THE TRANSFORMATION OF STATISTICS TO SIMPLIFY THEIR
DISTRIBUTION*

By HaroLp HoTeLLING AND LESTER R. FRANKEL

1. Introduction. The custom of regarding a result as significant if it excecds
two or three times its standard error has now given way among informed statis-
ticians to a consideration of the exact probabilities associated with the distri-
bution of the statistic in question. For example,‘in such problems as that of
examining the significance of the difference between the means of two samples,
particularly small samples, it is no longer adequate to regard the difference of
means, divided by the sample estimate of its standard error, as normally dis-
tributed. The significance of this ratio, ‘‘Student’s ratio,” is judged instead by
the value of

) P=2 / " a2 d

where n is the number of degrees of freedom entering into the estimate of
variance, and
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If the probability law underlying the observations themselves is normal, and
they are independent, P is the exact probability of the value of ¢ obtained being
equalled or exceeded on the hypothesis that there is no real difference between
the means.

Methods of approximating P have been studied by R. A. Fisher' and by
W. A. Hendricks,” and tables have been presented by Student® and Fisher.*
Nevertheless, the practical statistician will very frequently wish to make
judgments of significance without stopping to consult a table, or laboriously to
compute P, and will tend to revert to the former inaccurate but convenient
practice of treating ¢ as normally distributed with unit variance. The essential

* Presented at the joint meeting at Indianapolis of the American Mathematical Society
and the Institute of Mathematical Statistics, December 30th, 1937.

! Exzpansion of Student’s Integral in Powers of ™. Metron, vol. 5 (1925)."

? Annals of Mathematical Statistics, vol. 7 (1936), pp. 210-221.

3 New Tables for Testing the Significance of Observations. Metron, vol. 5 (1925).

4 Statistical Methods for Research Workers, Oliver and Boyd, 1925-1936. Tables IV and
VI.
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reason for this is that the normal distribution to which that of ¢ approximates
for large values of n has only one parameter in the expression for the probability.
Hence it is easy to remember a few important values, such as those correspond-
ing to P = .01 and .05; and when values of P representing other levels of sig-
nificance are in question, the single-entry tables of the normal probability
integral are more easily available and easier to use than the double-entry table of
Student’s integral. Indeed, ¢ is a more useful statistic than Student’s original
ratio of mean to sample standard deviation, to which it is in the simplest case
proportional, partly because of the close approximation of ¢ for large samples to a
normally distributed variate of unit variance.

For more complicated statistics the practical need for something simpler
than the exact distribution is even more urgent, on account of the larger number
of parameters involved in the distributions. For example, the large class of
problems giving rise to probabilities expressible as incomplete beta functions
require for exactitude the use of Pearson’s extensive triple-entry table,’ and
even this is inadequate for some ranges of the parameters. The shorter tables of
R. A. Fisher® and of Snedecor’ are helpful, but are also necessarily of triple entry.

It is a common practice, for example, among economists and psychologists, to
select either by graphic methods or by preliminary calculation that one, out of
many tests that might be applied to available data, for which P is the least.
Such selection evidently introduces a bias, which is the more subtle because the
tests giving high and therefore insignificant probabilities are likely to be for-
gotten. Often the only way to guard against such fallacies is to insist on a
value of P lower than is easily determined from tables. Thus, if k independent
tests of significance have been made, and only the smallest value P is reported,
its significance should be judged not by this value P itself, but by the probability

PP=1-(1-P}=FkP— ...

of the least value being so small. If we equate P’ to some such standard value
as .01, then P must, for this standard level of confidence, take only a fraction,
approximately 1/k, of this value. Such a small probability will often fall
outside the range of existing tables.

Instead of relying on tables or direct computation from the exact distribution
of a statistic, it will sometimes be desirable to use a modification of the statistic,
selected so as to have the normal or some other standard distribution. We
shall consider a type of transformation of a statistic such that the distribution
becomes the limiting form of the original distribution as the sample size increases.
Thus our transformation will reduce to the application to the statistic of a cor-
rection which will be small when the sample is large. We shall show how to
make simple approximate corrections of this character for two cases.

8 Tables of the Incomplete Beta Function, Biometrika Office, 1934.

¢ Loc. cit. Tables IV and VI.

7 Calculation and Interpretation of Analysis of Variance and Covariance. Ames, Iowa.
Collegiate Press. 1934.
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The first of these is the Student ratio ¢, the lower limit of the integral in (1).
Putting

22

3) () = & T
and
@ P=2 f " o(2) dz

which in view of (1) and the fact that the integral of each distribution from — «
to « is unity is equivalent to

(5) [ e@a= [ aa

we shall show that z has an asymptotic expansion:
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It will frequently be a sufficient approximation to treat

£4+1
t(l_ 4n)

as normally distributed. These appear to be approximations of practical
value when n > ¢,

The second statistic whose transformation to a function having its limiting
distribution we shall consider is the generalized Student ratio T, appropriate
to all the uses to which ¢ can be put, but with a multiplicity of variates instead
of one to serve as the basis of the test of significance.® This is defined with
reference to variates z, , - - - z, , together with a linear function of sample values
(proportional for example to the difference between the means in two samples),
such that if £; is the value of this function of the sample valuesof z; ¢z = 1, ...,
p) then the variance of £; in the population sampled is the same as that of z;,
and on the hypothesis to be tested, the population mean of each £; is zero.
In terms of unbiased quadratic estimates s;; of the covariances ¢;; among

Z, -+, Zp,each based on n degrees of freedom, we may define I;; as the cofactor
of s;; divided by the determinant of the statistics s;;. Then T is defined by
(7) T* = 22Ut

8 Harold Hotelling, The Generalization of Student’s Ratio. Annals of Mathematical
Statistics, vol. 2 (1931), pp. 360-378.
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the summations running independently with respect to ¢ and j from I to p.
For independent samples from a multivariate normal population, the distribution
of T has been shown’ to be

n+4+1
2P( ) ) 74T

R E A R T

As n increases, the distribution of T approaches the x distribution with p degrees
of freedom:

xp—-l e—-‘lx’ dx

® )

By equating the probabilities derived from these two distributions, we shall
define x as a function of T, and obtain asymptotic expansions for the functions
x and x thus.defined.

Since the probability associated with T is expressible in terms of the incomplete
beta function, or the analysis of variance distribution integral, it follows that
any of the many common statistics, of which simple functions have this distri-
bution, can be expressed simply in terms of T. Tests of significance in a wide
variety of cases may therefore be made with the help of the asymptotic expan-
sion corresponding to 7%, together with a table of x5

A further advantage of the transformation of a statistic into a normally
distributed variate of unit variance and zero mean is that further statistical
tests are possible with such variates. Since a great part of statistical theory is
based on the assumption of such normal distributions, an extensive field of
applications becomes available in this way. For example, if several independent
tests give values of ¢ based on various numbers of degrees of freedom, and it is
desired to combine these tests so as to get a single probability, the corresponding
values of the normally distributed variate z defined above may be squared and
added. The sum will then have the x* distribution, with a number of degrees of
freedom equal to the number of values of ¢ used. In a similar manner, the
values of x° corresponding to a number of 1ndependently determined values of
T? may be added, and the sum will have the x® distribution with a number of
degrees of freedom equal to the sum of the various values of p involved.

The advantages of this type of what may be called “normalization” of a
statistic have been brought out by R. A. Fisher for the particular case of the

correlation coefficient. His use' of z = } log i i_ :facilitates such operations

as the averaging of values obtained from independent samples, or taking the

9 Harold Hotelling, loc. cit.
10 Statistical Methods for Research Workers, Sec. 35.
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difference between two values, with the testing of significance of the result in
each case. This is because 2, unlike r, has a nearly normal distribution, with
variance nearly independent of the population value. We note in passing that
this function is the same as tanh™'r, and may therefore be determined accurately
and readily from the Smithsonian Institution Tables of Hyperbolic and Ex-
ponential Functions.

2. Normalization of {. The ‘‘duplication formula” in the theory of the
Gamma function" shows that

()-8

Substituting this in (2) and taking logarithms we have:
log ¢n(2) = —3logn — (n — 1) log 2 + log I'(n)

(10) ny n+1 7
— 2log I‘<§) -3 log (1 + 5)

The last logarithm may be expanded in a series of powers of 2°/n which not only
converges uniformly on the interval 0 < z < ¢ when n > #, but has the property
of being a uniformly asymptotic representation of the function on this interval.
This means that the sum of the first j terms of the series (j = 0, 1, 2, .. .) differs
from the function represented, by a quantity whose product by n’*' has, for
sufficiently large values of n, an upper bound independent of z, so long as 2z
remains in this interval. Uniformly asymptotic series have a number of
important properties, among which is'” term by term integrability with respect
to z. In this sense we have the uniform asymptotic representation:

\ n+1 2 £ 2P -2 3t -2 4 -3¢
a -= 1°g<1 +1—z)~ B T v 7 R
We shall obviously have another uniform asymptotic representation if we add to
this, term by term, asymptotic series with terms independent of 2, such as those
for the gamma function logarithms in (10). Since'

(12) logI(n) ~3}log2r + (n — %) logn — n+rz:;2r_((-—2:1;)————f—l)ﬁ;'""

where
B, = &, B; = 4%, B; = 4, B = %, Bs = %, - -

1t Whittaker and Watson, Modern Analysis, 4th ed., p. 240.

12 H. Schmidt, Beitrdge zu eine Theorie der allgemeinen asymptotischen Darstellungen.
Math. Annalen, vol. 113 (1937), pp. 629-656. The property mentioned above is proved in
Schmidt’s Theorem 6.

13 Whittaker and Watson, loc. cit., pp. 252, 125.
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are the Bernoulli numbers, we obtain upon substituting in (10) this and the

similar formula for log T’ (g), together with (11), and some simplification,

2 1 _ 9,2 4
log¢n(z) ~ — %log 2r — z + __l_ﬁj;z_
(13) 2 4n
+3z‘-—2z°+1-—4z°+3z8+5z8—4zw+
122 - 24n? 40n* o

Upon differentiating (5) we obtain:
dz
(14) #(z) 7 = ¢a(0)
Since ¢ is simply the normal distribution function (3), this may be written:
1 7 dz
(15) —3 log 27 — 3 + log ¥ i log ¢.(2)

We shall always in this paper use the symbol “lim” to mean the limit as n
approaches infinity. The functions of n and ¢, or of n and ¢, which we shall
denote by R, R’, R, with or without subscripts, are to be such that the absolute
value of each has an upper bound independent of n, z and ¢ so long as n > 1,
and z and ¢ are confined to some fixed finite interval.

From (13) we have that lim log ¢.(2) = log ¢(2),
whence, by the continuity of the exponential function,

lim ¢.(2) = ¢(2)
. t
This holds uniformly for 0 < z < ¢. Subtracting /o ¢(2) dz from both sides of
(5) we therefore find that

(16) [3@@=£%M@—mmh

can by choosing n large enough be made as small as we please. Since ¢(z) > 0,
it follows that the function z of ¢ and » is such that

an limz = ¢.

A parallel argument, proving slightly more than (17), is the following. From
(13),

log 4a(e) = log (2) + 2

where R’ is a bounded function of the kind described above. Therefore

mw=m@+%)
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Substituting this in (16) we have that

[c o(2)dz = %_At o(2)R" dz

From the mean value theorem of integral calculus it then follows that

An asymptotic series may be substituted in a power series, and the result is a
valid asymptotic representation of the corresponding function. (Schmidt,
loc. cit., Theorem 4.) This justifies taking the exponential of each side of (13)
and arranging in a series of powers of n to give

(19) $u(2) ~ ¢(z){1 4l | ), }

n2

This asymptotic development will, like the original one, hold uniformly in
every finite interval, and may therefore be integrated term by term. Thus

(20) / énu(2) dz = / o(z ){1 + ax(z) az(z) B a,(z)} .+ n’,::

n?

where |R ;11 | has an upper bound 1ndependent of nand t whenn > 1, and ¢ is
confined to a finite interval, 0 < ¢t < T. Substituting this in (16) we obtain:

* N a(2) a (z) .
(21) [ ¢(2) dz = ﬁ ¢(z){T 4o+ BB g n:::
In terms of a sequence of functions fi, fa, - - - of ¢ to be defined below, let
_sa h N i
(22) m=t+o g+

zj

Now #(2) dz can be expanded in a series of powers of n~* which converges for
t

sufficiently large values of n; for the Taylor series

(23) 6@ =) + (2 - ¢'®) + ---

can be integrated to give a series of powers of z; — ¢, which by (22) is a poly-
nomial in n*. As a matter of fact we have from (22) that z; — ¢ can be made
arbitrarily small by taking n large enough; consequently the series (23) and that
obtained by integration in this way will converge uniformly and absolutely.
We thus have:

| / ¥ = i+ <j2¢ + f1¢)
(24
+ nla<f3¢° + fif29' + %j“}¢~> +
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Now let us define fi, f2 -- -, by equating the coefficient of each power of n
in (24) to that of the same power of n in the right member of (21). This process
gives a sequence of equations

b = f ' $(e)en(z) dz

20 + 3fi¢ = /ot ¢(2)as(2) dz
(25) ,
16+ s’ + 467 = f o(2)as(2) de

b+ (i + 36 + iho" + Aefie” = f ' $@au(z) de

Since ¢ # 0 the first of these equations defines f; for every value of ¢; when f;
has been determined, the second equation defines f; ; then the third' defines f; ,
and so forth. It is to be observed that the functions fi , f2 , - - - thus determined
are not changed when the value of j appearing in (22) is increased; we have a
unique sequence.

If for the right-hand member of (15) we substitute that of (13), replacing
z by t, and on the left of (15) put

_ h, fa
x—t+;+;,+--.

f 1 f2
and then expand in a formal manner in powers of n~", we shall upon equating
coefficients of like powers of n obtain a sequence of differential equations

fil—th=13-1-2f+1)
(26) fi—th=3"+31+1 -

..............................

These, with the initial condition f; = f = ... = 0for ¢ = 0 determine the same
sequence of functions as before. The equations (26) are in fact obtainable
simply by differentiating (25) and cancelling out the factor ¢(f). That this
must be true follow from the equivalence of the various formal processes of
manipulating series of powers of 7", whether convergent or divergent, to give
equivalent results. The differential equations are easily solved; the solutions,
at least for f; , f2, fs , and fy , are all polynomials. Why they should come out as
polynomials is not immediately obvious; but their calculation is made easier if
each f;is replaced in the differential equations by a polynomial of degree 2j + 1
with undetermined coefficients, involving only odd powers of £. The f’s of lower
order are replaced by values previously determined, and the coefficients are
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founid by equating like powers of . This process supplies at each stage more
equations than unknown coefficients; their consistency verifies the assumption
that f; is a polynomial of the kind specified, at least for j < 4. These poly-
nomials are the coefficients of the powers of n™" in (6).

The series on the right of (24) not only converges but is an asymptotic series
uniformly valid when ¢ varies in any finite interval. Hence upon subtracting
(24) from (21) and taking account of (25) we find that

z R’ .
/z i ¢(2)dz = n’ﬁ.‘

where | R}, | is uniformly bounded. Upon applying the mean value theorem
to the integral on the left we find that  differs from z; , and thus from the first j
terms (22) of the series (6), by a quantity whose product by »*** remains bounded
when n approaches infinity. This proves the validity of the asymptotic ex-
pansion.

3. Accuracy of the Approximation. To follow through the above processes
in such a way as to obtain useful limits for the error involved in using the first
few terms of the series (6) in place of z would be excessively difficult. However,
the magnitude of the error in taking the first two or three terms as an approxima-
tion to £ may be judged from the tables below to be adequately small for practi-
cal purposes, provided n > #. The essential singularity of the normal distri-
bution at infinity, in contrast with the algebraic nature of the Student dis-
tribution, means a poorer approximation of one to the other as ¢ increases while n
remains fixed, though a better approximation as n increases. This is illustrated
in the following tables, where it will be observed that the approximations are
better for large than for small values of n, and of

P= 2f¢(z)dz - 2[”¢n(z)dz

It will be seen that for n = 10 and P < .001, the utility of the asymptotic
series, or at least of its first five terms, is vitiated by the rapid oscillation of
consecutive terms, due to the high values of #* in relation to n.

P=.10" P=.05 P =01
n=10 n=230 n=10 n=30 n=10 n=30
¢ 1.812  1.697 2.228  2.042 3.169 2.750
z 1.618  1.642 1.896  1.954 2.294  2.554
Zs 1.650  1.645 1.980  1.960 2.754  2.579
z3 1.643  1.645 1.953  1.960 2.446  2.575
z 1.645 1.960 2.576
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P = 001 P = .0001

n =10 n = 30 n=10 n = 30 n = 100
t 4.587 3.646 6.22 4.482 4.052
z, 2.059 3.212 .05 3.69 3.88
) 4.981 3.313 12.86 3.98 3.89
Z3 0.896 3.283 —20.44 3.85 3.89
z4 7.163 3.293 75.66 3.91 3.89
z 3.291 3.891

4. Transformation of the Generalized Student Ratio. The arguments and
methods of calculation set forth in Section 2 may be applied with little or no
change to the transformation of various other statistics in such a way that the
limiting distribution for large samples is reached at once for the transformed
statistic. In particular, to deal with the generalized Student ratio T', we may
equate (8) to (9), represent x as an asymptotic expansion with undetermined
coefficients which are functions of T, and then by substituting and equating
like powers of n~* obtain as before a sequence of differential equations for
determining the coefficients. This process. gives

g BT+ T 8= 5T+ (4 +4p)T° + 137"
x~T e o6t

This reduces to the expansion of z in terms of ¢ previously found if we put p = 1.

It is somewhat more convenient in practice to use x* and T%, to avoid extract-
ing the square root of the latter expression, and to utilize the existing tables
of x*. Ordinarily therefore we should not use (27), but the series

e mf, _p+ T (4—p)+ @+ 5T + 8T
x~T {1 2n + 24n? bk

which may be obtained in the same way, or by squaring (27) in a formal manner.
That these are genuine asymptotic approximations follows by essentially the
same argument as before.

(27)

CorLumsia UNIVERSITY AND WasHINGTON, D. C.



