ON THE RELIABILITY OF THE CLASSICAL CHI-SQUARE TEST

By E. J. GuMBEL
New School for Social Research

For a given set of observations and for a continuous variate, different classi-
fications lead to different observed distributions and to different values of x*.
This shortcoming has been vaguely felt by statisticians. We shall explain how
these differences arise and show that they are important enough to cast a great
deal of doubt on the validity of the application of the usual x* method to a con-

tinuous variate. Finally, we propose a procedure which is free from these
difficulties.

1. The observed distributions. The x? method gives a numerical measure of
the differences between the observed and the theoretical distribution. A theo-
retical distribution is completely determined once the constants are known.
For a discontinuous variate the observed distribution is also well defined; but
for a continuous variate the concept ‘‘observed distribution” is vague. To
classify N observations, z,, 22, *+ Zm, * * + Zy arranged in increasing order, we
introduce two arbitrary actions: the choice of the intervals and the beginning
of the first cell. As a rule, all cells have the same length, and they are bounded
by integral numbers, or even numbers, or round numbers, 0, 5, 10, of the variate.
But these classifications and the preference given to round numbers for the start-
ing point have no theoretical foundation.

A certain guide for the systematic choice of the class length and the beginning
of the first cell may be found by turning to the theory. Many theoretical dis-
tributions of a continuous variate z have only two constants, and permit the
introduction of a reduced variate y with the dimension zero, where

r—a
(1) y=—-

The constant a is a mean, and b is a measure of dispersion. The probabilities
W (z) (or F(y)) for values equal to or less than z (or y) are

2) W(z) = F(y).

For most distributions, for which the above transformation is possible, tables
for F(y) exist, in which the argument progresses by a fixed interval Ay. By
taking an initial value y, and a fixed interval Ay, the differences

@) NF(yo + tAy) — NF(yo + (¢ — 1)Ay) = Np; (G=12---k
may be interpreted as being the theoretical distribution. The corresponding
values of the variate, by (1), are

4 zG@) =a+bly+14y); =z@E—1)=a+4 by + (@ — 1)Ay)
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and the cell length is
®) A(z) = bay.

In (3) k is the number of cells. In general, z(7) and z(¢ — 1) will not exist among
the observed values z, . By arranging the observations in the cells given by
the theoretical values (4), we obtain an observed distribution consisting of the
contents a; of the cell 2. This procedure prescribes a classification of the observa-
tions according to the theory. The intervals selected are multiples of some
measure of dispersion. In principle, the choice of Ay and of the starting point
9o remain arbitrary; in practice, the selection of Ay is limited by the intervals
given in the probability tables.

This natural classification may be used for constructing different observed
distributions from the same set of observations. We determine the constants,
then choose a small interval and a starting point which is below the smallest
observation x; . The last cell is such that it contains the largest observation zy .
In this way, we obtain the initial observed distribution, consisting of k cells.

If we combine h cells (h = 2, 3, --- 1k), we obtain h different observed dis-
tributions: We combine h — 1 void cells with the first cell of the initial distribu-
tion, we combine the second cell and the following b — 1 cells of the initial dis-
tribution, and so on. Generally, we combine ¢ void cells (¢ =h — 1,h — 2, ---
1, 0) with the first A — ¢ cells of the initial distribution, then the next h cells of
the initial distribution, and so on. The last of these h distributions starts with
the first h cells of the initial distribution.

If we combine more and more cells, the number of observed distributions,
having the same intervals, increases. The larger the intervals the larger is the
influence of the starting point, and the more the observed distributions become
dissimilar. To see this influence of classification on the shape of the observed
distributions, consider the extreme case for a symmetrical theoretical distribu-
tion of an unlimited variate. Let the observed distribution consist of two cells.
Assume besides that the observed median is close to the theoretical one. If the
cut between the cells'is identical with the theoretical median, the two cells have
the contents 3N + e and 1N — ¢, where ¢ is small. If the cut is shifted suffi-
ciently far to the left or right of the median, the cell contents will be 0, N and
N, 0. These two distributions are completely different.

To each observed distribution corresponds a theoretical one obtained from
(3) by the same combination of cells as the observed distribution. In the graphi-
cal representation, the same continuous theoretical distribution may be used for
all observed distributions by choosing the scale of the ordinate properly. The
length chosen for representing one observation in the initial distribution will
represent h observations for the h distributions obtained by the combination
of h cells.

The different observed distributions corresponding to the same observations
and to the same theory will give different values of

k L )2
x2=z(a: ]\.rpt).

(©) =1 Nopi
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The expected contents of the first and last cell are

@) Np: = NF(yp + Ay),
8) Np. = N(1 — F(yo + (k — 1)Ay)).
Since the total expected frequency must be equal to the number of observations
k k
(9) Zl ]Y P = Z:l @iy
formula (6) may be written
k 2
10 =Y _ N
(10) p ; Np:

This formula, being simpler than (6), will be used in the numerical example.
An upper limit for x* is furnished by the case that one cell j contains all ob-
servations. Then

a;=N; a; =0 for 7 3j,
whence from (10) )

(11) 0<x=<—=-N.

The upper limit depends again upon the intervals and the starting point of the
classification. If the probability for an observation to be contained in the cell
Jj is small, the uppér limit is large.

The exact distribution of x* has not yet been established. To obtain an ap-
proximation, it is assumed that a binominal distribution may be replaced by a
normal distribution. As this does not hold for cells with a small expected fre-
quency, the contents of such cells must be combined. This prescription, which
is also valid for a discontinuous variate, constitutes a third arbitrary action in
the calculation of x*. It invalidates the prior postulate that all cells ought to
have the same length.

The approximation used for the probability P of obtaining a value of x*, equal
to or larger than the observed one, is

(12) P(c,») = K [ 2100 a2
X
where » is the number of degrees of freedom. Since
P 9P

P diminishes as x* increases, » being given, but P increases as » increases, x*
being given. By choosing larger cells, the number » diminishes, and P may
remain the same if x* diminishes adequately.

It is easy to see that x* cannot increase as a result of the combination of cells
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and will, in general, decrease. Let @, and a; represent the actual number of
observations in two cells that are to be combined. Let Np; and Np, be the ex-
pected numbers. Then, the contribution of the two separate cells to x* minus
the contribution of the two combined cells is, by (10)

R T T o
Npi * Np: Npi+p)

As a, and a, are positive or zero, the difference is proportional to
aip: + azp; — 200apipe = (P2 — @pr)’ = 0.

The equality holds only when a;:a2 = p;:p2. Then, the combination of cells has
no influence on x*, but it reduces the number of degrees of freedom by one, and
diminishes the probability P. In the general case, the combination of cells
diminishes x* and diminishes » at the same time. According to (13), the first
influence tends to increase the probability P, the second to diminish it. It
cannot be stated a priori which influence is stronger.

For a given set of observations, a continuous variate and a given theory, which
includes given estimates of the constants, the probability P depends upon three
arbitrary actions. If a certain choice of the intervals gives a good fit, it cannot
be concluded that a broader classification gives the same or a better fit [4]. For
a given interval, P may vary considerably with the starting point. This influ-
ence cannot be allowed for by any formula as the number of degrees of freedom
does not depend upon the starting point. Finally, the term “small expected
numbers” is vague. Different combinations of cells lead to different probabili-
ties. It is generally assumed that these influences remain within reasonable
limits and that P does not vary considerably if we change the class length or the
starting point. In the following example, we shall show that this opinion is
€rroneous.

2. Numerical example. The flood discharge of the Mississippi River at Vicks-
burg for each of the fifty years 1890-1939 will be used to illustrate the extent to
which the observed distributions and P vary with the choice of cell length and
the starting point. The observed flood discharges x, measured in 1,000 cubic
feet per second are given in Table VI of a previous article [2], and are not re-
peated here. The expected distribution is given by the theory of largest values
which states that the probability (z) of a flood discharge equal to or less than
zis ‘

(14) BWz) = "7
Values of W(x) as a function of the reduced variate
(15) y = Ol(x - u),

are given in Table II of the reference first cited.
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Calculation of the constants « and u leads to the theoretical value of the flood
discharge

(16) x = 1201.9 + 266.1y
associated with a given probability F(y) = B®(x).
TABLE 1
Observed and theoretical distribution (1) for theinterval Ay = .256; Ax = 66.526
Variates Distributions
Reduced Absolute Observed Theoretical
y z ag Np;
1 2 3 4
736.2 1 .5655
<-1.50 802.8 1 .959
—-1.25 869.3 3 1.775
—1.00 935.8 3 2.720
-.75 1002.3 5 3.5955
—.50 1068.9 1 4.2315
—-.25 1135.4 3 4.5475
.00 1201.9 3 4.554
.25 1268 .4 3 4.314
.50 1334.9 6 3.914
.75 1401.5 6 3.434
1.00 1468.0 4 2.934
1.25 1534.6 2 2.4565
1.50 1601.1 0 2.0235
1.75 1667.6 2 1.647
2.00 1734.1 0 1.3270
2.25 1800.6 2 1.0615
2.50 1867.2 2 .844
2.75 1933.7 0 .668
3.00 2000.2 2 .527
3.25 2066.7 0 .414
3.50 2133.3 0 .325
3.75 2199.8 0 .255
4.00 2266.3 0 .1995
=4.25 2332.8 1 .708
50 50.000

The first observed distribution presented in Table I is obtained by letting
Ay = .25; Az = 66.525 and yo = —1.75. The expected number of observations
for the first and last cell are 50F(—1.5) and 50 (1 — F (4.25)) respectively.
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The expected frequencies (formula 4) for the other cells
np; = 50 [F(y + .25) — F(y)],

were obtained by successive substraction of two consecutive figures given in
column 2, Table II [2]. The theoretical and the observed distribution are
plotted in figure 1. The observed distribution given in Table I is very irregular.

Evidently, the intervals are too small. Therefore, we construct the observed
and theoretical distributions (2) and (3) for cells which are two times larger.

- -5 -} 1
REDUCED VARIABLE Y
6}
INTERVAL Ax = 66.525

(724
Sl—o —

é OBSERVED DISTRIBUTION 1,
al & /\ _

o

w

]
32

5

4
2 - _\_ N

N
(. [ | \
/ FLOOD DISCHARGES X N
N IN 1000 CFS.
1 PO IS U T WA ST U S DY 3 I

€03 863 e 4ol 193 289 24¢s
Fic. 1

The first cell in distribution (2) is obtained from distribution (1) by combining
the first cell of (1) with the empty one before it; the second cell is obtained by
combining the second and third cells of (1); and so on.

Distribution No. 3 is obtained by combining the first two cells of distribution
No. 1, then the third and fourth, and so on. The observed distributions 2 and 3
and the theoretical distribution are plotted in figure 2. The scale of the ordinate
is 1 of the scale in figure 1. In the same way, the three observed distributions
(4), (5), (6) for the interval Ay = %, Az = 199.57 are obtained by combining
either two void cells with the first cell of Table I, or one void cell with the first
and second cell of Table III, or the first three cells of Table I (see fig. 3).

Finally, the four observed distributions (7), (8), (9), (10) for the interval
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Ay = 1; Az = 266.1 are compared with the theoretical distribution in figures
4 and 5. The four distributions 7-10 differ considerably. Distributions & and
9 indicate that the agreement between theory and observations is good, dis-
tribution 7 and 10 indicate that the fit is bad. The x* method must give the
same contradictory results.

TABLE II
Four values of P(x?) for the same observations and the same theory
1 |2|3|s)s] 6 7 | 8 | 9 | w
.. | Observed Distri- | Theoret-
Du | outions, | il D Components of ' + ¥
(7)|(10) |(9)|(®)| Np

803 5| | 3.2995 7.577

869 8 6.0195 10.632

936 |13 9.6150 17.577

1002 14 | 13.8465 14.155
1069 12 15.0945 9.540

1135 12 16.9285 8.506

1202 |10 17.6470 5.667

1268 15 | 17.3295 12.984
1335 18 16.2160 19.980

1401 19 14.5960 24.733

1468 |18 12.7385 25.435

1534 12 | 10.8480 13.274
1601 8 9.0610 7.063

1667 4 7.4540 2.146

1734 | 4 6.0590 2.641

1800 6| 4.8795 7.378
1867 7 6.3290 7.742

1933 7 5.0020 9.796

2000 | 5 2.9405 6.344

2066 3| 3.0965 2.907
N..... 50 | 50 (50 |50 [200.0000 | x* + N = 57.664 55.813|51.90250. 698
Vooo... 2| 212|2|P....... < .023 .057 | .399 | .705

The details for the calculations of x* are given in Table II. The numbers of
column 1 are the midpoints of the cells. To save space, the four theoretical dis-
tributions obtained from Table I, col. 4 are written in the same column (6)
directly opposite the corresponding observed distributions given in columns
2 to 5. Through formula (10) we calculate the components of x* + N (cols. 7
to 10). Although the four distributions differ only with respect to the beginning
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of the first cell, the value of P for the observed distribution number (8) is more
than thirty times the value of P for the observed distribution number (7). In
view of the fact that these values of P are calculated for a fixed set of observa-
tions, for the same theory, the same constants, and the same number of degrees
of freedom, the differences found are surprising.

3. The probability integral transformation. This example shows thal the
probability P may vary with the starting point in such a way that no conclusion
about the acceptance or rejection of a hypothesis can be obtained from the usual
x* method. The three arbitrary steps described above may be avoided if we
choose cells of equal probability instead of cells of equal length. The required
intervals are obtained from the probability integral transformation, due to Karl
Pearson [6]. Let w(x) be a distribution of a continuous variate x, let y = W(x)
be the transformed variate, then the distribution p(y) of the variate y is

17 ply) = 1.

In other words: The probabilities W (x) are uniformly distributed. If a distribu-
tion w(x) has been chosen for a given set of observations x, , we can control this
theory by investigating whether the “observations” W(z.), i.e., the theoretical
cumulative frequencies of the observed values are uniformly distributed. Thus,
the comparison of the observed distributions with any continuous theoretical
distribution is reduced to the comparison of an ‘“observed”’ with a theoretical
uniform distribution. To a given set of observations and a given theory there
is one, and only one, “observed’” distribution. If we introduce within w(x)
another set of constants, or choose instead of w(x) another theory o(x), we ob-
tain, of course, other “observed” values [1].

The goodness of fit between this theory and these ‘“observations” may be
measured by the x* method. We divide the interval zero to N, which contains
the N “observed”’” numbers NW(z,,) into k cells of equal length, and enumerate
the “observed’’ points NW(z.,,) contained in each cell. The starting point of the
classification is always zero. The expected number of observations for each cell
is always N/k. If we choose % sufficiently small, the necessity for combining
cells is eliminated. We have to choose k& in such a way that the conditions,
under which formula (12) holds, are fulfilled. The question of the best choice
for the number of cells has been studied by Wald and Mann [3]. Their solution
is valid for small levels of significance and for large numbers of observations.

4. Conclusion. The usual x? test is unreliable for a continuous variate as it
involves three arbitrary decisions. ¥rom the same observations, the same
theory, and the same constants different statisticians, equally well trained and
equally careful, may obtain different probabilities P, and may proclaim any one
of these results as final. Therefore, the usual x* method does not lead to a de-
cision whether o hypothesis has to be rejected or not. Such a decision is possible
if we use the probability integral transformation. Unfortunately, the question
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of the best choice of the cells for small numbers of observations and large levels
of significance is not yet solved.
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