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1+ tg (P — 1) since y; > Py . Substitution of 1 + :—: (Py — 1) for P, in
(1) gives

@ P.s #2r + 1)/ r < 20,

= [t\* ] 2rc \’
@) - (-@sn)
To indicate the amount of improvement let ¢ = r = 1, and ¢ = 2. From

(1) P, =< .092 while from (2) P, < .056. One may work from any origin
other than the mean by letting b = co in (2).

6 asin (1).
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CORRECTION OF SAMPLE MOMENT BIAS DUE TO LACK OF HIGH
CONTACT AND TO HISTOGRAM GROUPING

BY DINSMORE ALTER

The first correction of sample moment bias was devised by W. F. Sheppard
[1]. His method corrects for histogram grouping on the assumption of high
contact at both ends of the frequency curve. Usually this is a sufficient
correction. In some cases, however, of J-shaped curves the error remaining
is even more serious than in the original histogram moments.

A method developed by E. Pairman and Karl Pearson [2] makes a complete
correction for both of these sources of bias. The only advantage.claimed for
the method to be developed here over theirs lies in simplicity of mathematical
theory.

A third correction is given by Elderton [3]. In his method he assumes that
there is no error due to histogram grouping and he develops a correction for lack
of high contact, in so far as the zero-th moment is concerned. The following
work may be thought of largely as an extension of his method although it will
have certain variations.

Let A, and »,, be defined as follows,

+
Az = ]‘.-—* Yztt dt

vmZA, = Za" A,
The definite integrals are the areas of the histogram rectangles if a scale of =
be chosen to reduce their width to unity. Let uy, be defined by

2
pmZA, = f 2"y, dz
l

1
In the first equation the z’s form a series of equally spaced constants. In the
second, z is a continuous variable. The summations are to extend over the
equally spaced values of z.
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If the data form a histogram, I; and I; are respectively the values of z at the
left edge of the left-hand rectangle and the right edge of the right-hand one.
If the data are the values of ¥, at isolated points, [; is the value of z one-half unit
smaller than the smallest value given in the sample and l; is one-half greater
than the largest. It would be perfectly satisfactory, of course, to define these
limits differently. As defined, however, they parallel the histogram case.
Distributions of this latter type will be called point frequency distributions.

As is customary, the primed moments denote those about an arbitrary origin.
Moments corrected for lack of high contact and for grouping will be denoted by
ttw OF bY pm if taken about the mean. Numerical raw moments will be denoted
by ntir. There are two entirely different methods of approach to this bias
problem.

(2) The bias may be put into the algebraic form of the frequency curve and
equetzd directly to the numerical raw moments. In the case of a point fre-
quency distribution such a method forms the algebraic values of y. for each
point given in the sample and, therefore, puts the raw moments into algebraic
form to be equated to the numerical ones. This is the simplest method of
correction if the distribution is a power series. For most types the method
leads into difficulties which complicate it beyond practical use.

(b) The raw moments given, whether nu,’s or »,’s can be corrected to ap-
proximate very closely the desired u,,’s as defined above.

A point frequency distribution gives nu, = Zz™y.. If there is high contact
«lim is an unbiased observed estimate of tm . This second form of method will
be developed here primarily as a correction to kb -

Only one assumption is involved. Fifth differences of y, will be considered
as negligible. Any interpolation formula is available but Stirling’s will be
employed.
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Using Stirling’s formﬁla:
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4 A" [m(m — Dz™? + m(im — 1)(m — 2)(m — 3):0"”‘]

320 21504
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+ terms involving (m — 4)}

From this

r (A, 17A;"]
m=n+gr 23 140

by, 1 Ty 78, A7 _ 17zA7 23Ai"]
m=vtor2otg Tieo~ 720 53760

_ ! 1 —xy 1
Ma—l'a"‘ﬂ:z_i—"'(—"l' ’)A +160
17222 23 m 23 iv
- (4—80 + 13440) A = 7990 A']
2’ 1 2 z ’
‘“—“+2A, [("""‘—“ yz+(§ +'2—0' A

// 17:1;3 23z m 23:1:2 29 iv
+ "' 896) (%6 + m) A = (m) t sg7012) 4+ |

Ordinarily it will not be necessary to use all of the corrective terms.

For point frequency distributions the application of these equations is direct.
The »,’s may be computed from
A7 _ 1747
24 5760’
and the definition of »,,. There is, however, a theoretical difficulty in a case
for which the data have been given as a histogram. In such a case the values

of A, are all that have been known originally. The A’s are not the ones de-
manded by the equation. The relationship to the proper ones is simple:

Az=yz+

n n
ro_ Aty Do — A
Aa = 8.+ =4 5760
It is possible to compute the AYs from this equation but the discrepancy is
small and moreover the A”s are used only in corrective terms. Probably the
error involved by use of the wrong A"s is negligible in any actual case of data
that ever will be studied. In the numerical example to follow, the very slight
. s . 7, .
errors remaining in the u,’s are due, probably, to this neglect.

A%, — Al%Y), ete.
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Pairman and Pearson gave a numerical example in which both the lack of
high contact and the grouping introduced large errors. They started with
¥= = 100,000 4/z and from this formed ten values of A.. From these they
computed the »,’s and corrected them to get the u,’s. The exact values of the
latter were already known to them through integration of the original equation.

The following table compares four values of moments from these data.

, u., by u., with Pair- | _Method
m v, Sheppard’s man-Pearson Developed True Values
Formula |Full Corrections Here
1 5.9880 5.9880 5.9994 5.9996 6.0000
2 42.6900 42.6067 42.8570 42.8576 42.8571
3 331.0854 329.5884 333.3349 333.3387 333.3333
4 2698.7735 | 2677.4576 2727.2757 2727.3555 | 2727.2727

Despite the use of the Af,,’s instead of A:’s, the results of this method are
almost as good as by the older one. The method has the additional advantage
of unifying the theories of the correction of moments from the two types of
distribution.
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FREQUENCY DISTRIBUTION OF PRODUCT AND QUOTIENT

By E. V. HuNTINGTON

The main purpose of this note is to establish Theorems 1 and 2. For the
sake of completeness, the more familiar Theorems 3 and 4 are appended. All
four of these theorems have numerous applications in the theory of frequency
distributions. While the proofs of Theorems 1 and 2 in the elementary forms
here given (and used in my class-room notes since 1934) can hardly be new, they
seem not to be readily accessible in the current text-books.

THEAREM 1. Suppose a variable z is distributed in accordance with a probability

law £ f(z)dz = 1; and a variable y in accordance with a probability law _/; F(y)dy



