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TEST OF HOMOGENEITY FOR NORMAL POPULATIONS
By G. A. BAKER

¢ University of California

1. Introduction. In biological experiments it is often of interest to test
whether or not all the subjects can be regarded as coming from the same normal
population. If they have not come from the same normal population, usually
the most plausible alternative is that the subjects have come from a population
which is the combination of two or more normal populations combined in some
proportions. The combination of normal populations is a “smooth” alternative
to the hypothesis of a single normal population. Such non-homogeneous popu-
lations are not the only “smooth” alternatives, of course, but are included
among the “smooth” alternatives. If there is reason to believe that the only
deviation from a normal population is due to non-homogeneity, then the results
of Professor Neyman in his paper [1] are available in studying this problem.

It is desirable not to make any hypotheses about the meah and standard
deviation of the sampled population, but to base all computations and tests on
the data contained in the sample. Such a viewpoint has been stressed in a
previous paper [2] where it was shown that if the sampling is from & normal
population, the probability of a.deviation from the mean of a first sample of %
measured in terms of the standard deviation of the sample is proportional to
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The result (1.1) and Neyman’s results give rise to a test of homogeneity whioh
is valid for “large” samples. Empirical results show that fairly conclusive evi-
dence of non-homogeneity may be obtained with samples of 100. Samples of 50
or less may be suggestive but rarely decisive.

2. Development of Test. Suppose that a sample of n + 1 is drawn from a
normal population. It can be regarded as being made up of a first sample of »
and a second sample of one. The value of v corresponding to (1.1) can then be
computed and its distribution function is (1.1). This partition, of course, can
be made in » + 1 ways. That is, n 4+ 1 values of v are determined from a
random sample of # + 1 from the original parent. It is true that these values
of v are not independent among themselves. The corrélation between the values
of v, to a first approximation at least, is of the order of 1/n and can be neglected
if nis “large.” :

A suitable transformation as discussed in [3], [1] and elsewhere, transforms
(1.1) into a rectangular distribution.

If the same computations are made when the sampled population is not

)

; Ja,

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%jﬁ
The Annals of Mathematical Statistics. IIK@IRS ®

WWW.jstor.org



234 G. A. BAKER

normal, then the resulting values obtained will not be rectangularly distributed.
For instance, suppose that the sampled population is

(21) f(:c) — 1_ (pe—i(a:—ml)’/tr2 + qe—i(z—mg)’lc’)

oV2r
we find that the distribution of » based on the first sample of 2 is a very com-
plicated expression involving sums of exponentials and definite integrals of expo-
nentials. To obtain a rectangular distribution if the sampled population is
normal, the appropriate transformation to make is

v = —+4/3 cot mu
dv = /3 7 csc’ mu du.

The resulting u-distribution for population (2.1) then is to be compared with
the rectangular distribution in the interval from zero to one.

For “large’” values of n 4+ 1 and for symmetrical non-homogeneous popula-
tions composed of two normal components, the u-distribution will be sym-
metrical about u = 3, less than one near the ends, greater than one for values
of 4 moderately far from % and less than one for values of u near 3. A Neyman
[1] ¥; of order 4 will be necessary to detect a difference of this sort. If the
non-homogeneous population of two components is skewed, the u-distribution
will still show the same two-humped effect but may be skewed instead of sym-
metrical. A Neyman ¥; of order 4 should still be computed, although ¥} may

(2.2)

be more significant.

The test then consists of :

(a) computing the » + 1 quantities
2.3) ﬁ=$%fﬁ, G6=1,238---,n+1)
where

n 4+ 1 = number in the sample
z; = the observed values

z; = the observed values except z;

-1%a, LS -y

N j=1

31»—-

(b) making the transformation
dz’ .
_.[ (l_gﬁxlz)”/2’ (@:1’2,3’--.,n+ 1)

(¢) computing the first four ¥;’s of Neyman’s paper [1]
(d) comparing ¥} with ¥3(k) as found from the Incomplete Gamma Function

Tables.
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If n is large, say » = 100, then u is given approximately by the normal
probability integral.

If n is small, the values of u are obtained from the Table 25 of Vol. 2 of
Pearson’s Tables.

Neyman’s derivation assumes that » + 1 is large and that the u’s are inde-
pendent. In this case, if » + 1 is large, then the u’s are nearly independent,
and hence the test is valid. The same procedure can be applied for smaller
samples. It can not be expected that small differences from normal in the
sampled population can be detected with small samples. Empirical results
indicate that samples of 100 are necessary for decisive results even when the
differences of the sampled population from a normal homogeneous population
are large. Samples of 50 may be suggestive and in very extreme cases might be
decisive.

TABLE I
Empirical Sampling Results
k=1 k=2 k=3 k=4
¥p’s for 51 from population A.............| .0001 .843 | 2.009 | 7.464
¥3’s for 101 from population A....... .. ... .086 | 2.403 | 4.998 |12.868
¥7’s for 101 from population B............ .553 .927 | 7.472 | 7.485
¥}’s for 101 from normal................. .017 .082 | 1.288 | 1.663
Vion(k)’s Neyman [1]) ..................[ 3.842 | 5.992 | 7.815 | 9.488
Vi on(k)’s Neyman [1]) ................ .. 6.635 | 9.210 | 11.345 [13.277

It is to be noted that the test makes no assumption about the parameters of
the sampled population and does not group the data. The application of the
test gives a unique result that does not depend on the judgment of the computer
in any respect. In applying the usual chi-square test the computer must choose
groupings. The choice of groupings as indicated in [5] may change the P-values
to very different levels of significance.

3. Empirical results. Samples of 51 and 101 from population A4, of 101 from
population B, and of 101 from a normal population, were drawn by throwing
dice. Populations A and B are given in [4]. Population A is symmetrical and
distinctly bimodal. Population B is weakly bimodal and strongly skewed.

For samples from population A4 it is necessary to compute ¥;. For samples
from population B it may be sufficient to compute ¥;. The non-homogeneity
of the type of population A seems to be somewhat more detectable than of the
type of population B. The sample from the normal parent shows close con-
formity with expectation.

In applying the proposed test for homogeneity the u-values for small inde-
pendent sets of data can be combined to give a much larger number of u-values.
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A NOTE ON THE POWER OF THE SIGN TEST

By W. Mac STEWART
University of Wisconsin

1. Introduction. Let us consider a set of N non-zero differences, of which z
are positive and N — z are negative; and suppose that the hypothesis tested,
H,, implies, in independent sampling, that « will be distributed about an ex-
pected value of N/2 in accordance with the binomial (3 + 2)". As a quick
test of Hy, we may choose to test the hypothesis hy that z has the above proba-
bility distribuf.ion. Defining r to be the smaller of z and N — z, the test con-
sists in rejecting ho and therefore H, whenever r < r(e, N), where r(e, N) is
determined by N and the significance level e.

2. Power of a test. In applying such a test it is of interest to know how
frequently it will lead to a rejection of Hy when H, is false and the situation H
implies that the probability law of z is (g + p)”, with p 5 }, thereby indicating
an expectation of an unequal number of + and — differences. The proba-
bility of rejecting Hy, when H; implying p = p, is true, is termed the power of
the test of H, relative to the alternative H,.' Thus, from the point of view of
experimental design the power (P) of the test of Ho may be considered a func-
tion of the alternative hypothesis H; , the significance level ¢, and N. As such,
the following observations may be noted:

1. The power P;, for an assumed ¢, N, and H, implying p = p. is greater
than or equal to the power P; for ¢, N and H, implying p = p where
|p2 — 50| > | pr — .50 |.

1 For an extensive discussion of the power of a test, the reader is referred to J. Ney-
man and E. 8. Pearson, Statistical Research Memoirs, Vol. 1 (1936), pp. 3-6.



