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THE ESTIMATION OF A QUOTIENT WHEN THE DENOMINATOR
IS NORMALLY DISTRIBUTED

By RoBerT D. GorponN
Scripps Institution of Oceanography, La Jolla, Calif.

1. Introduction. In an oceanographic investigation we have to deal with a
time series consisting of single pairs of observed values z, y, of two independent
stochastic variables, whose true (mean) values.we shall denote respectively by
a, b. Of interest is the corresponding time series of quotients (b/a), which it
is required to estimate from the observations z, y. Both z and y are approxi-
mately normally distributed about, their mean values a, b with rather large
variances o2 , o; which can be estimated. It is easily possible for z to vanish
or even to be of opposite sign to a, although a cannot itself vanish. The re-
quired estimates of (b/a) should have the property that they can be numerically
integrated, i.e. that an arbitrary sum of such estimates shall equal the corre-
sponding estimate of the true sum.

Let us define a function y(z) to have the property that its mathematical ex-
pectation Efy(z)} is exactly 1/a, where a = E(x). If such a function exists
we shall have

1) Ely-v(@)} = E(y)-E{y(z)} = b-(1/a) = b/a

so that y.y(z) will be an estimate of b/a which has the required property:
namely such estimates can be added, and we have

Efyr(z) + yor(z:)} = Elyry(m)} + E{yry(x2)} = bi/ar + bo/as

as required. It turns out that if z is normally distributed with non-zero mean
such a function v(x) does exist, and is given by the formula

@) (@) = X exp (2*/267) f e dt = a—l—Rz/«z
Oz z/oy z

where R, is the “ratio of the area to the bounding ordinate’’ which is tabulated
by J. P. Mills," also in Pearson’s tables.” Equation (2) holds if a is positive; if

a is negative the integration should extend over (z/s,, — «). It is easy to
verify that

1 ® — a)’ 1
®  Bee) = o (- E2D)a -]

27 0, -0 20> a

by direct substitution from (2).

1]J. P. Mills, “Table of ratio: area to bounding ordinate, for any portion of the normal

curve,”” Biometrika, Vol. 18 (1926), pp. 395-400.
2 Karl Pearson, Tables for Statisticians and Biometricians, part II, table III, Cambridge

Univ. Press.
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2. The law of large numbers for y(x). The function ¥(z) defined by (2) has
mean value 1/a as required, but its second moment (hence variance) does not
exist, as may readily be verified. By a theorem of Khinchine’ however, its
values satisfy a law of large numbers. It will be of interest to inquire about the
“strength” of this law of large numbers for y(z). Namely, given a positive
number ¢, how many “observations” (independent estimates) v(x) will suffice
to guarantee probabilities of .50, .90, .95, etc. for the following inequality to
hold

v@) + v(@) + -+ v(@)

n

1
where 7 is the number of “observations.” .

In order to arrive at a rough answer to this question we have made use of
certain inequalities due to Tshebysheff (Tshebysheff’s ‘“method of moments”,
of. Uspensky®). Let u be an arbitrary stochastic variable whose distribution
has moments of the first and second order which are known. Denote by m its
first moment, by ¢ its variance, then it results from Tshebysheff’s theory that
the probability P(u; , u,) for a value of u to lie between u; and us (i.e. w3 < u =
u,) satisfies the inequality

2 2
[ [

(i —mE+ o  (ug—my+o*

(5) Pluy, u)) > 1 —

This inequality is independent of the values, or even the existence, of further
moments of the u-distribution beyond the second, and depends only on the
condition that the cumulant of the distribution function shall have at least three
“points of increase.”

Although v(z) does'not have a second moment, a second moment does exist
for those values of y(x) which correspond to x = — 8 > — oo, where 8 is an
arbitrary number, positive or negative. If we can estimate the first two mo-
ments of y(z) ~ 1/z corresponding to a given value of 6, then for a given number
n of observations we need only to divide the corresponding variance by n to
obtain o” in (5), then multiply (5) by the nth power of the (normal) probability
for the inequality = —¥, in order to obtain a lower bound for the probability
of the inequality (4). 6 is to be determined so as to yield a maximum result.

The first moment m; of y(x) for values of £ = —8 is easily computed, and is
given by the formula

®) sum6) = ”5{1 - R;’}

R_1a/6

3 J. V. Uspensky, Introduction to Mathematical Probability, pp. 195, McGraw-Hill (1937).
4J. V. Uspensky, l.c. pp. 365 ff.
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The second moment is harder to compute, but if we place

¢(6) = K-(my — mi) = —5_1——— [ : @1 exp< @ :“) )

T oy Y- 20

@ (L e (-5 a]

V2. f: exp (— (—x—%)dx

where

1 ° (x — a)z) 1 © g2
K= —— [ e <— et )dr = —= 22
V' 2r 0, -0 *P P v v 21 L 6+rare, ¢

we easily obtain the relationship

1 _(0+a)? o R
’ — T —0/
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From (7), using a table of the probability integral, it can be verified that
é(—a — 30;) < 0.001. Assume, therefore, as a boundary condition ¢(—a —
30,) = O then (8) can be integrated graphically or numerically. It is by this
means that the curves shown in Flgs 1 and 2 were determined. Computations
were also attempted for a/o, = %, a/s, = 1, but it was not possible to obtain
significant results: it would be necessary in these cases to take more than two
moments into account, which would lead to hopeless complications. In these
figures the ordinates represent probabilities for an observation to fall between
.90a and 1.11a (Figure 1), and between .76a and 1.33a (Figure 2), respectively.
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3. Two practical formulas for, computations. It seems worthwhile to note
here two simple formulas in connection with Mills’ ratio (2) which will be useful
for computations. The first is the obvious relationship

(9) Rew = V25 e"™ — Ry = 1/2 — R,

in the notation of Pearson’s tables. The second applies to large values of =,
and may be written

1 1
1 _* == 2
( 0) xz o_: < 7(x) ox Rz/d,, < z
(10) is true for z > 0, and can be proved by means of the differential equation
which v(x) satisfies.

4. Remarks. The estimate y(z) has the following inadequacy: If only a single
observation z is known, then it is unknown whether a is of like or unlike sign
compared to z. It turns out then that the mathematical expectation for the
value of ¥(x) vanishes identically. This difficulty of course disappears if more
than one observation is available. Methods of avoiding this difficulty for time
series, e.g. by noting relative frequencies for observations separated by 1, 2, 3
etc. intervals to agree in sign, will be discussed elsewhere in connection with
practical applications.

It may be worthwhile to note that Geary® developed certain characteristics
of the distribution of a quotient, which however are not adapted to our purposes.

NOTE ON CONFIDENCE LIMITS FOR CONTINUOUS DISTRIBUTION
FUNCTIONS

By A. WaLp* anp J. WoLFOWITZ

In a recent paper [1] we discussed the following problem: Let X be a stochastic
variable with the cumulative distribution function f(x), about which nothing is
known except that it is continuous. Let 2, -- -, 2, be n independent, random
observations on X. The question is to give confidence limits for f(z). We
gave a theoretical solution when the confidence set is a particularly simple and
important one, a ‘“belt.”

A particularly simple and expedient way from the practical point of view is
to construct these belts of uniform thickness ([1], p. 115, equation 50). If the
appropriate tables, as mentioned in our paper, were available, the construction
of confidence limits, no matter how large the size of the sample, would be im-
mediate.

Our formulas (11), (16), (19), (27) and (29) are not very practical for computa-
tion, particularly when the samples are large. We have recently learned that

‘5 Geary, R. C., “The Frequency Distribution of a Quotient,” Jour. Roy. Stat. Soc.,

Vol. 93 (1930), pp. 442-446.
* Columbia University, New York City.



