A CONTRIBUTION TO THE THEORY OF SELF-RENEWING
AGGREGATES, WITH SPECIAL REFERENCE TO
INDUSTRIAL REPLACEMENT

By Avrrep J. LoTkA

1. Introduction. The analysis of problems of industrial replacement forms
part of the more general analysis of problems presented by ‘self-renewing
aggregates.” While the subject could, therefore, be treated in general and
consequently rather abstract terms, for the purpose of exposition it will be
advantageous to relate the discussion to concrete applications. These, in the
past, have been mainly of two kinds, namely, first, applications to population
analysis with related problems in genetics on the one hand and actuarial prob-
lems on the other; and second, applications to industrial replacement. As the
fundamental setting of the two types of problems is very similar, leading in
each case to certain integral equations, it will be advantageous to consider
together both problems, or both phases of the general problem. This will
incidentally give us an opportunity to observe the analogy, but also certain
points of difference, between the two aspects of the problem.

Historically, the investigation of an actuarial problem came first. L. Her-
belot® (1909) examined the number of annual accessions required to maintain a
body of N policyholders constant, as members drop out by death. He assumes
an initial body of N ‘“charter’”” members at time ¢ = 0, all of the same age, which
for simplicity may be called age zero, since this merely amounts to fixing an
arbitrary origin of the age scale. He further assumes the same uniform age at
entry for each ‘“new’’ member.

Then, if p(¢) is the probability at the age of entry of surviving ¢ years, the
survivors of charter members at time ¢ will number Np(f); and if f(7) is the
rate per head at which members drop out by death at time 7, being then imme-
diately replaced by a new member of the fixed age of entry, then the survivors
at time ¢ of “new’’ members will evidently be given by

N j)‘tf(‘r)p(t —7)dr

1 I use here an English equivalent, as nearly as possible, to the German phrase ‘‘sich
erneuernde Gesamtheiten,’’ used by Swiss actuaries.

2 Herbelot’s original paper is disfigured with a number of misprints. It is essentially
reproduced, with the errors corrected, in a paper by R. Risser (1912). The same treatment
of the problem is also given by Zwinggi (1931) and by Schulthess (1935), (1937).
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Hence, the condition for a constant membership N is

0)) Np(®t) + N [‘f(f)P(t —7)dr=N
or
@ p(0) + / 0wl — 1) dr = 1

Differentiating with regard to ¢, and remembering that p(0) = 1, we have
@ PO+ [ fepe - dr+50) = o

Equation (3) may be written

@ 10 = ~p© ~ [ 1w~ ar

or, putting (¢t — 7) = @

(% @& = -p'(t) — A‘f(t — a)p'(a) da.

For the solution of the integral equation thus obtained Herbelot uses the
method of successive differentiations,® duly pointing out its limitations, and
applying it to several specific expressions for the survival function p(a).

There is nothing in Herbelot’s treatment to limit its application to living
organisms. It is directly applicable to the problem of industrial replacement
of an equipment comprising N original units installed at time ¢ = 0, and main-
tained constant by the replacement of disused units with new.

Next in chronological order, of publications dealing with the type of problem
with which we are here concerned, is a paper by Sharpe and Lotka (1911), who
use Hertz’s form of solution for the integral equation involved.* To this I wish

3 This method is also followed in dealing with the problem of renewal by Risser (1912),
(1920); Zwinggi (1931); Schulthess (1935), (1937); Preinreich (1938). All these authors
applied their reflections to arbitrarily assumed frequency distributions for the renewal

function, of simple analytical form. For example, among the more recent applications is
m

14
one by Schulthess, who uses the function p(f) = | 1 — -} ; and quite recently, Preinreich
w

has suggested the use of a Type I Pearson frequency curve on the basis of Kurtz’s observa-
tional data. It is to be noted, however, that when it comes to actual application, Prein-
reich does not use an ordinary Pearson Type I curve nor actual observational data of any
kind, but very conveniently simplifies the Pearson formula by giving integral values,
namely 1 and 2, to the exponents, thereby reducing to triviality the task of applying the
method of differentiation. None of these authors makes any attempt to deal with actual
numerical observations which, in practice, fall far wide of any of the simple analytical
formulae employed by them.
4 P. Hertz, Mathematische Annalen, 1908, vol. 65, pp. 84 to 86.
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to refer in some detail, adding to the original exposition in the light of later
developments. The treatment of the subject proceeds here along somewhat
broader lines, but, with obvious changes in the meaning of the symbols, and
with certain modifications and limitations which are themselves of interest,
the development is immediately applicable to economic systems composed of
units having a characteristic “mortality”’ in use.

A population of living organisms, unlike industrial equipment, has practically
no beginning. We know its existence only as a continuing process. Accord-
ingly the equation for its development is most naturally framed without explicit
reference to any “charter members.”

The basis of the analysis is as follows:

In a population growing solely by excess of births over deaths (i.e. in the
absence of immigration and emigration), the annual female births B(f) at time ¢
are the daughters of mothers a years old, born at time (! — @) when the annual
female births were B(t — a). If fertility and mortality are constant and such
that a fraction p(a) of all births survive to age a, and are then reproducing at
an average rate m(a) daughters per head per annum, then, evidently,®

©) B@) = f " B¢ — o)p(@m(e) da

) = /;w B(t — a)¢(a) da.

This is the fundamental equation in its original form, and, as noted above,
it does not explicitly refer to any initial state, though, as will be seen presently,
in order to make the problem determinate, data regarding the system at some
particular period must be given. For the present we note that (7) can be
written

® B() = / " Bt — a)o(a) da + / "B(t — a)¢(a) da

© B®) = B + / " Bt — a)ola) da.

It is to be noted that the right hand member of (8), splits the total births B(f)
into two sections, those in which (! — @) < 0, that is, births of daughters whose
mothers were born before t = 0; and those for which (!¢ — a) > 0, that is births
of daughters whose mothers were both after ¢ = 0. The former section is
denoted by Bi(f) in (9). The function B;(f) thus defined will be found, in the

§ Here and elsewhere in these developments the limits of the integral have, for simplicity,
been written 0 and «. This ensures the inclusion of all nonvanishing terms in the inte-
grand; the inclusion of terms for which either ¢(a) or B(t — a) vanishes does not, of course,
affect the value of the integral. If ¢(a) is represented between the limits «, w of the repro-
ductive period by some analytical expression, such as a Pearson frequency function, it is, of
course, understood that outside the range «, w we must put ¢(a) = 0.
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further development, to play a significant réle. Here it will suffice to point out
that it vanishes for all values of ¢ greater than w, the upper limit of the repro-
ductive period, because ¢(a) vanishes for these values of a.

2. Special case. A case of special interest is that in which B;(t) represents
the births of daughters whose mothers were all born in an interval of time
t = —dttot = 0. In that case the first integral in (8) reduces to a single term,
so that

(10) B(t) = B(0)e(t) dt 4 [‘ B(t — a)¢(a) da
or, putting

(11) B(0)dt = N,

(12) B@) = Noo(d) + [ " B(t — a)o(a) da.

This last equation holds also if a finite number of births take place (or are
regarded as taking place) at a point of time ¢t = 0.

Equations (10) and (12) are of interest as basic for the examination of the
progeny of an infinitesimal population element,® that is, of a “zero’” generation,
born at time zero. In that case Bi(f) is the annual rate of births in the “first”
generation, and is simply proportional to ¢(f), i.e.

(13) Bi(t) = Noe(t)

For the sake of greater generality the development has so far been given in
terms of the phenomenon of replacement (reproduction) as it presents itself
in a population of living organisms. But it should be noted here that, with
appropriate changes in the meaning of ¢(a), equation (12) is directly applicable
to the problem of industrial renewal in an installation originally installed at
some point of time and maintained at a constant level by the replacement of
each unit by a new one, the moment it is disused. In that case the “rate per
head of reproduction’ m(a) at age a is evidently the same thing as the ‘“death
rate per head’” at age a, namely

so that

(15) e(a) = p(a)u(a)
becomes

(16) e(a) = —p'(a).

¢ A. J. Lotka, (1928), (1929).
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Reverting now to the fundamental equation in its first form (6), a trial
substitution

a7 B(t) = Qe
is found to satisfy this equation, provided that r is a root of the characteristic
equation

(18) j; ) e "o(a)da =1

We may speak of (17) as a particular solution of (6) or (7). It is easily seen
that the sum of such particular solutions is also a solution, i.e.
(19) B(t) = Q™ + Q™' + ...
where 71, 73 etc., are roots of the characteristic equation (18).’
For real values of r the function

(20) F() = f " ™ (a) da

decreases monotonically as r increases, since, from its nature, ¢(a) > 0 for all
values of a. Hence (18) can have only one real root r; , and we shall have

(21) r1 %l 0 according as ]; o(a) da % 1.
If u 4+ 7v is a complex root of (18) then
(22) 1= f e " cos va ¢(a) da
- Jo
(23) 0= f e “* sin va ¢(a) da
0

and it is evident from (22) that » < 71, since cos (va) < 1 for all values of a.
The real part of any complex root of (18) is, therefore, algebraically less than
the real root r;.

This reasoning?® is evidently quite independent of the particular form of ¢(a),
and is thus equally true, whether ¢(a) be given in purely empirical form (defined
by a table of values), or as a gtandard form of frequency curve, such as for
example a Pearson curve of suitable type.

The roots of (18) can be determined directly, though rather laboriously, from

7 For a discussion of the convergence of the series (19) see G. Herglotz, Mathem. Annalen,
1908, vol. 65, pp. 87 et seq.

8 Adapted from P. Hertz, Math. Annalen, 1908, vol. 65, pp. 1-86; G. Herglotz, ibid. pp.
87-106. The Hertz solution is also applied to a similar problem by J. B. S. Haldane, Proc.
Cambridge Phil. Soc., 1926, vol. 23, p. 607. A particularly detailed development is given by
H. T. J. Norton, Proc. London Math. Soc., 1926, vol. 28, p. 21.
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equations (22) and (23); or, they can be brought into relation with the Thiele
semivariants u of the function ¢(a) defined by

® —ra — H-l 2—
(24) F(@r) = e “o(a)da = moe "M
0
where m, is the nth moment of ¢(a) and the seminvariants u can be computed
from the moments by the algorithm
my = Mo
Mme = M1 + w2
(25)
my = ume + 2pemy + usmo
my = pams + pama + Spsmy - pamo
etc.

In terms of these seminvariants the characteristic equation (18) becomes
2

(26) mr—m%—‘+---——log,mo=log,1=21rm'

where n takes on all positive and negative integral values. Separating the real
and imaginary parts in (26), and retaining seminvariants up to the fourth,

Y(u,v) = % (u* — 6u0® + o) — '?:—’lu(u2 -3
(@7 '
+ g%(u2— v") — mu + log, mo = 0

28) x(u,v) = %uv(u2 — o) + %—‘%v(v2 — 3u’) + pouv — pv = 2rn.
If o(a) does not differ too widely from the normal (Gaussian) distribution, so

. that seminvariants of higher than second order can be neglected for roots in the
neighborhood of = 0, v = 0, we shall have, approximately’

(29) % (@ — v*) — pu + logs me = 0
(30) ( — ”_1),, _ 2mn
M2 M2

9 The relations which follow hold exactly if ¢(a) is actually a normal curve. It should be
noted, however, that this can not be strictly the case, since the infinite tail of the curve on
the negative side would imply replacement or reproduction antedating the original installa-
tion or zero generation. Nevertheless, a normal frequency curve will be admissible if the
part of the curve extending into the negative age field is negligible. For a concrete example
(electric light bulbs) see E. J. Gumbel, “Die Verteilung der Gestorbenen um das Normal-
alter,” Aktuarske Vedy (Praze), 1933, p. 90.
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or, putting
(31) ( - ‘i‘) =U

K2,
we have
(32) Ut o = (‘;:_1>’ _ 2 log, mo

2 M2
(33) Uy = 2,

K2
It is thus seen that in these circumstances the roots u, v correspond to the
points of intersection of the hyperbola (32) centered at u = 2, v = 0, with
H2

a family of hyperbolas (33) concentric with (32), but with their axes at 45° to
those of (32).

The intersections of the hyperbolas (33) with the axis of » are given by
putting v = 0 in (30), namely '
(30a) p = 2"

m

This also gives, approximately, the frequency of the oscillatory components for
which « is sufficiently small. In particular, for the first component, we have,
in that case
(30b) =

M1

so that its wave length is (approximately) u:, the mean of the ¢(a) curve.

These facts are illustrated in Fig. 1, drawn to scale according to the vital
statistics of the United States, 1920, for which the requisite computations were
available from prior publications (Lotka, (1928), (1929)). The diagram is
drawn in full, showing four intersections of each hyperbola of the family (33).
Actually values of v occur in pairs, corresponding to conjugate roots u = .
The intersections in the two upper quadrants must be disregarded, as they do not
correspond to roots of (18).

To simplify notation let us write (32), (33) in the form

(32a) V- =K

(33a) Uv =C.
Solving for U? »* we find

(34) U = ${K = V/K? + 4C?}
(35) v = }{—K = VK2 + 4C?)

from which, incidentally, it is seen that

(36) U+ o' = VK + 4C?
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witHE FaMiLy or Curves (33)
and hence, that the intersections of the hyperbola (32) with (33) lie on circles

of radius

37 R = VK? + 4C.
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When the third and fourth moments (and therefore third and fourth semin-
variants) are taken into account’® the hyperbolas become distorted into new
curves, though the general topographic features of the diagram tend to be
preserved. In particular, the property of orthogonality of intersection of the
curves (32) with (33) is preserved, in accordance with a well-known property of
conjugate functions.™ This is shown in the left hand panel of Fig. 2, drawn
for the same data as Fig. 1, but including not only the hyperbolic curves, but
also the corresponding modified curves obtained by retaining the third and
fourth seminvariants in the computation.'” Only the quadrant relevant to the
location of the roots is shown.

3. The coefficients Q in the solution (19). These are determined by initial
conditions, being, in fact related to the function By(f). As their determination
in the original paper by Hertz and Herglotz is rather complicated, the following
relatively simple method, resembling that by which the constants in a Fourier
series are determined, is of interest:

Multiplying equation (9) by ¢, where r; is a root of (18), transposing
terms, and integrating between the limits 0 and , where w is the highest age for
which ¢(a) has a value other than zero, we have

(2] @ t
(38) f e " By(t) dt = / e""‘{B(t) - / B(t — a)¢(a) da} dt.
0 0 o
Introducing the solution (19) in the right hand member of (38), we obtain

(39) / ‘ B dt = D Q; / ‘ e"“{e"" - / ‘ ¢ o(a) da} dt
0 . 0

(40) =2 Py (G=1,23, ),
Consider now a particular term P;; in the sum >". Multiplying out the expo-
nentials we obtain

@ t
(41) Pi; = Q; / e“"“'f”{l — / ¢ % o(a) da}dt
0 0

which, in view of the characteristic equation (18) reduces to

(42) P; = Q; / g i / ¢ "% p(a) dadt
0 t
43) = Q; / e " p(a) / e " gt da.
0 0
Hence, if ¢ # j
(44) J / 1% o(a) [~ — 1) da
ry — s Jo

10 Which is as far as curve fitting by Pearson’s method goes.

1 See, for example, W. E. Byerly, Integral Calculus, 1888, p. 289.

12 For a given value of u equation (27) isa biquadratic in v, and equation (28) is a cubic
in » lacking the second degree term. The computation of the curves is in consequence
relatively simple.
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(45) =@ { [ : e " ola)da — [ : e "pla) da}

Ty —7Tg

(46) =0

since r; and r; are both roots of (18). But if ¢ = j, then (44) is of the indeter-
minate form 0/0 and we must refer back to equation (43), from which, with
¢ = j, we obtain, instead of (44) a different expression, namely

47 P; = Q; ﬁ : PR ()] [ ’ dtda

(48) = Q.' [ : ae go(a) da

so that the only term in the sum 2 in equation (40) that does not vanish is the
term P;; and finally

Py

(49) Q= F77—"—
A ae "p(a) da

/ e "'By(t) dt
0
] ae "p(a) da
0

ﬁw e {B(t) - -[‘ B(@t — a)e(a) da} dt

(51) - .

ae "p(a) da
0

(50)

or, finally, in view of (20)

_ [, e—m{B(t) - A‘B(‘ — a)e(a) da}dt

(52 %= 70y

The coefficients @ are thus fully determined by (50) or its equivalents (51)
or (52), when initial conditions are given, that is, when the function B;(f) is
given for 0 < ¢ < w or, what amounts to the same thing, when B(t) is known
for this range of values of ¢, For complex roots the denominator in (52)
becomes,™ in view of (27), (28)

aF(r) _ _fov | ox\ _ 4 .

13 Since 75 is a root of F(r) = 1, we have

(E(_rl _ daF (r) _[dlog. F(r)
ar  |reri - F(T) dr rear - dr rerg
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where G and H can be expressed in terms of the seminvariants by partial
differentiation of (27), (28) with regard to u, namely

(54) G=u1—uzu+’;—3,(u2—vz)—'éf,(u’—3uv2)+~~~

(55) H = pw — pguv + '?—?' Buly — o) — ...

In the special case that the ‘“zero generation’ is composed of N, individuals
(or “units”) all born (or “entering’) at time zero, the coefficients @ are corre-
spondingly simplified in form. For the term in the real root r we have

- N
(56) Q= — Ok
Conjugate complex root terms unite in pairs,™ giving
(57) Qe 4 Qe = ______2Noe"‘ {@ cos vt — H sin vt}.
G2 + H?

Unless ¢(a) is a normal distribution, the computation of the roots, u, v, and
the coefficients G, H, in terms of seminvariants becomes impracticable for higher
order roots, which then have to be computed directly and laborously from equa-
tions (22), (23). In practice components of very high order will hardly be
needed, nor will their use be warranted, since the high order seminvariants,
which are then involved, are not usually known with sufficient accuracy. An
exception occurs when the ¢(a) curve is essentially of the nature of a composite
curve. This is what actually happened in the case of the curve of reproduction
for a human population. For details on this point the reader must be referred
to my paper ‘“The Progeny of a Population Element”.

4. Alternative Representation of the Function B(f). By the application of
the Hertz-Herglotz solution of the integral equation (6), the evolution of a
population or aggregate is represented as the resultant of a series of damped
oscillations.

Additional insight into the nature of the renewal process is gained by viewing

the total renewals as composed of contributions from successive “generations”."

14 For details see A. J. Lotka, The Progeny of a Population Element, p. 892.

15 In the case of a population the term ‘‘generation’ calls for no explanation: mother,
daughter and granddaughter, for example, represent three generations; in the case of
industrial replacement, the term is to be understood in this sense, that the original installa-
tion constitutes the original or zero generation, the units introduced to replace disused
units of the zero generation constitute the ‘“first’’ generation, renewal of these the second,
and so on.

This explanation may seem unnecessary. However, from some correspondence received
by the writer it seems that perhaps some readers have confused the generations thus defined
with successive ‘“‘cycles’’ of duration equal to the extreme ‘‘length of life’’ of the units.
With such ‘“‘cycles’’ we are not here concerned.
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This leads to an alternative representation, in which the evolution of the
aggregate appears as the sum of a series of frequency curves, each corresponding
to the contribution of one generation to the total births or replacements at
time ¢.°

In order to realize this second representation we note, first of all, equation (7)
applies not only to the total births at time ¢, but, with slight modification, also
to the births in any particular generation. Here it will be convenient to con-
sider the special case of a zero generation of N, individuals (or units) all born
(or installed) at time ¢ = 0.

The births (or renewals) in the ‘“first” generation, that is offspring of the
zero generation, or renewals of disused units of the zero generation, will be
distributed in time according to the equation

(58) By(t) = Nog(t).

For the second generation, or renewals of disused units of the first generation,
we shall have

(59) Bi) = / "Byt — a)(a) da

16 This alternative approach of the problem bears some superficial resemblance to a
method followed by R. Frisch in his article ‘‘Sammenhengen mellem primaerinvesteringen
og reinvestering’”’ (Statsekonomisk Tidskrift, 1927, p. 117). Frisch also follows up the
distribution in time of first, second, and higher order replacements, and gives diagrams
bearing a superficial resemblance to Fig. 4 in the present text. But Frisch’s development
has otherwise little in common with that here presented. He deals with equipment com-
posed of various units, with expectation of life varying discontinuously or continuously
from one unit to another, but fixed at a single value for a given unit. To use one of his own
examples, it is as if a wooden hammer with a life of one year were always replaced by
another wooden hammer, also with a life of one year, and so on: while a steel hammer,
with a life of three years, were always replaced by another steel hammer, also with a life of
exactly three years. The analogous case in population analysis would be presented by a
population in which length of life were strictly hereditary, so that a man dying at age 50
would have a son, grandson, etc., each dying at age 50. In the field of industrial replace-
ment and in population analysis alike this is a highly unrealistic supposition.

Needless to say, with these basic assumptions, Frisch’s resulting equations differ funda-
mentally from those here given, and the distribution curves for successive orders of replace-
ments, as shown in Frisch’s Fig. 3 do not have the property that the j-th seminvariant of the
k-th order replacement curve is k& times that of the j-th seminvariant of the first order
curve, except for j=1. The fact is that Frisch’s curves in his Fig. 3 are all similar, except
for a constant factor applied to the vertical scale and its reciprocal applied to the horizontal
scale. In this case all the corresponding seminvariants, except the first, are evidently
unchanged in passing from one curve to the next. Frisch, as a matter of fact, does not
introduce seminvariants into his discussion at all. The Hertz solution he could not pos-
sibly introduce, since his fundamental equations are not of a form appropriate for the use of
the Hertz solution.

The later sections of Frisch’s paper deal with somewhat more complicated cases, but they
all involve the assumption of “strict heredity,’” that is, the assumption that a unit with
length of life » is replaced by another having exactly the same length of life v. At any rate,
that is the understanding I have formed of the Danish text, studied with the assistance of a
native of Scandinavia. All the formulae in the text bear out this understanding.
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and, generally, for the (j 4+ 1)th generation"

t
(60) B = [ Bt — a)o(@ da.

Now, by a well-known property” of the Thiele seminvariants, it follows from
(58), (59), (60), that the seminvariants of the distribution-in-time of the births
(or replacements) in the jth generation are simply the j-tuple of the corre-
sponding seminvariants of the first generation, that is, of ¢(t).

Furthermore, it is easily shown that as j, the order of generation, increases,
the distribution of renewals approaches the normal (Gaussian) frequency
distribution.

By virtue of these properties the distribution curves for successive genera-
tions are easily constructed.”

The sum total of the contributions of successive generations should, of course,
agree with the expression for the total annual births B(f) at time ¢ given by the
fundamental equation (9). In point of fact, by summing the left and the right
hand members of equations (58), (59), and (60) for all generations up to the
highest, say the n-th, “reproducing” at time ¢, we find

j=n+1 t j=n
(61) B(t) = Z_; Bt) = B(®) + | Z; Bi(t — a)¢(a) da.

Since the n-th is the highest generation contributing,” the value of the integral
in (61) is not changed by writing n instead of » + 1 as the upper limit of the
summation sign on the right. But then (61) becomes simply

B(@) = B:(t) + [ B(t — a)¢(a) da

17 The births in the j-th generation extend at most from ¢ = jato ¢ = jw, but it is not
necessary to take this into account in writing the limits of the integrals in (60) and corre-
sponding equations, because the inclusion or exclusion of vanishing terms in the integrand
does not affect the value of the integral. Similar remarks apply to the effect of the limited
range of p(a). See also footnote 5.

18 For details, see A. J. Lotka, ‘“The Progeny of a Population Element,”” American
Journal of Hygiene, 1928, vol. 8, p. 875; also ‘“The Spread of Generations’’ Human Biology,
1929, vol. 1, p. 305.

19 In practice quite rapidly, even if ¢(a) is far from normal.

20 For the case in which ¢(a) is a Pearson Type I curve, details of the process are given in
my paper ‘‘Industrial Replacement,” Skandinavisk Akiuarietidskrift, 1933, p. 51. I may
here remark that such a Pearson Type I curve for the distribution in the first generation
does not strictly give again a Pearson Type I curve in the second generation, because the
moments beyond the 4th are neglected in fitting such a curve. But it must be remembered
that the same neglect is practiced in the original fit of the data, so that the fit in the second
generation will in general be as adequate as that in the first, provided, of course, that
proper attention is paid to Pearson’s criteria.

21 The special case that the limiting n so defined is « would require special discussion,
which, however, presents no great difficulty. As this case is of little if any practical im-
portance, this discussion is here omitted.
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that is, summation of the contributions of individual generations to the total
annual births, leads us back to the fundamental equation (9), which confirms
the correctness of our analysis.

TABLE 1
Age Schedule of Survivorship and of Replacements® in First Generation
Age Interval Ingggﬁa,}éggx E?«igﬁ?%al of S%‘;I;%g‘égnfgslglw&
.01 100,000 —
) 1-2 100,000 —
2-3 100,000 300
34 99,700 900
4-5 98,800 1,800
5-6 97,000 3,000
6-7 94,000 5,700
7-8 88,300 10,300
8-9 78,000 14,100
9-10 63,900 13,900
10-11 50,000 13,800
11-12 36,200 13,200
12-13 23,000 10,400
13-14 12,600 6,300
14-15 6,300 3,700
15-16 2,600 2,200
16-17 400 400
17-18 — —

5. Application to Kurtz’s data.

An extensive collection of numerical data

(mortality curves) on renewal of industrial equipment has been published by
E. B. Kurtz (1930), (1931). By way of example the analysis developed above
has been applied to the data “Group III,” as fitted by him with a Pearson
Type I curve, namely®

_ t — 10 9.16( t — 10,)7.54

22 Data from E. B. Kurtz, Life Exzpectancy of Physical Property, 1930, Table 22, Cols. 5
and 6, p. 86, and p. 104, Fig. 50.

23 The numerical values of the constants in the formula as here given differ slightly from
those given by Kurtz, perhaps owing to the retention by him of higher decimals in his
computations. There is also an inconsistency between Kurtz’s use of 10 for the mean in
his formula, whereas on his drawing the mean is placed at 100.
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The aperiodic component is the number of units originally installed (arbi-
trarily assumed as 100,000) divided by the mean of the frequency curve (equa-
tion 62). Following Kurtz, this has also been arbitrarily made equal to 10,
which simply implies a particular choice of time unit. The fundamental data
and characteristics are set forth in Tables I and II. The first six oscillatory
components, were computed retaining moments and seminvariants up to u,
with the results shown in Table III and in Figs. 2 (right hand panel), 3 and 4.

TABLE II
Moments and Seminvariants of Curve of Replacements in First Generation?

7 Moments® m; Seminvariants pu;

0 100,000

1 0 10 %

2 671,924 6.7192

3 130,070 —1.3007

4 12,323,200 —12.1228
TABLE III

Constants of the Series Solution (19) of Integral Equation (7) for First Six
Oscillatory Components Compuled from First Four Moments and
Seminvariants of an Industrial Replacement Curve®

Order of Q H

Com;;bonent u v Q H @+ I E LIk
0 0 0 10.0000 0 .10000 0

1 —.11009] .57767 11.1688 4 .1458 .07869 .02921

2 —.30144] .98920 | 14.3353 7 .6696 .05423 .02902

3 — .46500, 1.28383 18 .4982 10.4425 .04100 .02314

4 — .59500] 1.51475 | 23.1094 12.7773 .03314 .01832

5 — .69800| 1.70500 | 29.2088 14 .8877 .02718 .01385

6 — .78000| 1.86117 | 32.5165 16.7797 .02429 .01253

In particular, Fig. 4 shows the curve obtained by the summation of the first
six oscillatory components superposed over the aperiodic (constant) component.
It also shows the distribution curves of the first five generations within the
range of the time scale on the diagram. Summation of these reproduces,

2¢ Data from E. B. Kurtz, Life Expectancy of Physical Property, 1930, Table 22, p. 86, and
Fig. 50, p. 104.

25 Moments taken about age 10.

26 This value of u; is taken with reference to the origin.

27 Data from E. B. Kurtz, Life Expectancy of Physical Property, 1930, p. 104, fig. 50.
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within the errors of drawing, the resultant curve of the oscillatory solution,
except for the very early stages of the process, where the oscillatory solution is
of no practical interest, because the first generation alone dominates the whole
process, and this is given by the observational data direct or after fitting with
the curve such as (62).

It remains to consider briefly the relative advantages of the method of solu-
tion by differentiation, as originally applied by Herbelot, Risser, and others,
on the one hand, and the use of the Hertz-Herglotz expansion, as introduced
for the treatment of this type of problem by Sharpe and Lotka.

One obvious advantage of the method of differentiation when it is applicable,
is that the result is obtained in the form of a closed, finite expression for
each cycle.

Against this is to be reckoned, first, that the range of application of the
method is severely limited. Preinreich in a recent issue of Econometrica (1938)
uses for an illustration of the method a Pearson Type I curve, but in the very
special and trivial form that the exponents are integers, namely 1 and 2. In
practice the exponents will always be fractional, and then successive differep-
tiations do not terminate as obligingly as in Preinreich’s case. As already
noted, Preinreich, though citing Kurtz’s observational data on industrial re-
placement, discreetly abstains from using these for his numerical example.

Secondly, the disadvantage of a solution in form of an infinite series is more
apparent than real. In practice the first few terms of the series obtained by
the Hertz-Herglotz method will usually give an adequate representation of the
facts, except for a short period immediately following the first installation. It
is true that here this method, unless carried to high order components, may
give an imperfect representation of industrial replacements, and may, in fact,
give impossible negative values in this region, as in the example exhibited in
Fig. 4. But this is practically unimportant, because in practice there will
actually be few, if any, such very early replacements in an installation of finite
dimensions. In fact, second and higher order replacements immediately after
first installation are obviously out of the question in practice. For example, it
may well happen once in a while that a telegraph pole is demolished on the
very first day of service by collision with a truck. It is even imaginable that
its replacement, put up the same day, might again be immediately demolished.
But.even in a country-wide installation one would hardly expect a third, fourth
or fifth replacement to be required on the day of installation. In other words,
that part of the replacement curve which relates to the very early period after
first installation, is composed practically of first replacements only.

So for example in the diagram, Fig. 4, the curve of total replacements, up to
about ¢ = 8, is simply the curve of first replacements, which is given directly
by the data of the problem. Within the range of errors of drawing the influence
of higher components are quite unobservable in this region.

The case is even more favorable in the application of the method to the
problem of population growth, for here there is actually no reproduction what-
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ever until age a (say about 15) is reached. The part of the curve defined by
the series (19) carried only to a finite number of terms,” and applied to values
of t < a, is therefore simply rejected.” It may save many words of explanation
if the reader is simply referred to Fig. 4 on p. 897 of my previous publication
“The Progeny of a Population Element,” which illustrates the point, the
minimum age of reproduction being just short of 15.

A major disadvantage of the method by differentiation is that it demands
that the frequency distribution function ¢(a) be given in the form of a suitable
analytic expression, or if it is not so given, that a suitable function or curve be
fitted toit. The Hertz-Herglotz method, on the contrary, is directly applicable
to the raw data, regardless of their form. Incidentally, curve fitting as practiced
by Kurtz may produce a singular result. In 6 out of 7 of his types, the fitted
frequency curve extends into negative field, implying that there are some
replacements even before the actual installation. This may not be a very
serious defect if the area of the curve in the negative field is negligible, but it
should not pass unnoticed.

One of the principal merits of the Hertz-Herglotz expansion is that it renders
the course of events over their whole extent, and, in particular, makes clear
the mode of approach to the ultimate state represented by the aperiodic term.
Because the method by differentiation requires a separate expression for each
cycle, it is at best ill adapted to present to the eye or to the mind a compre-
hensive view of the evolution of the aggregate as a whole.

In the introductory paragraphs it was pointed out that the problems of popu-
lation growth and those of industrial replacement were closely analogous, though
there were certain points of difference. It is of interest here to give considera-
tion to these differences.

One of these has already been noted. Replacement of industrial equipment
may begin from the very moment of first installation, since accident as well as
wear and tear must be provided for. Organic reproduction, on the other hand,
does not occur immediately after birth. One result of this is that for any finite
value of £, the number of generations contributing to the total births is itself
finite; on the contrary, in the case of industrial replacement, if we interpret the
equation (7) literally, there are at any moment an infinite number of genera-
tions contributing. In practice this, of course, does not occur, and the equation

28 There are, of course, limitations to the application of the solution (19). No one with
any experience in the treatment of practical problems by mathematical analysis would
think of fitting, by means of & reasonably limited number of terms, the first phases of the
processes here discussed, in the case of a rectangular distribution of the first generation,
for example. But the distributions with which we are actually concerned in practice are
far from rectangular. Such as they are, they are well adapted to the method, as is seen in
the two examples illustrated.

29 There is nothing unusual in this rejection of negative values of the frequency function
where it falls outside the range of actual values. It is what we all do in using such a fre-
quency curve as Pearson’s type I, defined by a function which becomes negative outside
the range of actual interest.
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does not truly represent the facts in that a continuous distribution is assumed
throughout, whereas for the higher order replacements ultimately the early
frequencies are so thinned out that the discreteness of the units can no longer
be disregarded.

Nevertheless, from the very start we must be prepared to consider several
generations of replacement as contributing to the total; this lends a certain
special interest, in dealing with the first cycle of replacements, to the method of
solution by differentiation, as used by Herbelot, Risser, Zwinggi, Schulthess,
and lately Preinreich. It is true that this interest is much diminished by the
limitations in the applicability of the method.

On the other hand, in the case of organic reproduction, for the early part
of the first cycle, the progeny of a population element belongs exclusively to a
single (“first’’) generation. Between ¢ = 15 and ¢ = 30, in our example, only
first generation births are taking place, and here the solution (19) is of more
theoretical than practical interest, since the distribution of births is simply that
of the first generation births.

Another point of difference is that the curve of ¢ (a) in the case of industrial
replacement, if we may judge by Kurtz’s data, is a comparatively well behaved
Pearson type curve. On the contrary, the corresponding curve of organic re-
production is a very inconvenient type to fit by any of the standard methods.
In view of this it is all the more remarkable that the solution (19) gives as good
a fit as it does with only four components, as will be seen on referring to my
original publication, “The Progeny of a Population Element,” p. 897, Fig. 4,
already referred to.

Lastly, while the analogy is exact so long as we are dealing with industrial or
organic aggregates maintained at a constant level, an essential difference arises
when the case of a growing aggregate is considered. Organic growth takes place
by what might be called “multiple replacement,” that is, one individual in the
course of life gives rise, on the average, to n individuals, where n may exceed
unity. Analytically this finds expression in that

/‘w pla)m(a) da > 1

and the fact is automatically taken care of in the solution (19) by the fact that
in such a case the single real root r > 0.

Growth of industrial equipment, on the other hand, takes place by new units
being installed in addition to replacement of disused units. The fundamental
equations must be altered accordingly to take care of this case.

In conclusion I want to make a remark regarding the function of such analyses
as the one here presented. In this connection I can do no better than to quote
a sentence from Cournot:* “Those skilled in mathematical analysis know that

30 A. Cournot, Researches into the Mathematical Principles of the Theory of Wealth, trans-
lated by N. Bacon, Macmillan Co., 1897, p. 3.
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its object is not simply to calculate numbers, but that it is also employed to find
the relations between magnitudes . . . .”

It is essentially in this sense that the analysis of a problem of industrial re-
placement is here offered. If we are merely interested in numbers, the direct
arithmetical approach as practiced by Kurtz may be as good as any. But if an
insight into the anatomy of the processes involved, and into their evolution from
an initial condition to a final state is desired, then the setting up of the funda-
mental equations, and their solution in exponential series or in other suitable
analytical form, and a concise expression of the relation between the distributions
in time of successive generations, or orders of replacements, have greatly superior
merit as compared with brute attacks by arithmetic without regard to mathe-
matical form. Nor are the systematic relations (in terms of certain seminvari-
ants) that have been shown to exist between the distribution of successive
generations to be regarded merely as ‘“‘short cuts’ for their computation, though
sometimes they may be found convenient in that way. Their real significance
lies in that they serve to complete for us the analytical picture of the process of
evolution of the system under consideration.

METROPOLITAN LIiFE INSURANCE COMPANY,
NEw York, N. Y.
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