LIMITING DISTRIBUTIONS OF QUADRATIC AND BILINEAR FORMS"?
By Wnriam G. Mapow

1. Introduction. In a previous paper [15], several generalizations of the
theorem of Fisher, [6, p. 97] and Cochran, [2, p. 178] on the joint distribution of
quadratic forms in normally and independently distributed random variables
were derived. The chief purpose of this paper is a demonstration that the
Fisher-Cochran theorem and its generalizations are valid in the limitunder con-
ditions completely analogous to those under which the Laplace-Liapounoff
theorem holds. Applications to the analysis of variance, periodogram analysis
and multivariate analysis are discussed.

Our general procedure will be to find algebraic conditions on the matrices of
quadratic and bilinear forms which enable us to assert that the limiting distribu-
tions of these forms are those which they would have had if the variables, the
squares or products of which appear in their canonical forms, had been normally
and independently distributed.® One thing which makes this possible is the
fact that many frequently used quadratic and bilinear forms have the same
rank no matter what may be the number of variables of which they are func-
tions. For example, the rank of the square of the arithmetic mean, %, , where

173»:37;‘(31"' s +£IJ,.),

is one for all values of n. In this case the quadratic form,

1 n
oy T
is a function of the n variables 1, 3, --- , ..

In paragraph 2 we state the vector form of the Laplace-Liapounoff theorem
and several corollaries. The joint limiting distributions of quadratic and
bilinear forms are derived in paragraph 3. The final paragraph is devoted to a
statement of a few applications of the theorems.

1 Much of this research was done under a grant-in-aid from the Carnegie Corporation of
New York.

2 The material contained in this paper was presented in part to the American Statistical
Association, December 28, 1937, and in part to the Institute of Mathematical Statistics,
December 27, 1938.

3 We shall be chiefly concerned with conditions under which the limiting distributions
are not themselves normal. If the limiting distributions are normal, then generally under
the conditions we state, the Laplace-Liapounoff theorem will have been directly applicable.
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126 WILLIAM G. MADOW

2. The Laplace-Liapounoff theorem.! We shall first state some definitions
and terminology which will be used throughout the paper.

If used as subscripts or superseripts, or as indices of summation or multiplica-
tion, the letters 7, j will take on all integral values from 1 through p, the letters
, v will take on all integral values from 1 through =, the letters v, 8 will take on
all integral values from 1 through m, the letter a will take on all integral values
from 1 through %, and the letter 8 will take on all integral values from 1 through -
k-1, unless explicit statement to the contrary is made.

The totality of all sets of » real numbers will be denoted by R’. Thus R’ is
the combinatory product of the spaces R', R, ..., R, (» times).

If z,,.-.,2, are random variables, and if A is a proposition concerning
Z1,---,%,, then by P{A} we shall mean ‘“the probability that A.”” The
distribution function of the random variables z;, - .- , 2, will be denoted by
F(xy, .. ,x,), ie.

F(x‘ljy,xon) =P{x1<xg,-'-,xn<x(,'.}

for all sets of n real numbers. Thus F will have an operational meaning in
this paper.

If A(xy, --- ,2,) is a function of z;, - - - , x, defined on R" and measurable®
with respect to F(z,, .-, x,), then E{A(z,, .-, x,)} will be defined by the
equation,

E{A@y, -+, 2.)} = ./;”A(xl, coo y Za) AF (21, « o, Tn),

where the integral is a Lebesgue-Stieltjes or Radon integral. Hence
|A(zy, - -, xa) | is assumed to be integrable with respect to F(z, - - - , x,).
If @1, ---, yp) is a single valued measurable function of y;, -+, ¥, on
R?, and if y; is a real single valued Borel measurable’® function of z;, - -+ , Z,
on R", then upon substituting for g1, ..., y, it is seen that Qy1, ---, %)

4 Although the theorems will be stated in terms of probability distributions, Borel
measurability, and Lebesgue-Stieltjes integrability, it may simplify the reading if the
words ‘‘probability distributions’ are replaced by probability densities or statistical
distributions, ‘‘Borel measurability’’ are replaced by continuity, and ‘‘Lebesgue-Stieltjes
integrability’’ are replaced by Riemann integrability.

§ A function Az, , ..., z,) defined on R*is said to be measurable with respect to a distri-
bution function F (2, ..., z.) if theset E(t) of all 1, ..., zosuchthatA(z1, ..., 2,) <t
is such that dF(zy, ..., x,) is defined for all ¢.

E(t)

¢ All subsets of R* which may be formed from the totality of intervals of R® by repeated
summations or multiplications of not more than a denumerable number of intervals of
R», and R~ itself, constitute the totality of Borel sets of R*. The function y(z1, ..., Za),
defined on R*, is a Borel measurable function of z;, ..., 2, on R if the set of values of
Zi, ..., Zs such that y(z,, ..., z.) < t is a Borel set for all {£. The class of continuous
functions is contained in the class of Borel measurable functions. For further details,
see [3, chs. 1, 2], [11, ch. 3] and [17, chs. 1, 2, 3].
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is a single-valued measurable function, A(z,, --- ,%,) of &1, ---,%, on R".

If 2,,.--,%, are random variables, then ¥, --- , y, are random variables,
7

and

@.1) E{Q@, - y2)} = E{A@, -, 20}

We shall call E(z;) the mean value of z;, o;; the covariance of z; and z;,
and o;; or o; the variance of z;, where ¢;; = E{(z; — Exz:)(x; — Ex;)}.

The Laplace-Liapounoff, or Central Limit theorem states conditions under
which linear functionsof random variables have a normal limiting distribution.
The general characteristic of the proofs of the theorem is that conditions are
placed on the random variables so that they may virtually be assumed to be
bounded. The Lindeberg® condition, which we shall use, is perhaps the least
restrictive of all the conditions which require finite means and variances.

The Lindeberg condition’, £, : A set of random variables z;,, will be said to
satisfy the Lindeberg condition £, if there exists, for any preassigned positive
real numbers & and ¢, a positive integer ng such that if n > no, then

Z '[]B |>e z%ndF(xlvn, e ,xplm) < 8;

where

Zn = T + Toon + -+ + Toon
and

n + Ohon + - + Oiun = L.
If

Tiyn = '@ where sgn = 0'%1 + ... + V%n;
Sin
and the z;,, satisfy £, then we shall say that the x;, satisfy £,.
Suppose that the random variables g, - - - , Y»m, have a normal multivariate
distribution with zero means and with covariance parameters ¢, Where

Oiyis = EWiyi),y=1,--- ymi; 6 =1,...,m;,

and denote the distribution function of 11, - -+ , Ypm, by N(y). Then we may
state the Laplace-Liapounoff theorem as:

71t is noted that Q(y, ..., ¥») is integrated with respect to FGn, ...,y and
A1, ..., zs) is integrated with respect to F(z,, ..., Zn).

8 See Cramer [3, pp. 57, 60, 114], and the references there given.

% It is not difficult to show that the Lindeberg condition will be satisfied if moments of
order greater than two exist, [3, p. 60], or if the conditions stated by Levy [13, p. 207]
and [14, p. 106] are satisfied.



128 WILLIAM G. MADOW

TaeoreMm 1. Suppose that, for each value of n, the random variables iyyn ,
which are independent for different values of v, have zero means and covariance
parameters iy s , Where

Oiyjdrn = E (xt"ymx javn)-

Denote by ds, the mazimum of the variances oiyiywm . If the functions Yiyn are
defined by the equations

Yiyn = Z Tiyen
1 4

it follows that
Givitn = E(YirnYizn) = ; iviton

If im 0iyjsn = 0iyjs and if im ds, = 0, then a necessary and sufficient condition

n—+0

that as n — oo, the limiting distribution’ of Yun , - - - , Ypmyn be N (y) is that the

condition L,m, be satisfied.
The proof of this theorem is omitted. It may readily be developed from the

proofs of Cramer, [3, pp. 57, 113].
Before stating certain corollaries which are of interest, some additional

definitions are necessary.
Let C., Cny1, - - - be a sequence of m rowed real matrices

Co =l cpnll, n=mm+1,...,

and let the greatest of the absolute values of the elements of C, be denoted by
d,. The inner product of any two rows of C, will be denoted by pya , i.e.

Pyin = Z Cyvn Civn «
v

Let X;, Xz, - - - be a sequence of random vectors of p components defined
on R?, and let the components of X, be denoted by @i, -+ , %, . Let the

components of the chance matrix Y, = || ¥iy» || which has p rows and m columns,
be defined by the equations
(22) Yiqn = Z CymTiy

for each value of n, (n = m, --. ;m > p).

10 The distribution functions F(X,) will be said to converge to the distribution function
F(X) if and only if

lim [ dF(X,) = F(X)

n-—+00 0

for every X at which F(X) is continuous. If F(X) is continuous throughout R*, then the
convergence is uniform.
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Suppose that

(2.3) E(Z;,) = O
and
(2.4) E@yzu) = oiidw ,

where 8, = 1if p = vand é,, = 0if u % ». (There should be no confusion of
this use of the letter & with its use as an index.) It is easy to see that if the
Cva are real numbers, then

E(Yiya) = 0
and
E(yivnyiﬁn) = OijPysn «

Let the determinant of the positive definite symmetric matrix, (¢) = || oy; ||
be denoted by o. Let the inverse matrix of (¢) be denoted by (@7 = |||
where ¢ is the cofactor of ¢;; in (¢) divided by ¢. The determinant of (¢)™
. —1
is o

By Na(z1, -+, Zp ; (¢)) we shall mean the normal probability density with
zero means and covariance parameters g; , i.e.,

Na(@1, -+, 23 (0)) = (2x0) " exp [} ‘E’ oniz], (—o <z < ®),

where (o) is a positive definite matrix. If the random variables z;, ---, 2,
have probability density N4(X; (¢6)) = Na(zi, - - -, 2 ; (¢)), where X is a vector,
then we shall say that X has a distribution function N(X; (0)), i.e.

0

. aw, VX (@) = Nu(X; ()

or
Zp z]
[ [ Nalts, -+, t0; (@) dty - - dt, = N(X; ().

Inasmuch as certain hypotheses will be used on several occasions in this
paper, they are stated here.

If z,, 2, - -- are independently distributed, if (2.3) and (2.4) hold and if
the 2’s satisfy the condition £, then we shall say that J(, is true.

If C, is such that, for all n, the equations p,;» = 8,5 are true, we shall say
that C is true.

The following corollary is useful in deriving limiting distributions in the
analysis of variance.

CorrOLLARY 1. Let Jp.and Cbe true. Then a sufficient condition that

lim F(Yn) = H N(yl'n ey Yoy (0'))
o p

28 lim d, = 0.

n -0
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The proof is based on the fact that the z:y,» of Theorem I are given by ¢ywnZi .
The details are omitted.

The pm rowed square matrix, (r) = ||7a || is defined as follows: If r < m,
8 < m; then 7., = oupn;andif km < r < (b + )m, Im < s < (I + I)m,
I,k=0,---,p — 1, then 7, = Okt1141Pr—km s—in . The inverse matrix of

(7), and the determinants of () and ()™ are defined as are (¢)™, o and o
CoroLLARY II. Let JC, be true, and let
im pysn = pys, pyy = 1.

! =00

Then, if lim d, = 0, it follows that

n =+

where F(Y) is the distribution function determined by the probability density

pm

(@) 7 7 exp [—% >

r,8=1

8
T Yr+l r—km Y141 c—-lm]

where, if r <m,s <m, thenk =0,l=0;4 r <m, m < s < 2m, then k = 0,
l=1;and so on.

The proof is omitted.

If Z,,---,Z are random variables, then F(Xy, .-+, Xy |21, - ,Z:) is
the distribution function of the random vectors X, , - .- , X for fixed values of
Z,,---,Z:,ie. for any fixed values of Z,, --- , Z;,

PX, <Xy, Xo< X} =FXy, -, Xa| %1, -, Z0).

We shall now assume that the elements c,,» of the matrix C, are Borel measur-
able functions of a set of random variables" Z,, ..., Z,, . Then the matrix
C, may be called a random matrix defined on a space W, which is the combina-
tory product of the spaces on which Z , - .- , Z,, are defined. If, for each value
of n, and for all X" and Z", the equation

(2.5) F(x", z") = F(z"). I F(X,|27)

is satisfied, then we shall say that Jis true. It is obvious that sufficient condi-
tions for the truth of J are
Fx, 2" = F@)- I FX)
or,ift, > n
F(X", Z") = F(Zny, -+ Zs)- 1] F(X,, Z,)

11 The symbol X» will stand for the set of variables X, ..., X., and the symbol VAL
will stand for the set of variables Z;, ..., Zs, .
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or,ift, < n
tn n
F(x", 7 = 11 F(X,, Z,)- II F(x).

=g 1
Inasmuch as we shall often use Fubini’s theorem, it is now stated here."
TaeoreM II. Let the distribution function of X", Z" be F(X", Z"), let the
distribution function of X" for fived values of Z" be F(X" | Z™), and let the distribu-
tion function of Z" be F(Z"). Then if A(X", Z") is measurable with respect to
F(X", Z™) and if

f |AX™, 2") |dF(X", Z") < w,
RPPY Wy
it follows that
f |AX™, 2°) |dF(X" | Z%) <
RPN
for almost all'® sets of values of Z" and
[ sz, a7 = | [ [ s, zyarxe |Z")]dF(Z").
RIAXWo Wa LI RPN

In Corollary I an important condition was that the maximum of the absolute
values of the elements of C, should approach zero as n increased. In order to
obtain a similar condition when the elements of C, are random variables, we
shall define the function d(C,) as follows: For each value of Z" let d(C.) be the
maximum of the absolute values of the elements of C,,. We shall denote
d(C,) by d,. . If the elements of C, are Borel measurable functions then d, is a
Borel measurable function of Z". Hence d, is a random variable defined on W, .

A sequence of random variables d; , dz , - - - is said to converge in probability
to zero if, given ¢ > 0, then

lim P{|ds| > ¢} = 0.

If the sequence of functions d; , dpy1, - - converges in probability to zero we
shall say that 2 is true.

If 9 is true, and if, for almost all values of Z" we have

(2.6) f z, dF (X,, Z") = 0,
RP

(2.7) f xz‘yxivdF(Xv, Z”) = 0ij,
RP

12 Proofs of Fubini’s theorem with the required amount of generality will be found in
[5, p. 101] and [14, p. 73].

13 A proposition concerning random variables is said to be true for almost all values of
the variables, if it is true for all values of the variables, except perhaps for a set of proba-
bility zero with respect to the distribution function of the random variables.
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and the condition £, is satisfied with respect to the X and the distribution func-
tions F(X, , Z") then we shall say that J(? is true.
If

(2.8) Z f Coyvn Covn Tiv Tjy dF(Xv; Z”) = 0ij0mp,
v RPX Wy

then we shall say that C°is true. It is noted that if 4 and (2.7) are true, then
C’is true if Cis true for almost all sets of fixed values of Z".
CoroLLARrY III. Let C°, 9 and JICy be true. Then, if % is true, it follows that
lim F(Ya) = II Ny, -+-, 9v; (0)).
n-—ro0 v
Proor. It is necessary to show that the condition £, is satisfied by the
variables ¢,z if the condition £, is satisfied by the variables x; and that the
condition Z implies that lim d, = 0 when the ;,,, of Theorem I are set equal

to the ¢,nzi of Corollary III.
If we let AY, = Z (Cyonts)’, AL = D A2, and let s% = E{A%}, then, by (2.8),
k1] 14

it is true that

8: =Zo‘a=m26¢4.
vs 13

From (5 and the fact that for sufficiently large =, | d%(Z") | < 1 for almost all
Z" we have for any preassigned e and §,

1 1
= saFx, ) <5 T [
Sa v Ja

Sn Jap>ee,

for sufficiently large n, since the set of «’s and Z" for which Z x3, > es, con-

mdn(Z") 2z, dF(X,, Z") < 8

n>€8n

tains almost all the #’s and Z" for which A, > es,. Hence, the condition
Lom is satisfied by the random variables ¢,,.zi, with respect to the distribution
functions F(X, , Z").
We now show that
lim [max E{(cyn2s)’}] = 0.

n—»00

It is clearly true that
E{(c7vnx€v)2} S f d:xgvdF(Xv, Zn)-
RPX Wy
Since d, converges in probability to zero, and since d> < 1 for almost all Z,
we can, for any € > 0, take 7, so large that if n > ne, then P{d% > Le] < le.
If E is the set on which d% > ¢, we then have for all n > n, using (2.7),
Bllemz) < [ [ [, sharcx, 12 |are
E RP
e f [ f 2, dF(X.[Z")] dF(Z") < eos
2 Wn RP

and this inequality is also satisfied for all n > ny.
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The following discussion is useful in obtaining the litaiting distributions of
statistics which occur in multivariate statistical analysis.

The letter f will assume all integral values from 1 through s, the letters p, »
will assume all integral values from 1 through ny, and the letters vy, & will assume
all integral values from 1 through my, for any f.

Let X/, ... be, for any fixed f, a sequence of random vectors of p; compo-
nents defined on R”, and let the set of random variables X7, - - - be independently
distributed for any fixed f.

If, for each set of values of ny, - - , s, ({. is a function of ny, - - - , n,),

F(Xi, oo, X0, 21, ooy Zy) = I; Irxl\ 2, ...,2,).F@Z,...,2Z,),

we shall say that J,, is true.

Let, for any fixed value of f, the matrix™ €4 = || ¢}, || where the c/, are Borel
measurable functions of X}, (k < f), and”® Z", have the same properties as
C., and let d(C%) be the same function of C% that d(C.) is of C.. We shall
denote d(C%) by d7, .

Let

'!I{-yn = E c{ylmx{v

14

and let Y%, = || v} |
Tor fixed f, the p; rowed square matrix (oy), its inverse, and so on are defined

as were the same functions of the o;; earlier in this paragraph but with o;;
replacing o;;, where

E{zl,} =0
and
E{zhz},} = ous.

If 9., is true, and if for almost all values of Z" we have

(29) [, sharcxt, 2 = o,

(2.10) '/I;"f x{vx;v dF(X{; Z") = 0ijf y

and the condition £,, is satisfied with respect to the X/ and the distribution
functions F(X} , Z") then we shall say that J(%, is true.
If

(2.11) E fcgmcgmxax?v dF(X{) Zn) = 0ijs0vs,

4 The superscripts f and % will nqt indicate multiplication but will only be indices.
15 See footnote 11.
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then we shall say that ¢’ is true. It is noted that if 9d; and (2.10) are true
then €’ is true if C is true for almost all sets of fixed values of Xi, ..., X5,
Z".

If d’, converges in probability to zero as n increases we shall say that 3, is
true.

CoroLLARY IV. LetC’, 9, and Iy, , - -, FC%, be true. Then, if Z1, -+ , Bs
are true, it follows that
im F(Yh,, ..., Ys) =[] F(Y),
s

N1°° N g=r0
where

F(Y) = I;IN(y{'n ) y;/'v; (o).

The proof is almost identical with the proof of Corollary III of which this
corollary is an extension.

It is remarked that if the statistics, the limiting distributions of which are
desired, are associated with the normal distribution, as are most statistics
studied, then Corollary IV may not be the best tool to use. This is a conse-
quence of the fact that such statistics are generally expressible as functions of
uncorrelated random variables and hence are more simply discussed, using
Corollary I.

3. Limiting distributions of quadratic and bilinear forms. We first assume
the coefficients of the forms to be constants. For each set of values of 7, j, and
n, the matrix of the bilinear form with coefficients which are real numbers,

(3.1) b",‘y = Z apvnxiuxiv;
™%

will be denoted by 4, , and the rank of A, will be denoted by m. The maximum
of the absolute values of the elements of A, will be denoted by b,. We shall
assume that there exists an orthogonal transformation,

(32) Yiun = Z Cuyn Tiv

of £y, .-+, Zin such that

(3.3) bi; = ; Ns Yisn Yisn

where the coefficients A; are non-negative.'
LemMa 1. If d, is the maximum of the absolute values of the elements Cun
then a mecessary and sufficient condition that lim b, = 0 is lim d, = 0.

n -0 n =00

18 Qur theorems will not be applicable if some of the \s are negative and some are positive.
However if all the As are non-positive then the theorems will remain true.
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Proor: From (3.1) it follows that

Auyn = Eﬁ s Coun Covn

Hence, bn > auun > MCoun and | apn | < d2 (zs: Xs). The remainder of the proof

is obvious.

The following theorem will be the basis for a large sample analogue of Wis-
hart’s distribution.

TureoreM III. Let JC, be true. Then, a sufficient condition that

IMF(Yn) = HN(yl’/; 7yp1;(a))1

n—+00 ¥

where bY; = 2, NsYisnYitn 8 lim b, = 0.
é

n—>0

Proor. According to Lemma I, the fact that lim b, = 0, implies that

n—+0

lim d, = 0. The y., are such that Cis true. Hence the hypotheses of Corol-

n—>0

lary I are satisfied and the theorem is proved.
Before stating the corollary to Theorem III, we shall prove an obvious lemma

which is of constant service.
LemMma II. Letlim F(X,) = F(X) at all points of continuity of F(X), and let

Gin = G1@1n, -+, Tpa)y -y Ghn = Gu(T1n, =+, Tpn)
be Borel measurable functions of their indicated variables for each value of n,
(p Z k), defined on R”.
Then
lim F(gun, «++, gin) = Flgr, -+, g&)

n—

al all points of continuity of F(g1, - -- , gr), where go = ga(@1, - -+ , Tp).
Proor. By (2.1), we have

(3.4) Elg'Feseim 5] = Bleitter],

where since ga(z1, - -+, Z5) is a Borel measurable function of z,, --- ,z, we
know that gi., ---, g have a joint distribution function F(gin, - -« , gkn)-
Then, since lim F(X,) = F(X) at all points of continuity of F(X) we have"

lim E[eigtaoa(rm. e .:cpn)] — E[eiza:‘aﬂa(zl- e .zp)]

n—+00
uniformly in every ¢, -- - , ¢, interval since

' E[efgtaﬂa(xlnv ce ”pn)] —_ E[eigtaﬂa(zh oo vzp)] '

S f’dFﬂ(Xl, "')XP) —'F(XI; "’;XP)I,

17 See Cramer, [3, p. 30] and ‘‘Additional Note’’ at the end of the book.
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where F,.(X,, ..., X,) stands for F(Xy,, ---, Xp.), when X; and X, have
the same numerical values. If follows from (3.4), that

lim Efe'F'==] = El¢'F']

n—+00
uniformly in every ¢, - .. , {, interval, and consequently

Hm Fgin, ++ ) gm) = Flgs, -+, q8)

n—o0

at all points of continuity of F(g:, --- , g).
The real valued function Gai(z; n, ¢) will be defined by the equations

G2(0;0,¢) = 1, (—w <e¢< ),
Gaz; n, ) = [TG)]™ 20) " exp [— —22—:&], 0<z< w;c>0;n>0),

and Gi(x; n, ¢) = 0 otherwise. The function G(x; n, c) will be defined by the
equation

G(z; n,c) = L‘ Git; n, ) dt.
The real valued function Gi(zy, 12, - -+, Tpp ; 1, (¢)) will be defined by the
equations
Ga(0, +++,0;p — 1,(0)) =1

Galwn, +++y @i 3 (@) = @0~ [T Thn—i+ D] 2 o777
cexp [—3 D o), (0 < 2 < ;25 < zaxy); (o) is positive definite,
v

where | z | is the determinant | z;; | and Ga(xu, - - - , Tpp ; 1, (¢)) = O otherwisc.
The function G(zy , - -+ , Zpp ; 1, (¢)) will be defiped by the equation

Zpp Z11
G(zu, “eey Epp;, (o) =[ [ Galt, -++ , tpp; 1, (0)) diudbiz - - dipy.
0 00

We can now state the limiting distribution analogue of Wishart’s distribution.
CoroLLARY V. If J(C, 1s true, if \s = 1, and if m > p then

lim F(bﬁ, b?z, ses ,b’:p) = G(bu y Tty bpp ym, (0’)).
Proor. The conditions of Theorem III and Lemma II are satisfied.
Obviously for fixed <, the limiting distribution of b3; is G(b; m, ¢::), and if
© # j, the limiting distribution of bi;/m is the distribution of the covariance of
z; and x; in a sample of m independent pairs of observations.™

18 See Wishart and Bartlett, [1, p. 266].
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We proceed to the analogue for limiting distributions of one of our generaliza-
tions of the Fisher-Cochran theorem. It is first desirable to give some addi-
tional definitions. '

We consider the bilinear forms

(3.5) b?fa = Z a:mxinxiv
I’

with real coefficients, and we denote the matrix of bij« by Az . The rank of
A% is mg , and the rank of A* is my, . If the maximum of the absolute values
of the elements of 4%, ..., A% is b, and if there exists an orthogonal trans-
formation,

(3.6) Yiun = 2 Cuvn Liv 5

of Zy1, - -+ , Tin such that
bije = ; N5 Yisn Yion

where & assumes all integral values from my + .-+ + Ma + 1 through
mi + -+ + mqand \ is non-negative, then it is easy to prove, as in Lemma I,
that a necessary and sufficient condition that lim b, = 0 is lim d, = 0, where

d, is the maximum of the absolute values of the elements cun .
Lemma III. Letm = my + --- + mu—1 and let

3.7 Z biia = Z Tiv Ty -

Then, a necessary and sufficient condition that
biie = Zﬁ: Yitn Yion 5

where the real linear functions, Yin , of Tir, -+ - , Tin are given by (3.6), the linear
functions (3.6) not now being assumed to be orthogonal, s

Mikn = N — M.

Furthermore, the functions (3.6) are orthogonal.

The proof of this lemma for the case p = 1 is given in [16]. The procedure
to follow in extending the lemma to the cases where p > 1, is given in [15, p.
473]. Tt is noted that this lemma is more general than the lemma in [15]
inasmuch we we show that the orthogonality of the transformation is a conse-
quence of our hypotheses and not one of the hypotheses.”

19 It is noted, however, that the increase in generality affects only the necessity not
the sufficiency of the theorem.
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TueoreMm IV. Let J,, (3.7) and (3.8) be true for all values of n, and suppose
that lim b, = 0. Then

n-—+00

limF(yn) = II N(yl'Y’ ey Yoy (‘7)))

n—>00 v

Where b?ja = ; Yion Yisn «

The proof is omitted.
CoroLrLARY VI. If the hypotheses of Theorem IV are assumed, and if mg > p;
B=1,.-.-,h;h < k), then

. n n
lim F(blu, -+« , booh, Yatin, + =+ 5 Ypmn)

n-—>+00

h m
= II G(iry, + =+ 5 bppy ; My, (0))- IhI_HN(?Il'n cy Yoy (@)
v

=1

If p = 1 in Theorem IV and Corollary VI, we have the large sample analogue
of the Fisher-Cochran theorem.

We now discuss limiting distributions of random variables which are bilinear
and quadratic forms in one set of chance variables for fixed values of other ran-
dom variables. We consider the coefficients a,,» and aj,. of b; and b{;. to be
random variables. Hence the matrices A, and 4, are random matrices.

To be more explicit, let X, X%, ... be a sequence of random vectors, the
random vector X, having p; components 24, , - - - , :cf,,n , and being defined on
R¥. The set of random vectors X’ and Zi, --- , Z:, will be assumed to be
independent.

For each value of f the coefficients of the bilinear forms

ny
(3.9) ?ffaf = ";l a:vfa/x{ux{“ (7”.7 =1 ,pr5a=1,..., kf)
will be assumed to be Borel measurable functions of the random vectors
X‘l,, ,X,f,—l and Zl, ,Z;".
The matrix of bi/as is denoted by A3/ . The rank of A%, is ms, and the rank
of A%/ is mu,n, for all sets of values of the a;/as except, perhaps, on a set E,,
which is such that lim P(E,,) = 0.

ny—r0
Let the function b(4%,) be defined as follows:
For each set of values of the X/ and Z let b(4%,) be the maximum of the abso-
lute values of the elements of Ae.’, . Weshall denote b(A’f.’,) by bf{, . Obviously,
b%, is a Borel measurable function of X} and Z. Hence

b= b(4?,

is a random variable defined on W X R™MP1H " tnee
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For each value of f, and for almost all sets of fixed values of the X%, (b =
1, ... ,f — 1), we shall assume that there exists an orthogonal transformation,

(3.10) Yhun, = fy_‘, Chony by

of zl1, + -+, o, such that™

(3.11) bifar = 22 YorosYins

where A assumes all integral values from m; + ... + Moy + 1 through
miyy + --. 4+ mar. The coefficients cf,,,.,,, of the hnear forms (3.10) are real

single valued Borel measurable functions of the coeﬁiments alyas of the bilinear
forms (3.9) for ﬁxed values of the X» and Z". Let c,.,,,, be the same function
of the functions af,.; that c,’,,.,,, is of the coefficients of the bilinear forms having
constant coeﬁiments Furthermore, let d , be the same function of the matrix
Ch, = || chn, || where m = my; + --- + my,_1 s, that b"’f is of A;‘l‘,f

LEMMA IV. A necessary and suﬁczent condition that b, , converge in probability
to zero as n increases is that d’ , converge in probability to zero as m increases.

Proor. Since

k=1
n S S
5.: Quipr = Z)‘ Chung Chvnyg o

B=1
we have
k-1 \
(hy = DV, > & a2y > e
and
la:{a S {Z}; [c{nnjle'; [c{m/:lz < maf[d /]
where A assumes all integral values from my; + ... + ma1s + 1 through
miyy + -+ 4+ mq . The remainder of the proof is obvious.

In proving Theorem V we shall use a generalization of Lemma III which is
proved in [15, p. 473].
Tarorem V. Let (5, - - (5, be true, and suppose that

n
S bar = 3 o
a y=1

Then, if A ns converges in probability to zero as n increases and if my = ny — Miyn,
Jor all values of ny , vt follows that

lim F(yh"l y* y"l’:"‘s"a) = IfI Iil N(y{v y "y yi’/‘y ; (af))‘
y=

L STRREI P 1)

The proof is omitted.

20 It is not necessary that the A; be set equal to one as in (3.11). It is only somewhat
easier to state the results.
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Cororrary VII. If ma > ps, then
ky—1
lim  Fbilu, -, b3lpk-10) = IfI i—Il Glbugr, +++ ) bopogsr 3 My, (o).

Bpe s y—be

‘The proof is omitted.

Finally, let us assume that the vectors X7 , for fixed » are uncorrelated and
for fixed f are independent. By that, we shall mean that E(z],2%) = of;d,
and that for all n the set of random vectors X7 are independent for the same or
different superscripts providing the subscripts are all different. Let us also
assume that the coefficients of the forms (3.9) are real numbers. Thus we have
weakened the hypotheses of Theorem V concerning the random vectors, and we
have strengthened the hypotheses of Theorem V concerning the forms (3.9).
Inasmuch as we are generally concerned with the limiting distributions of
statistics which occur in the analysis of the normal distribution, and many such
statistics have been shown to be invariant under transformations into uncor-
related random variables,” Theorem VI and Corollary VIIT will often be
applicable.

TaEOREM VI. The statement of Theorem V ts repealed.

CoroLLARY VIII. The statement of Corollary VII is repeated.

Another extension of these theorems may be obtained by allowing all the
ny to be equal, i.e. ny = ... = n, = n, and by putting conditions on the forms
(3.9) which enable us to say that for fixed 7, f, u and n, the set of random variables
c,’.,,.x{., are independently distributed. Theorem I could then be used to obtain
a very general result. However, except for the case dealt with above, the con-
dition of independence appears to be rather restrictive, and the theorem is
omitted.

4. Applications. We first state the strong law of large numbers and a
lemma which is very useful in the discussion of limiting distributions.

A sequence of random variables X, - -- will be said to converge with prob-
ability one™ to a random variable X if

limP{lX,,—Xl <6,|Xn+1—XI <€,°°°,|Xn+p—X| <€} =1
n —>0
for every value of p > 0, uniformly in p for every positive number e. Upon

setting p = 1, it is seen that convergence with probability one implies con-

vergence in probability.
The strong law of large numbers™ asserts that if the independent random
variables X, X, - .- all have the same distribution function, and if E(X) is

finite, then the sequence of arithmetic means % > X, converges with proba-

bility one to E(X).

21 The regression transformation which yields the uncorrelated variables will be found
in [15, p. 476, (3.2)].

22 See Doob [4, p. 163], and Frechet, [9, p. 228].

23 See Doob [4, p. 163], and Frechet, [9, p. 259]. A complete proof is given by Frechet.
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Hence, if E(zs) = 0 and if oy; is finite, then ’1; > zukj, = Sij» converges with
probability one to ¢;;. Since Z @iy — Zin)(@je — Tjn) = Z ZiLjy — NEinZin

where i, is the arithmetic mean of z; , - - - , Zin , and since Z:, converges with
probability one to zero, it follows that s;;u = Sijn — TinEin coOnverges with
probability one to ¢;;. It is, of course, assumed that the random variables
Z4 , Tj have the same joint distribution function for all values of », and that
the random vectors X, , - - - are independently distributed. The process of the
reduction of s, to i j» in the limit, is an example of the possible uses of :

Lemma V. If o(t, ---,tp) is a continuous function of b, ---,tp, and ¥f the
sequence of random variables x;, converges in probability, (with probability one) to
x; which may be a random variable or a constant, then the sequence of random
variables ¢(Tin, -+, Tpn) converges in probability (with probability one) to
o(x1, - - -, Zp), where some or all of the &’s may be constants. If x,, ---,x, are
constants then o(t,, ---, tp,) need only be continuous in the neighborhood of
Zi1, .-+ ,%p and Borel measurable.

For a proof of part of this lemma which may be extended to yield the entire
proof, see, Frechet, [9, p. 178].

Using Lemma V it is easy to see that the coefficients r, of least squares
equations converge with probability one to their 8 values, where the 8 value
is obtained by substituting ¢;; for s:;» in the expression for r, assuming, of
course, independent random vectors which have the same distribution functions.

Since problems in the analysis of variance may be interpreted as problems in
least squares the above comments and Lemma V will generally make it possible,
when determining limiting distributions, to consider the statistics to be func-
tions of deviations from ‘true” mean functions rather than ‘“sample’”’ mean
functions.

We shall discuss, briefly, four applications of these results.

(@). The limiting distribution of the regression coefficient. ILet r, , the “sample”
regression coefficient, be defined by the equation

Z Ziy Tjy
Ty = —e——
X’
where z;, and z,, are deviations from arithmetic means. If the random vectors
(x4 , x;) are independently distributed for fixed ¢, j, with the same distribution

functions, and if E(z:) = E(xs») = 0, E(xuxj) = 0ij, then it follows from the
strong law of large numbers that > zax;/n converges to o;; with probability

one, and from the Laplace-Liapounoff theorem that > Zux;»//n has a normal
limiting distribution with mean ¢;; and variance E{z.z; — 0;)’}. Hence, by

Oss,

Lemma V, v/n (r,, - ﬁ) has a normal limiting distribution with mean zero

2
and variance lim E{n T — a—")} unless that limit does not exist.

n—sw (£
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If the 2, are not random variables then, in order to apply Corollary I with
p = 1, it is necessary that

(4.1) m ™ = 0.

In that case, the limiting distribution of (2~ 2%,)}., is normal with zero mean

and variance ¢;;. If (4.1) is not satisfied then there is no assurance, unless
the z;, are normally distributed, that the limiting distribution of (2 z3,),

is normal.

(b). The limiting distribution of the analysis of variance ratio. The tests of
significance which occur in the analysis of variance depend on the ratio of two
quadratic forms, g1, and ¢z, , the denominator ¢z, having rank (or degrees of
freedom) my, increasing with n, and the numerator ¢, having rank m; not
changing with n, i.e.,

— q1nm2n

Un )
Q2n M1

where qin + ¢2n + ¢sn = 2 27 and gs, is a quadratic form of rank ms, which

will be identically zero if n = m; + ms,. Since™ g;. is expressible as the
variance of z about a least squares equation it follows from the previous dis-

cussion and Lemma IV that ;‘)% converges with probability one to ¢* under the

assumptions that the z, are independently distributed with zero means and
variances ¢°. Hence the limiting distribution of v, will depend only on the
limiting distribution of ¢i, and it will consequently be necessary to consider
only the matrix of ¢i,, in order to apply Corollary VI with p = 1. For ex-
ample,” if there are pn independently distributed random variables z; with
zero means and variances ¢° arranged in p blocks of n random variables each,
then
E( Ziy — i)2 =n z (fo'n - in)z + ; (xiv - iin)zy

where &, is the arithmetic mean of 2, , - -- , Z:n and &, is the arithmetic mean
of all the z;, . Then

Q1n n 2‘: (3_31'" - in)zy

QPn = Z (zi — .'E.'n)z,

[ %7
m=p-—1,

Mmen = p(n — 1)

2 This has been proved by Kolodziejczyk, [12, p. 161].
2 Other schemes are given in Fisher, [8].
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and the matrix of ¢, may be obtained by substituting for the Z;, and #,. In
this case it is sufficient to express ¢, as Z a:;8:8; where 8; = >, , Qi; =

L) v
(p — 1)/pn, and, f, ¢ # j, a;; = —1/pn, to see that the condition that the
maximum of the absolute values of the elements of the matrix of ¢y, approaches
zero as n increases. Hence, if the z; satisfy the condition £, the limiting
distribution of mw, is G(v; p — 1, 1).

Clearly, if only the rank of gs, increases as n increases, the rank ms, of ga,
being constant and if the maximum of the absolute values of the elements of
the matrix of ¢;. also approaches zero as n increases, then v, will have a limiting
distribution which is the analysis of variance distribution, and the limiting

distribution of — 2" will be the correlation ratio distribution.

Q1n + Qon

(c). Periodogram analysis. We need only remark that the linear functions
which are used in the analysis of the Schuster periodogram® meet all the require-
ments of Corollary I if the z, are independently distributed with zero means and
constant variances and satisfy the condition £. Consequently the large sample
theory of the Schuster periodogram is the same for non-normal as it is for
normal distributions.

(d). Multivariate analysis. We shall assume that the random vectors
Xy, -+, (X, has components 2y, , - - - , Z»), are independently distributed, that
(2.3) and (2.4) are satisfied, and that the condition £, is satisfied. For any
fixed n and a we shall call the determinant D, of the forms (3.5) a generalized
sum of squares, and the determinant V7 of the elements b};./m. a generalized
variance. We shall say that Di and V5 have rank ms and that D} and V¢
have rank n, . If mgis constant, and if (3.7) and (3.8) are true then clearly
the limiting distribution of Dg is the distribution of the generalized variance
of mg vector observations” from a normal distribution, with zero means and
covariance parameters ¢;;. Under the same conditions, the limiting distri-
bution of Dg/V} is the distribution of the generalized variance of ms vector
observations from a normal distribution with zero means and covariance pa-
rameters 4;;. Many other similar limiting distributions are immediately
derivable.

Before completing our discussion of the limiting distributions of statistics
occurring in multivariate analysis, we shall state a theorem on limiting distri-
butions which is an obvious generalization of a theorem of Doob, [4, p. 166].

Suppose that the random variables g(n) X1, , - - - , g(n)X,» have a distribution
function F(g(n)X1,, - -+ , g(n)X,.) which is such that

lim F(g(n)Xm, e, g(n)Xpn) = F(Xl y XP):

n—+0

where F(X,, - .-, X,) is a continuous distribution function, and suppose that
Xin converges in probability to the real number ¢;. For example, if Z, =

% The theory of the Schuster periodogram is given by Fisher [7].
27 See Wilks, [18, p. 476] or Madow, [15, pp. 481, 484].
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> z,/n where E(z,) = 0, E(z2) = 1, and £ is satisfied, then &, converges to

v
zero with probability one, and v/n &, has a limiting distribution which is
normal with zero mean and unit variance, i.e.

lim | P{v/n%. < 2} — N(X;1)| = 0.

TaeorEM VII. Let os(t, ---,1t,) be a function of &, ---,1t, defined in a
netghborhood N of &, - - - , &, which, together with its (k; + 1)-th partial deriva-
tives is continuous in N. Suppose that k is the least value of ry such that the
random variables™

. 3 eee ()
1[5 (). 20 )
7 0k
have a joint limiting distribution function D(x,, ... ,z,). Then the random
variables [g(n)]”los@1n , -+ - , Tpn) — @r(E1, - -+ , £5)] have a joint limiting distri-
bution which is given by D(x1, - -- , 2,). The value ky is greater than or equal.to
the minimum value for which not all the partial derivatives of order ks vanish at
I PRERIPE
The proof is almost word for word that of Doob, the only difference being
the removal of the specializing words.
We now consider the limiting distribution of the ratio of generalized sums of
squares L, which is defined by
D”
L, = —,,k )
D
where Dyy1 is the determinant of the forms bjx + bij1 = bij r41. It has been
shown that”

Y}
L” = H “tk ,
A tk+1
where Y{;, (j = k, k + 1), is a ratio of generalized sums of squares
Yii = Ib::i , (rys=1,-v,;uv=1c.0,7~— 1; boo; = 1).
|buvi|
Since Y7j/m;» converges with the probability one to | ¢y, |/| ouv |, and since,
n
by Corollarv VIII the joint limiting distribution of the mi41 (1 — Ylj"k is
ikt

28 See Goursat-Hedrick, [10, p. 107] for a statement of the Taylor expansion of functions
Ops(kr, ..., &p)

is meant the value of
0

of several variables, which we use here, by

alp/(z; y ey .‘tp)
. ax;
29 See Madow, [15, p. 485].

at the point &, ..., & .
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II G(z; ; m, 1) it follows, by Theorem VII, that the joint limiting distribution of
1
the ratios of generalized sums of squares
T Yi

?
h=1 Yl':k-i-l

is
I;[ G(x;;1my, 1)

and that the limiting distribution of myq (1 — Ly) is”
G(z; pma, 1).

In a following paper, these results will be extended to quadratic forms in
non-central random variables.

5. Summary. In Section 2, Theorem I, we stated a very general form of the
Laplace-Liapounoff theorem based on the Lindeberg condition. In four corol-
laries, this theorem was shown to provide joint limiting distributions for sys-
tems of linear forms which are such that the maximum of the absolute values
of their coefficients converge to zero with an increase in the size of the sample
if the coefficicnts are constants, and converge in probability to zero with an
increase in the size of the sample if the coefficients are themselves random
variables. It was shown that under certain conditions functions of several
random variables, which are such that cach function is a linear function of
certain random variables for fixed values of random variables of lower index,
also have a normal multivariate limiting distribution.

These results were extended to include limiting distributions of quadratic
and bilinear forms in Section 3. The method of extension was to show that
necessary and sufficient conditions for the existence of systems of linear forms
satisfying the conditions of Scction 2 arec provided by rather simple conditions,
the most important of which is that the greatest of the absolute values of the
clements of the matrices of the quadratic and bilinear forms approach zero if
the size of the sample increases, the ranks of the forms remaining unaltered.
This led to the theorem that quadratic and bilincar forms having such ma-
trices have x°, or covariance, or Wishart’s distribution as limiting distributions.
It was then shown, in Theorem IV, that if the rank of the sum of the matrices
of the quadratic and bilinear forms is equal to the sum of the ranks of the ma-
trices, and if certain of these ranks do not change as the size of the sample
increases, then the system of quadratic and bilincar forms have Wishart's
distribution in the limit provided the other conditions are met. These results

% A generalization of Wilks’ result, [19, p. 323] to the case where the variates are not
assumed to have a normal multivariate distribution may rcadily be obtained.
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were then extended in Theorem V to one of the cases occurring when the coeffi-
cients of the forms are themselves random variables.

Several simple illustrations of the uses of the methods were given in Section 4.
It was shown that the analysis of the variance ratios, and statistics occurring
in the theory of multivariate statistical analysis have the same limiting distri-
butions which they would have had if their variables had been normally and
independently distributed.
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