blags - ol =" (@)(@) - (@), (25}
Hence
Prveem, = . (26}
In general
Pop o (Q)(Q) - (@) = n“ugipig, -+ ba,- {27}

Comparison with {24} shows that the same basic laws appear no matter whether
sampling is carried on with replacement, or, in the infinite case, without re-
placement.

21. Other Replacement Laws. The two cases just examined represent two
extremes of orderly replacement laws. It has been shown in each case how the
Carver functions can be used to express relations between the moments of the
moments of the sample and the moments of the universe. It is possible to show
how these functions are applicable to other replacement laws. We take, as an
illustration, the case in which no replacements are made after each of the first
n — 1 drawings, but just before the last drawing the n — 1 variates are replaced
and mixed. I do not present here the detailed argument, but simply indicate
that the appropriate value of k,,...,, is

Kprowps

(s)

= =2 a4 @ L2 2 - D] (28)
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22. Different Frequency Laws. The distribution of variates may follow some
known frequency law such as the normal, rectangular, binomial, Poisson, etc.

In such a case, if the relations between the moments are known, it is possible
to simplify the results.

Chapter IV. The Moments of the Mean

To illustrate the previous theory in a simple situation we consider the moments
of the mean. Carver [25] has done this previously for the case of finite sampling
without replacements, but he has taken the measures of the universe as devia-
tions and has used the sample sum rather than the sample mean. O’Toole [26]
has generalized Carver’s work.

23. The Moments of the Mean. We have at once

wm('my) = %E(l) = ;ILPL(]-) =M
pa(tmy) = nl2E(1)2 = ;1—2 [Py(2) + Pu(1)(1)]
() = S EQ = CP(3) + 3Pu(D)() + PudD)A)W)]

walm) = 2 B = 2 [PA®) + 4Pu(3)(D) + 3Pu(2)(@) + 6Pu(2(D()

+ P 1111(1)4]
and

1 lr Ld Ty
pe(lma) = oy 2 (pf‘ - p:’:) Py pp(P)™ - oo (P) {29}
24. Moments About the Mean of the Sample Mean. Using {1}, we get

aa('my) = 7—1.;, [P:(2) + (Pu — PH(1)(1)]
fa(m) = 7—1—8[1)3(3) + 3(Pu — P2P1)(2)(1) + (P — 3PuPy + 2P1)(1)’]

B(lm) = (P& + 4(Pu — PyPY(3)(D) + 3Pu(2)(2)

+ 5(Pa — 2Py Py + P PH(2)(1)(1)
+ (Pun — 4P P1 + 6Py PT — 3P)(1)'] {30}

ete.
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These formulas can be written in the notation of moments of the universe as

I:2('ml) = ;15 [PeNus + (Pu - P?)sz,?]

ﬁa("ml) = %[PaNlla-l‘ 3(P21 - P2P1)N2/-t2/-41 + (Pm —3PuP1+ 2P§)N3u§ {31}
etc.

25. Moments of the Sample Mean When the Universe is Measured About its
Mean. When (1) = 0, the formulas of section {23} become

pa(mi) = 0

pa(my) = nlzP 1(5)
l-‘a(mx) = 7% P s(§)

ualm) = L (PAD + 3Pa@
and

I-"r(ml) = ;t; Z (P{l l' p:.> Pp'f"--zo’."(pl)wl e (P‘)*u {32}

where the Y, holds for all partitions having no unit parts. In the language of
moments {32} becomes

1 1
wr) = L2 (0

where the 3 holds for all partitions of 7 having no unit parts.

w,> Pypi.ppe NP2y )™ e ()™ {33}

26. Moments About the Mean of the Sample When the Universe is Measured
From its Mean. Similarly, when (1) = 0, the results of section {24} become

fia(m) = n-l—sz(i) = ;ll—gpzNﬁz

fa(my) = -1; Py(3) = %PaNﬂa
n n

Bm) = 3, (P + 3Pa(@ 134

= n—l-; [P<Nis + 3Px N3]

ete.
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It is to be noticed that the values i, (m,) are equal to the values u.(m;). This
results from {4} and the fact that w(m:) = 0. It should be noted also that

ir('my) = I‘r(lml) as I‘l(lml) x0.

27. Sampling Without Replacements. The formulas in sections 23-26 are
general formulas which become more specific as given replacement laws are

introduced. If the law is sampling without replacements, we recall that
(s)
Py=p,Py=p — p2,P3 = pp — 3p2 + 2p3, etc. when p, = ]% It is at once

possible to write the appropriate formula. Thus
1
fis(my) = ps(my) = po Py, 3

_1 _ (N=n)(N —2n) _
== [or — 3p2 + 2p5]Nus = AN =DV —2) B {35}

Now f; = 0 in any symmetric universe, for example a normal or rectangular
one, 0 jgs(m;) = 0.

(r)
28. Sampling With Replacements. In this case Pm,...m, = 7;\7' and we have

m('m1) = m

#2(‘7"«1) = n—l-z[ﬂl-ts + n(n — 1)#?]
ps('my) = 1—15[1%#3 + 3n(n — Dpap + n(n — 1)(n — 2)ui]

uwi(lmy) = ;21';[’"'#4 + 4n(n — Dpgps + 3n(n — s

+ 6n(n — 1)(n — 2uapul + n?ui]

and in general

1 1"
my) = L O Y e ()"
wm) = L5 (e ) nP ) ) (36}

and

ﬁ?(lﬂ‘h) = %—2 [nuz - np.ﬂ
as(lmy) = 715 [nus — 3npep + 2nul) {37]

a(lma) = hl_‘ (s — dnpsur + 3n(n — 1)ui — 6n(n — 2)uepi + 3n(n — 2)ui]
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while

fa(my) = pa(my) = %

gs(my) = #3(m1) = :-7::
Ralm) = ) = [ + 3(n — 1) (38}

ete.

29. Sampling With Replacements Before the Last Drawing Only. The
values of k,,...,, of section 21 determine the values of the P’s. Thus P, =
n  nn-—1) 2(n — 1) and Pu — nn — 1) 2(n — 1)

1 =

h-—k=g -y TNN=D NN =1 M-
am) = L{[n- @= D0 =D, @oDar-n g
fia(my) = 1%2{[” - (—n——A;)_(_—nl—m] ﬁz}- {40}

30. Different Frequency Laws. As indicated in section 22, the frequency
distributions of the parent may be characterized by some moment relationship.
This relationship can be inserted and the resulting formula simplified. For
example, if the law of the formation of the universe is that of the hypergeometric
series [25; 113]

i = pglg"™ + (=1)"p"7), {41}
we have

fa(my) = I—)‘?Npq
>

_ _ Ps 2 _ 2

fs(m) =~ Npg(g' — p’) {42}

fe(my) = ;{—,[Pd\fzoq(«;l3 + p°) + 3P N*p*¢’]

etc.

Where the values of P, , P;, P, are to be inserted according to the replacement
law which is used in forming the samples. The results for sampling without
replacement agree with those given by Pearson [1].

31. Moments of the Sample Sum. We might use the sum of the items in the
sample instead of the sample mean. For example

pa(l) = E(1)" = n’E(m)* = n’pa(my).
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The results would parallel the results above except that n” in the denominator
would be eliminated. It is the sample sum which is used in Carver’s article

[25] and this should be noted in comparing results.

Chapter V. The Mean and Variance of the Variance

As a further illustration of the use of the Carver functions there are presented
in this chapter formulas for the mean of the variance and the variance of the

variance.

32. The Mean of the Variance.

() = [ @) QXD
= Pr(g) - DD £ Patt)
= 5Py = PY@ = P’ (43}
and
wlm) = = (0P — PN, (44)

When sampling is with replacements P; = P, = % and we get the well known

)

) = =1 (45}

while when sampling is without replacements, we have the well known

= Mz, {46)

33. The Second Moment of the Variance.
2 2211 1)*
pa(ls) = E[(-n% _ 22Ma) )1(%3)( ) 4 (n—f]

becomes

) = (B2 -2y | "w-e(Z2-2) am

n2

+ (B2 ) @ - 2 (22 - ) @) + Pun®) (47)

n? nd
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and

n? ns

i) = <P2 2Py | >( D+ (Pu 21D,l 3P22> @Y. (48]

These of course can be written in terms of moments of the variance.

34. The Variance of the Variance. Since f('ms) = me('s) — ui('7s), we
have

aim) = (2= P-4 (2- oo

e
Py 2Py 3Pzz P, P,
+[r a3 (B PV

) [Plll 3P2ll _ P1P2l P2Pll) (2)(1)(1) + Pllll - Pll (1)4' {49}

nd nt nd

Formula {49} may also be written as

ﬁz(l”le) = ;%{(')’l}Pz — 2nP; + P4)N/l4 - 4(an1 - Psl)N2y3/1,

2

-|- (n2P11 —_ 2nP21 —|- 3P22 —_ nsz -|- 2nP1P2 -_— P:)N2/.¢2
_— 2(an — 3P211 — nP1P11 + PZPII)N:‘I-‘H-‘? + (Puu - P%l)N‘#tL {50}

Formulas {49} and {50} are not expressed in terms of deviations of the variates.
Neither do they assume any particular replacement law nor any particular
type of universe.

In case the universe is measured about its mean we can write at once, by

placing (1) = 0in {49}
Ba(rFie) = (% — 2P + f—:—f) @

=
t[(Be-Za s 2 (B _PY] @@ (o1

n?

and

ga(ie) = % {(n*Py — 2nPs + P)Niy + (0’ Py — 2nPy + 3Py — n* P}
+ 2nP\ Py — P3)Nigy}. {52}

35. Sampling Without Replacements. Using the P’s as defined by sampling
without replacements, it appears that the coeflicient of the us term

Pr 2P, P\, N®HN-n)un—-1)Nn—N—n—1)
(‘ +n*>N‘Ea W - DN — N = 3) (53]

n? n®
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agrees with that given by Neyman [18; 477], Tchouproff [15; 660], Pepper
[24; 234], Carver [25; 270]. Also the coefficient of the 3 term
2
L ) P
n n n w
_ NN - n)(n — 1)(N*n — 3N* + 6N — 3n — 3) (54}
(N — DN — 2)(N — 3)

agrees with that of the above authors.

As far as the author is aware, no one has written the coefficients of usu1, pe u,
and u! in the formula for fs('7s).
The coefficient of usu; is

P, P _ —4N(n — 1)(N — n)(Nn — N —n—1)
"4(W _ﬁ)Nz = N = DV =2V —3) - 158

The coefficient of ppui is

—9 <P1n 3P _ PiPu + Pzpu) N

nd nt nd nt

_ 4_]\/'2 (n— 1N — n)[(2n — 3)N - 3(n — 1)] (56}
T om (N — 1)%(N — 2)(N —3)

while the coefficient of uj is

Pnu PnPu 4 _ 2N2 (n - 1)(N - n)[(2n - 3)N - 3(n - 1)]
('nT T )N =T WD —aw=3 -

It is possible with some algebraic manipulation to use the P functions to express
the coefficients of the moments as functions of N and n. The suggestion here
is that such algebraic work is unnecessary since the left members of {53} ...
{57} are as easily handled in an actual problem as the right hand members.
It is possible to compute the coefficients from the p’s and the P’s without writing
explicit expansions in terms of N and n. Besides the formulas involving N
and 7 are so lengthy that algebraic errors are apt to occur. The use of Carver
functions is further advocated because the same basic formulas are applicable to
all types of sampling and because the tables of Chapter I of Part I are directly
applicable.

(r)
36. Sampling With Replacements. If Pp,...m, = 1’\% the coefficient of

.1 2 (n - 1)2 . . 2 .
pads —g [(n(n — 1)7] = — while the coefficient of s is

(n—-1DB—n)

%[(nz ot —1) — (0 — 20+ D] = A
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Then {52} becomes
() = S0 = 1~ (0 = D(n — )z 158}
The formula for g ('#,) becomes
B(7) = 25 [(n = e = 46— Do = (n = Do — 3)ud

+ 4(2n — 3)(n — Dpapi — 2(2n — 3)(n — Nuil. {59}
Now {58} can be written in terms of semi-invariants by the use of i = A\ + 3\
and G = \; SO
Ba(17ig) = % [(n — 1)*A + 2n(n — 1A},
See [B’; 209], [22; 57].

37. Different Distribution Laws. Given frequency laws can be inserted.
Thus {44} becomes

wili) = 3 Py~ Pdpg  ifthe i = pg
while {52} becomes, if & = pg and A = pg(¢* + p°)
() = %(n’Pz — 2nPy + Pipe(q’ + p°)
+ %’; (n’Pu — 2nPy + 3P — n*P} + 2nP, P, — PYp’s". {60}

Other frequency laws can be inserted similarly.

Chapter VI. Tabular Presentation of Formulas.

It is the purpose of this dissertation to show how the P functions can be used
in finite sampling rather than to present an exhaustive list of formulas. The
specific formulas of the two previous chapters are derived, primarily, for illustra-
tive purposes. The implication is that other formulas may be derived similarly.

However, it is possible to present, implicitly in tabular form, a number of
formulas. In this chapter there are presented formulas involving moments of
weight equal to or less than 6.

38. The formulas of weight 2.

wim) = (B - B)ay - By
(o1}
wlim) = [ B2 @ + P oy

n?
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can be written in tabular form as

2 11 2 1
2 P, 1
n

1 1

1 P, | Pu -1 !

with little effort. The first entries in the top row indicate the power sums of
the universe, while the columnar entries indicate the moments of the sample.

Now
o @—Wﬂ
m('7g) = E [ - o
and
(€9]¢))
pe(my) = E[ |
The coefficients of the power sums in the expansion of 7 are entered in the right

hand part of the table. Thus, under 2, there appear the entries -17; and — 1—1}

These when multiplied by the power sums as indicated on the left, give 7, =
2 1)(1 .. 1)(1
(72) _ ¢ 3?; ). Similarly m} = ( Zzg ).
Now the expected value is given by the proper P function expansion. The left

hand portion of the table, which is the same as the P function table of Chapter I

of Part I, gives such expansions. Thus the coefficient of (2) in E(m,) is % - % ,

while the coefficient of (1)(1)is — %‘ . Hence the complete formula is

_ P, P P
wim) = (B - Py@ - 22 ayeny
as indicated above.

39. The Formulas of Weight 3. Similarly the table

3 21 111 3 21 111
3 | P 1
n
3 1
21 P2 Pll _;’L_é -1?
2 1 1

111 Py 3Py P = - -
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can be used to give the formulas

wim) = (2= gy — (B - P +2 22 @ (o)

n2
|y (7, my) = <% _ l:f) ®) + <Pn _ 3P21) @) — 2Pm 1) (63}
w(m) = 221 + L@y + 72 (64)

In case we wish to express the results in terms of moments about the mean,
(1) = 0, and we have

wir) = (2= 02 ) ) (65}
it m) = (2 - 2) @) (66}
ps(ms) = —; ® {67}
so that
wm(ms) = < 3P2 2P3) Nii; {68}
pu(fig, my) = (—Pi; -}—)E) {69}
ps(my) = N M3 . {70}

The insertion of specific sampling laws gives the specific results of earlier authors.

40. The Tabular Forms. It is further evident that the power of n in the
denominator is equal to the sum of the subscripts of the Carver function above it.
We might utilize this knowledge and write in the right hand part of the table
the numerators of the entries in the tables above. The table of weight of 3
would then appear as

3 21 111 3 21 111
3 P, 1
21 P, Py, -3 1
111 P; 3P, Py 2 | —-1 1

and it is possible to read {62}, {63}, {64}, {65}, {66}, and {67} directly from it.
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The tables of weight W = 2, 3, 4, 5, 6 are given in Table I. The right hand
partitions not involving unit parts are underscored as these indicate the columns
which should be used if the universe is measured about its mean. As an illustra-
tion we write from Table I the value of us(7i;). We get

() = (P2—2P3+5.‘>Nm+(P“—ziJi‘+?ﬁ’)Nﬁ§

n? n? n n? n? nt

as previously indicated.
The same tabular scheme can be used to write formulas of weight greater
than 6.

41. Moments of Other Sample Moment Functions. It is possible to use a
similar tabular scheme when we wish to find the moments of other sample
moment functions. We define

p= @ _ 00
n n
_ (3 _ 3@ , 20)
b=~ —m t o
L= @400 3@ | 12000 _ 6
n n? n? n? nt

and, in general,

R R i

.o ne

The formulas of weight 5 are given by Table II.

TABLE II
6| 41 32 311 221 | 2111 | 18 —5| 41| 32[311}221/218 1%
5| P 1
41| Py | Py -5 1
32| P, Pu -10 1
311 | P, | 2P2 Py P 20|—4|—-1] 1
221 | Py | Pau 2P Py 30|—-3|—3 1
2111 | P, | 3Py | Py + 3Py | 3Pon| 3Pan| Pun -60| 12| 5|—3|—-2| 1
11111 | Py | 5Pg 10Ps, 10Psy; | 15P32 | 10P511:|Pinin 24|—-6|—2| 2| 1/-1f1
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Thus for example

(s, ) = (P2 71:“ + 12P, _ 6P, 5) Nis

n nt

10P21 12P] 36P22 60P - -
+<_ nd + n43 + ni ns 82)N2 A {72)

If all the entries in the right hand part of Table I, except the unit terms in the
main diagonal, are placed equal to 0, the tables can be used to give the moment
function of the m,. Thus, when w = 3,

wlm) =21 @) (73}

Pll
s, m) = 2 @) + 22 @) (74)
w(m) = 22 @) + 2 @y + Dy (75)

and

wilma) = 2 N, (76}
alma, 1) = 7 N (77}
ps(my) = %Nﬁm {78}

42. Other Moment Functions. The tables give such formulas as u.(a),
pryry(May M), ete. If formulas for i, (a), fr,r(a, Ms) etc., are needed, it is
necessary to go through the usual work of changing from moments to moments

about the mean.
Let us derive a general formula for the correlation of the mean and the variance

as an illustration of the use of the tabular formulas. By definition

En(ma, my)
(20 (M2 , 1711 io2(772g ml)]é ' (79}

ru(Mz, m) =

Now
(g, m1) = pn(Ms , my)
Bao(Mg , M1) = po(ip) — p1 (7z)

Boa(ig , m1) = pa(my) — pi(m) = pe(my).
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Some of these values have appeared earlier in this paper. Without using the
earlier results, we find from Table I

P, P
(i, my) = (n—: - ;;) Nis
_ P, 2P. P _ P, 2P 3P. _
= (52 B (- B
P, P
wm(7g) = (71-1 - ;l-;) Ni;
pe(my) = nE: Nis.
Hence {79} becomes
(nPy — Py)iss

(e, my) = {80}

[(n*P: — 2nPy P; + Py Po)asfia — (n* Py Py — 2nP, Py
+ 3PPy, — n* P, P} + 2nP; P, — P})Nii}!
Formula {80} gives the correlation between the variance and the mean no
matter what the law of replacement. If the universe is symmetric, @3 = 0 and
ra(e , my) = 0.
The usual special cases may be obtained. When replacements are made,
{80} becomes at once

(n — 1)as
[((n — D — 3B — n)ﬁg]’

ru(e, mi) = {81}
as indicated by Pepper [24; 246).

When no replacements are made {80} reduces to results previously given by
Neyman [18; 489] and Pepper [24; 245].

43. Conclusion. The theory presented here is capable of generalization in
many ways. For example, application to multivariate distributions readily
follows. However an attempt has been made in this dissertation to emphasize
the essence of the method. Illustrations have been chosen to indicate its
inherent generality.

It should be stated, finally, that the aim of this dissertation is not primarily
to provide a list of sampling formulas, but rather to provide a method by which
the desired sampling formula may be derived without too much algebraic work.

In concluding this dissertation, I wish to acknowledge the guidance and
encouragement of Professsor H. C. Carver. Also I wish to express my apprecia-
tion to Professor R. A. Fisher and to Professor C. C. Craig, who read the manu-
script, or portions of it, and made needed suggestions for improvement. I am
also indebted to Professor J. A. Nyswander and Professor T. H. Hildebrandt for
valuable advice and assistance.
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