TABLE 1

City	8th grade gradu- ates	Initial approxi- mation	First correction term	First approxi- mation	Second correction term	Quotas	Percent sampled
Duluth, Minn	5,500	4,000	02968	3,881	00077	3,878	70.51
Birmingham, Ala	9,000	5,500	+.06641	6,399-	+.00148	5,343	59.37
Denver, Colo	12,500	6,000	02690	5,352	00164	6,409	51.27
Seattle, Wash	15,000	6,500	+.07525	6,989	+.00257	7,007	46.71
San Francisco, Cal	21,000	8,000	+.01425	8,114	00341	8,086	38.50
St. Louis, Mo	31,000	10,000	07349	9,265	+.00129	9,277	29.93
Total	94,000	40,000		40,000		40,000	

simply to draw contrasts between any two strata we would seek to minimize the standard error of the difference,

$$\sigma_{\Delta_{jk}} = \sqrt{S_{i}^{\prime 2} \left(\frac{1}{n_{i}} - \frac{1}{N_{i}}\right) + S_{k}^{\prime 2} \left(\frac{1}{n_{k}} - \frac{1}{N_{k}}\right)}$$

subject to the condition,

$$\sum_{i=1}^{m} n_{i} = n.$$

This leads to the result

$$\frac{S_i'}{n_i} = \frac{S_k'}{n_k}.$$

Thus, the number of samplings from each stratum is, for all practical purposes, proportional to the standard deviations, irrespective of the size of the various strata.

WASHINGTON, D. C.

ON THE COEFFICIENTS OF THE EXPANSION OF $X^{(n)}$

By J. A. JOSEPH

Let us construct the following triangular arrangement of numbers:

where the n-th row can be constructed from the preceding row by means of the expression

(1)
$$n \cdot f_i(n-1) + f_{i+1}(n-1) = f_{i+1}(n).$$

For example, the element 35 in the middle of the 4th row is obtained from the two elements immediately above it, $4 \cdot 6 + 11 = 35$. (The top element is counted as the zeroth row.)

The elements in the (n-1)st row are the coefficients in the expansion of $x^{(n)}$ as a function of x, using the notation of the calculus of finite differences. For example,

$$x^{(4)} = x(x-1)(x-2)(x-3)$$

= $x^4 - 6x^3 + 11x^2 - 6x$.

Of course, the signs of the coefficients alternate.

The function $f_i(n)$ is the sum of the products of the first n integers taken i at a time, namely

$$f_i(n) = \sum_{i=1}^{n} \epsilon_1 \epsilon_2 \cdots \epsilon_i$$

the summation being a symmetric function of the integers $1, 2, 3, \dots, n$. Equation (1) can be written as a linear, first order difference equation,

(3)
$$\Delta f_{i+1}(n-1) \equiv f_{i+1}(n) - f_{i+1}(n-1) = n \cdot f_i(n-1)$$
$$f_{i+1}(n-1) = \Delta^{-1}[n \cdot f_i(n-1)].$$

Since $f_0(n) = 1$ for all values of n, we can find $f_1(n)$, and consequently $f_2(n)$, and so on. Thus

$$f_{1}(n-1) = \Delta^{-1}n = \frac{n^{(2)}}{2}$$

$$f_{2}(n-1) = \Delta^{-1} \left[n \cdot \frac{n^{(2)}}{2} \right] = \frac{3n^{(4)} + 8n^{(3)}}{24}$$

$$f_{3}(n-1) = \Delta^{-1} \left[n \left(\frac{3n^{(4)} + 8n^{(3)}}{24} \right) \right]$$

$$= \frac{n^{(6)} + 8n^{(5)} + 12n^{(4)}}{48}.$$

The following theorems are true for the "triangle":

THEOREM 1. The sum of the elements in any n-th row is equal to (n + 1)!, namely,

(5)
$$\sum_{i=0}^{i} f_i(n) = (n+1)!$$

THEOREM 2. The sum of the even elements of any row is equal to the sum of the odd elements, or

(6)
$$\sum_{i=0}^{n} (-1)^{i} f_{i}(n) = 0.$$

From these coefficients we can generate the Bernoulli numbers:

$$B_{0} = \frac{1}{2}$$

$$B_{0} - B_{1} = \frac{2!}{3}$$

$$2B_{0} - 3B_{1} + B_{2} = \frac{3!}{4}$$

$$(7) \quad 6B_{0} - 11B_{1} + 6B_{2} - B_{3} = \frac{4!}{5}$$

$$24B_{0} - 50B_{1} + 35B_{2} - 10B_{3} + B_{4} = \frac{5!}{6}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f_{n}(n)B_{0} - f_{n-1}(n)B_{1} + f_{n-2}(n)B_{2} - \cdots + (-1)^{n}f_{0}B_{n} = \frac{(n+1)!}{n+2}$$

Or, as a determinant:

$$|B_n| = \begin{vmatrix} \frac{1}{2} & 1 & 0 & 0 & \cdots & 0 \\ \frac{2!}{3} & 1 & 1 & 0 & \cdots & 0 \\ \frac{3!}{4} & 2 & 3 & 1 & \cdots & 0 \\ \frac{4!}{5} & 6 & 11 & 6 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{(n+1)!}{n+2} & f_n(n) & f_{n-1}(n) & f_{n-2}(n) & \cdots & f_1(n) \end{vmatrix}$$

giving

$$B_0 = \frac{1}{2},$$
 $B_1 = -\frac{1}{6},$ $B_2 = B_4 = B_6 = \cdots = B_{2n} = 0,$ $B_3 = \frac{1}{30},$ $B_5 = -\frac{1}{42}, \cdots$

We may now take another "triangle":

where the n-th row is obtained from the preceding row by the expression

(9)
$$(n-i)F_i(\dot{n}-1) + F_{i+1}(n-1) = F_{i+1}(n).$$

For example, from the third row: 1, 6, 7, 1, we obtain the fourth row: 1, $4 \cdot 1 + 6 = 10$, $3 \cdot 6 + 7 = 25$, $2 \cdot 7 + 1 = 15$, 1. The following theorem is true for the $F_i(n)$:

THEOREM 3. The elements in the (n-1)st row are the coefficients in the expansion of x^n as a function of the factorials $x^{(i)}$.

For example:

$$x^4 = x^{(4)} + 6x^{(3)} + 7x^{(2)} + x$$

From the generating equation (9) we can obtain, as before, the form of the functions $F_0(n)$, $F_1(n)$, ...

(10)
$$\Delta F_{i+1}(n-1) \equiv F_{i+1}(n) - F_{i+1}(n-1) = (n-i)F_i(n-1)$$
$$F_{i+1}(n-1) = \Delta^{-1}[(n-i)F_i(n-1)].$$

Since $F_0(n) = 1$ for all n

$$F_{1}(n-1) = \Delta^{-1}n = \frac{n^{(2)}}{2}$$

$$F_{2}(n-1) = \Delta^{-1} \left[(n-1) \frac{n^{(2)}}{2} \right] = \frac{3n^{(4)} + 4n^{(3)}}{24}$$

$$F_{3}(n-1) = \Delta^{-1} \left[(n-2) \frac{3n^{(4)} + 4n^{(3)}}{24} \right]$$

$$= \frac{n^{(6)} + 4n^{(5)} + 2n^{(4)}}{48}.$$

From these coefficients we can generate the numbers of Laplace (the numbers L_m below must be divided by m! to yield the numbers of Laplace):

$$L_{1} = \frac{1}{2}$$

$$L_{1} + L_{2} = \frac{1}{3}$$

$$L_{1} + 3L_{2} + L_{3} = \frac{1}{4}$$

$$L_{1} + 7L_{2} + 6L_{3} + L_{4} = \frac{1}{5}$$

$$L_{1} + 15L_{2} + 25L_{3} + 10L_{4} + L_{5} = \frac{1}{6}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$L_{1} + F_{n-1}(n)L_{2} + F_{n-2}(n)L_{3} + \cdots + L_{n-1} = \frac{1}{n+1}$$

giving

$$L_1 = \frac{1}{2}, \qquad L_2 = -\frac{1}{6}, \qquad L_3 = \frac{1}{4}, \qquad L_4 = -\frac{19}{30}, \qquad L_5 = \frac{9}{4}.$$

A determinantal solution is also obvious.

CALIFORNIA INSTITUTE OF TECHNOLOGY.