THE COMPARISON OF DIFFERENT SCALES OF MEASUREMENT FOR
EXPERIMENTAL RESULTS"?
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1. Introduction. In some fields of research, the development of a satisfactory
method for measuring the effects of experimental treatments constitutes a diffi-
cult problem. The estimation of the vitamin content of preparations of foods
furnishes a good example; for most of the vitamins several years of work were
required to construct a reliable method of assay. In other cases, where the ideal
method for measuring treatment responses is costly or troublesome, a search
may be made for a more convenient substitute. Thus in pasture or forage-crop
experiments the species composition of a plot may be estimated by eye inspection
as a substitute for a complete botanical separation. As a third example we may
quote experiments in cookery, where the flavor and quality of the dishes are
subject to the whims of human taste. Frequently a panel of judges is employed,
each of whom scores the dishes independently. It is not easy to determine how
the panel should be chosen, nor how representative its verdicts are of consumer
preferences in general.

When such problems are investigated, experiments may be carried out spe-
cifically for the purpose of comparing two or more methods or scales of measure-
ment. Where the process of measurement affects only the final stages of the
experiment, as in the last two examples quoted above, all that is necessary is to
score the same experiment by the various scales under consideration. In com-
paring two different methods of assaying vitamins, on the other hand, inde-
pendent experiments are frequently required, the only common feature being
that the same set of treatments is tested in both experiments.

In the interpretation of the results of such experiments, two types of compari-
son are of general interest. (ne concerns the relations between the scales. It
may be summed up rather loosely in the question: Are the effects of the treat-
ments the same in all scales? For a more exact formulation, consider the case
of two scales, which is probably the most frequent in practice. Let &, &,
be the true means of the {th treatment as measured on the two scales. We may
wish to examine the following hypotheses:

(i) Scales equivalent:

1) b = b, (all t);
(ii) Scales equivalent, apart from a constant difference:
(2) Eit = & + ¢ (all 2);
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(iii) Scales linearly related:

@) afie + Bk = 7, (all 0);
(iv) Relation monotonic, but not linear:
(4) Elt = f(&l y Q By et )) (a'n t);

where the function is strictly monotonic.

In this case the two scales are mutually consistent in that they place any set
of treatments in the same order. The ratio of a treatment difference in one scale
to the corresponding difference in the other scale is, however, not constant.

(v) Relation not monotonic: Here the scales do not place the treatments in the
same order and consequently are not satisfactory substitutes for each other.

The second question concerns the relative accuracy or sensitivity of the two
scales. For practical purposes this question may be put as follows: how many
replications are required with the second scale to attain the accuracy given by r
replications with the first scale? It is clear that the answer depends both on the
experimental errors associated with the scales and on the magnitudes of the
treatment effects in the two scales. For example, Coward [1] reports that in
the assay of vitamin D, male rats give a higher experimental error than females,
yet provide a more accurate assay because they are more responsive. The rela-
tive accuracy may be different in different parts of the two scales. This is likely
to happen whenever the relation between the scales is of type (iv) above.

This paper gives a preliminary discussion of some of the simpler questions
raised above, to which recent work in multivariate analysis is applicable. A
complete solution for small sample work appears to demand considerable further
development in the distribution theory of multivariate analysis.

The discussion is confined to the case in which all scales measure the same
experiment. The case where each scale requires a separate experiment may be
expected to be somewhat simpler, but cannot conveniently be treated as a special
case of the procedure for a single experiment.

2. Assumptions. Let x;, 2, - - x, denote measurements on the p scales
and let n, and ne be the numbers of degrees of freedom for treatments and error
respectively. The experimental data furnish a joint analysis of variance and
covariance of the p variates as follows:

Sum of squares

df. or products
Mean................... 1 mi;
5) Treatments.............. m aij
Error.................... Ny bi;
It will be assumed that 2, , - - - , z, follow a multivariate normal distribution,

and that for any pair of variates z; , x; the error mean covariance o;; is constant
throughout the experiment (though it may vary as 7 and j vary). Thus the
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quantities b;; follow the standard joint distribution, Wishart [16], of sums of
squares and products while the quantities m;; and a;; follow the corresponding
non-central distributions and the three sets of distributions are independent.

3. Tests for equivalence. If there are only two scales, a test for equivalence
is obtained from elementary techniques. An analysis of variance similar to (5)
is computed on the differences between the two scales for every observation. If
equations (1) hold in the population, the sums of squares for the Mean, Treat-
ments and Error are distributed independently as x*(o11 + o2 — 201). The
pooled mean square for the Mean and Treatments may therefore be compared
with the Error mean square in a variance-ratio test, the degrees of freedom being
(nmy + 1) and n, . If the scales are equivalent apart from a constant difference,
the same result is valid for Treatments and Error, while the mean square for the
Mean is proportional to a non-central x*. “Thus separate z- or F-tests on the
Mean and Treatments assist in distinguishing between hypotheses (1) and (2).

4. More than two scales. Let £; be the true mean of the tth treatment as
measured on the ith scale. The first two hypotheses may now be written re-
spectively:

(1’) i =&
29 Su=b+ €
for ¢ = 1, 2, ---, p. The quantities ¢;, whose sum may be assumed zero,

measure the constant differences among the scales.
If the interactions of all components with Scales are computed, the analysis
of variance extends formally, with the following separation of degrees of freedom:

df.
Mean X Scales....................... p—1)
6) Treatments X Scales.................. n(p — 1)
Error.........coiiiiii i m(p — 1)

The three lines in the analysis play the same roles as before in relation to
hypotheses (1’) and (2’). When p > 2, however, it may be shown that the
three sums of squares are not distributed as multiples of x* unless (i) all scales
have the same error variance and (i) every pair of scales has the same correla-
tion coefficient. Where these conditions are reasonably well satisfied, as hap-
pens possibly when experienced judges employ a similar scoring system, the
above analysis supplies approximate tests. - But with scales which differ widely
in their experimental errors or in their degrees of interrcorrelation, the validity
of variance-ratio tests is open to more serious question.

In order to obtain an exact test, we may note that hypothesis (1’) is closely
related to the Wilks-Lawley hypothesis (Wilks [15], Lawley [9], Hsu [7]) that the
means of k populations are all equal. If each treatment denotes a separite
population, the Wilks-Lawley hypothesis states that

) £ = & t=12---,m +1).
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Since this differs from (1) only in the interchange of the letters ¢ and ¢, it is
clear that the two hypotheses may be subjected to the same kind of test.

For the details of the procedure we first divide the (p — 1) comparisons among
scales into (p — 1) single comparisons by the introduction of a set of variates

i, ¢ =1,2,---,p — 1).
4

(8) Yi = Z,IM,-x,-.
=

Any set of y’s may be chosen, provided that they are linearly independent and
that

P
9) 2 hi =0, @=12-@-1).

Thus with three scales we might use ¥y, = o1 — 22, ¥ = 1 — 23 0r y; =
2.’2}1 — Ty — X3 ,Y2 = Tg — T3.

The next step is to compute an analysis of variance and covariance of the y
variates, as follows:

Sum of squares

d.f. or products
Mean................... 1 m'i;
(10) Treatments.............. m a’s;
Error.................... Ne b'ii

If hypothesis (1’) holds, it follows from (9) that the three sets of quantities
mi;, ai; and b;; all follow the standard joint distribution for sums of squares
and products. Hence Wilks’ test (Wilks [15], Pearson and Wilks [11], Hsu [7]),
for the equality of the means of k populations may be applied. For a single test
of hypothesis (1’) we may use

| b

’ ’ ’ .
| bsi + my; + aij
As before, if W is significant we may test whether the deviation is due to constant
differences or to other types of difference among the scales by calculating

(11) W=

bii |
12) Wm = __l_’.’____ ,
( | b + mi|
and '
| b% |
13 W= — "\
(13) t | 0% + ais]

The flexibility of analysis of variance tests is not sacrificed; in particular we
may test any desired subgroup of the treatments or of the scales. When there
are only two scales the tests reduce to those given in section 3.

The tests are invariant under homogeneous linear transformations of the y’s
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which explains why the form of the subdivision of the scale comparisons is im-
material. In fact for purposes of computation it is not necessary to introduce
the y’s. By taking a simple transformation and expressing a:; in terms of a;,
ete., we may express W directly in terms of the z’s, as follows:

> B+ M+ A);’

i

(14) W =

where B;;, (B + M + A):; are respectively the co-factors of the matrices
bi;), (bi; + mi; + ai;). Analogous expressions hold for W, and W,. In
practice it will often be preferable to compute the y’s in order that particular
comparisons among the scale variates may be examined in detail.

The form of the frequency distribution has been worked out by Wilks [15].
For small values of n; and p, the test of significance can be referred to the recent
tables of the significance levels of the incomplete Beta-function, Thompson [13],
or to variance-ratio tables. Such cases are listed below, from Wilks [15] and
Hsu [7]. In our notation, » is taken as (n; + 1) in equation (11), as 1 in equa-
tion (12) and as n; in equation (13).

p=3,m>1:f W) « W1 — whn!

(e — DA — W

: F{2”1,2(n2 - 1)} = 1/1W) ]

n=1-: f(W) « W%(ne-p)(l _ W)!(p—:!)

(m = P = W)

F{p—1,m—p} = @ = DW

This distribution applies to all tests made on the Mean, equation (12), and all
cases where a single degree of freedom is isolated from the treatment comparisons.

w=2:fW) « W1 - wh*

p+20 - W

P F{2(p— 1),2(na — p + 2)} = (n _(p W

A tabulation of the distributions for four and five scales would be useful.
Hsu [7] has shown that as n, becomes large, the distribution of —n, log W tends
to that of x* with »(p — 1) degrees of freedom. In general, this approximation
does not agree very well with the exact distributions above unless n, exceeds 60.

b. Interpretation as a problem in canonical correlations. As an introduction
to the methods that will be used in testing the hypothesis of linearity, we may
note that hypotheses (1’) and (2') can be described in terms of canonical correla-
tions. TFisher [5] has pointed out that the roots 8 of the equation

15) |ai; — 6(as; + bij) | = 0,
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are the squares of the sample canonical correlations between the z-variates and
a set of n, dummy variates which represent the n, degrees of freedom among
treatments. In order to obtain the corresponding equation for the population
correlations, we may suppose that n; and p remain constant while the number
of replicates " and consequently 7, increase without limit. After the removal of
a common factor r/, equation (15) becomes

(16) | Wi — o' Wi + voi) | = 0,
where -

n1+1 - -
an Vi = g (ke — E)(En — B).

The value of the coefficient » depends on the type of experimental design. For
a randomized block layout, » = n; and for a simple group comparison » =
(m + 1).

Now if hypothesis (2’) is true, i.e., £ = & + &, it follows that ¢,; is inde-
pendent of 7 and j. In this event equatior (16) has (p — 1) roots o’ which are
identically zero. The remaining root corresponds to the best discriminant fune-
tion, Fisher [5], and does not vanish unless the treatments have no effects on
any of the z-variates.

Let ZBi; be a population canonical variate for the scale variables. The
coefficients g; satisfy the equations

(18) ; Bilwii — o' Wi + voi)} = 0. di=1,---p.

For a zero root p> = 0 we have y,; = constant. Hence if a zero root is substi-
tuted, equation (18) degenerates into

(19) Bt Bt e+ 6 =0

To summarize, hypothesis (2) specifies that (i) (p — 1) of the population
canonical correlations vanish and (ii) any variate Z@:x; is a canonical scale
variate corresponding to a zero root, provided that equation (19) is satisfied.
Analogous results hold for hypothesis (1); in this case we replace the Treatments
line of the analysis of variance by the (Treatments + Mean) line.

6. Test for linear relationship—two scales. We may assume n; > 2; other-
wise no test of linearity is possible. If the values of @, 8 and v in equations (3)
are known, the problem can be reducéd to that of testing hypothesis (1) or (2).
Since this case is unlikely to be encountered frequently in practice, further details
are omitted.

When a, 8 and v are unknown, we may theoretically replace the variates z;
and z, by v, = az + Bze and v, = w21 + psxs, Where u and p; are chosen so
that v, and v, are independently distributed. If hypothesis (3) holds, it follows
from (17) that in terms of the v’s, ¥u = ¢ = 0. Since in addition o2 = 0,
the two roots of equation (16) are

(20) pP=0 and o = yu/(Wn + von).
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Thus hypothesis (3) implies that one of the population canonical correlations
vanishes. Unlike the previous case, however, we cannot construct the corre-
sponding canonical variate, which requires knowledge of « and 8.

The selection of a sample test criterion opens up some difficulties. Pending
further elucidation of the problem, the natural choice seems to be the square
rs of the lower sample canonical correlation, or the equivalent quantity h, =
rs/(1 — r3), where h, is the lower root of the equation:

(21) . |a.-,- - hb,‘,‘l = 0.

It appears likely, however, that 73 and h; are not sufficient estimates of the
corresponding population parameters.

When 7, is large, Hsu [8] has shown that the distribution of nsh, tends to that
of x* with (n; — 1) degrees of freedom. A considerable advance towards the
small-sample distribution is obtainable from Madow [10], who developed an
expression for the exact distribution of r; and r; when one of the population
correlations is different from zero. In our notation this result, which is an im-
portant generalization of the distribution found by Fisher [5] and Girshick [6]
may be written as follows:

— 91 n1—8 n—3
4#(;1:1—:*-27)'41 " 2_)'2)! rird) T {1 — A —13)} T (] — r)) dridr;

(22) F<n1+n2 m + m m pfy)dy
xu—pymﬂﬂfz 2 22

l Vi -y - 1) ’

where p; is the non-vanishing population correlation. It is evident from the
form of (22) that the distribution of 7§ or h, involves p; . The conditional dis-
tribution of hy/h; may be relatively insensitive to changes in p; , though even
this distribution does not seem entirely independent of p; .

When p; is unity, the small-sample distribution of A is that of the ratio of two
independent sums of squares, i.e., by = (ny — 1)¢*/ng, with (n, — 1) and n,
degrees of freedom. This result is a particular case of a more general result
proved in section 8. From (20) it is seen that p; is close to unity when e, is
large relative to ¢s, i.e., when the real differences among the treatments are
large relative to the.experimental errors. In the absence of a usable exact
solution, the F-distribution may be a better approximation than the large-sample
distribution of h; for data where 7, is found to be close to unity, though proof of
this statement is not yet available.

If it is desired to test hypothesis (3) with the additional assumption that
v = 0, we replace a;; by (a;; + m;;) in equation (21) for ke , and n; by (n, 4 1)
in the distribution theory.

7. Connection with the method of least squares. The previous approach has
an interesting connection with the method of least squares. We are required to
test the linearity of relationship between (n, + 1) pairs of means (1., &2).
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Both variates are subject to error and the errors are correlated; with r’ replica-
tions the population variances and covariance of these means are ¢1,/7’, o2/r’
and o12/r’. For these unknown quantities we have sample estimates by /nar’,
{na/nar’ and big/ner’ respectively, derived from the Error line of the analysis of
variance.

The procedure suggested by the method of least squares is to estimate the
parameters of the line and use the deviations of the points (%1, &) from the
line for a test of linearity. If the population variances were known, the un-
known quantities «, 8, v and £;, would be estimated by minimizing the quadratic
form: -

ni+1 ni+l ni1+1
(23) o tz: ' (Fe— 1)’ + 20 2 1 (Fre— £10) (T — £2) + 0% 20 (@ — B20)',
subject to the linear relations (3). Here (¢) is the matrix inverse to ¢;;. On
substitution of the estimates, expression (23), which is positive definite, would
serve as a “‘sum of squares” of deviations from the line and therefore as a test
criterion. This criterion is of course a direct generalization of the weighted
sum of squares which is used when the errors are independent.

Van Uven [14] gave an elegant method by which the sum of squares of devia-
tions can be found directly, before solving for any of the unknown quantities
In our notation he showed that the sum of squares of deviations is the smaller
root H; of the equation

(24) |ai; — Hai;| = 0,

where a;; is as before the treatments sum of squares or products.

Suppose that in default of knowledge of the o;; we derive the weights from the
sample estimates by;/ns ; i.e., we minimize (23) with b” in place of ¢, where
(bY) = (bij/n2)”". In this case the method of Van Uven shows that the sum
of squares of deviations from the best-fitting line is the smaller root H 2 of the
equation

(25)

a; — — by = 0.
2 1

Comparing (25) with (21) we find H » = mghs . Consequently the least squares
approach, with sample weights substituted in (23) for the unknown true weights,
leads to h, as a test criterion. Further, Hsu’s [8] proof that the distribution
of nghs tends to x* with (n, — 1) degrees of freedom establishes for this case the
standard least-squares result for the distribution of the residual sum of squares:
—namely that when the population weights are known, the residual sum of
squares is distributed as x°, with degrees of freedom equal to the number of points,
2(ny + 1), minus the number of independent unknowns, (n; + 3). By a trans-
formation of the z-variates to independent variables, this result can be obtained
alternatively from a theorem by Deming [2].
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8. Test for linear relationship—more than two scales. The extension of
hypothesis (3) to the case of p scales can be expressed by means of the equations

3" aie + Bikie = vi: G=2--p)t=1,:m+1).

The equations, (p — 1)(n; + 1) in number, postulate a linear relation between
z; and every other variate and consequently imply a linear relation between
any pair of variates z; and z;.

Consider the variates v; = ait1; + B, (¢ = 2, -+ p). For v, we choose
the linear function of the z’s which is independent of v;, - - - v, . Thus in equa-
tion (16) for the population canonical correlations we have ¥;; = 0, (7, j, > 2)
and o1; = 0, (j > 1). It follows that all roots of equation (16) are zero except
one, the non-vanishing root being p* = ¥u/(Yn + vou). If each treatment
denotes a separate population, hypothesis (3’) is therefore identical with Fisher’s
hypothesis [4], that the populations are collinear.

As a test criterion for this hypothesis Fisher has suggested the sum of the roots
of equation (21), excluding the highest root, i.e., V! = Zh; = 2ri/(1 — 3.
If n; > p the sum extends over (p — 1) roots, while if n; < p the sum extends
over (n; — 1) roots. For computational purposes it may be more expeditious
to form this sum by subtraction. Hsu [7] has pointed out that the sum of all
roots is given by J = Z b“a;; , which is obtained readily when the inverse of

L¥)

(bi;) has been calculated. The largest root of (21) is then found and subtracted
from V.

Fisher [4] also suggested that when equations (3’) hold, the distribution of
V' is approximately that of x* with (p — 1)(n; — 1) degrees of freedom. This
result has been confirmed by Hsu [8] as the limiting form of the V' distribution
when 7, tends to infinity. As in the case of two scales, the small-sample distri-
bution is as yet unknown; it presumably contains p; , the non-vanishing correla-
tion, as a nuisance parameter.

Some progress towards the small-sample distribution can be made without
difficulty in the case where p; = 1. For then »; must have a zero Error sum
of squares in every sample from the population, i.e., v; is constant within any
given treatment. Consequently (i) by; = 0 for ¢ = 1, --- p, and (ii) ai;/au
is a single degree of freedom from the Treatments sum of squares of v;. On
account of conditions (i), equation (21) reduces to

an 12 o Q1p
o T
’alp azp — hbay ce Qpp — hbyp

Subtract ai;/ay; times the first row from the ¢th row, for ¢ = 2, --- p. We see
that one root is infinite; the rest are the roots of the equation

(27) ,a:'/i_hbiil=01 i’j=2:"'p:

n
where a;; = a;; — ayay;/an .



214 W. G. COCHRAN

If hypothesis (3’) holds, the quantities a;; follow the Wishart distribution [16]
with (n, — 1) degrees of freedom. Hence the joint distribution of ks, - - - h,
or h,, , is that which is obtained when all the population canonical correlations
vanish, with (n, — 1) in place of n;. For n; > p, the distribution function
(apart from the constant term) is:

4
(28) 1I [hé“l“""’(l 4 hgyTHmtnaD { I - h,)}]
e je=i41
For two scales, (p = 2), we reach the result mentioned in section 6, that V' = A
is distributed as (n; — 1)¢**/n,. This result can also be obtained directly from
(27). When p = 3, the distribution of V' is obtainable from a result by Hsu [7].

9. Measures of relative sensitivity. We propose to discuss briefly the esti-
mation of the relative sensitivity of two scales and to indicate the types of
distribution that are involved. If there are only two treatments, ¢, ¢/, an ap-
propriate definition of the true sensitivity of the 7th scale is

2
(29) (E't' Eot) ,
20
or some simple function of this quantity. In justification, we may observe

that for a fixed number of replicates, the power function of the t-test in the sth
scale depends entirely on this quantity. An unbiased sample estimate is

(nz - 2)(57i¢' - jit)2 _ l
2bu T' ’

where 7’ is the number of replicates. Since (30) involves a non-central variance
ratio, confidence limits for the true sensitivity can be found from Fisher’s Type
C distribution, Fisher [3].

It follows from (3) and (29) that if two scales are linearly related (including
the case of equivalence) their relative sensitivity is constant for all treatment
comparisons. For scale 1 relative to scale 2 the sensitivity is measured by
[32 0’22/ a2¢7 11 .

If the scales are equivalent, apart possibly from a constant difference, this
quantity reduces to ¢ = g92/011 , for which F = by/by; serves as a sample estimate.
A test of significance of the sample ratio and confidence limits for the true ratio
may be obtained from Pitman [12], who showed that

N Y

follows the distribution of a sample correlation coefficient from (n, + 1) pairs
of observations. In (31), r3» = bls/bubx . The same procedure may be used
whenever « and 8 are known.

When « and 8 are unknown, a sample estimate of the relative sensitivity is
b’bes/a’byy , where (axy + bx,) is the discriminant function which corresponds to

(30)
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the lower root of equation (21). We have not been able to reach thedistribution
of this estimate. Confidence limits for the relative sensitivity can, however,
be obtained when 7, is sufficiently large so that ¢1; and o9, may be assumed known,
For in that case the problem reduces to that of finding confidence limits for
8*/o’. Now if a, 8 are the true coefficients, the quantity

o’ an + 2aBan + 6 arn
a?by + 2aBbiy + B2b2’

follows the n,”*/n, distribution. Any proposed values of « and 8 which make
(32) significant are rejected by the evidence of the sample. By equating (32)
to the desired significance level of n,e”/n, , we get a quadratic equation for the
two limits of 8/a. The limits will not be narrow unless the treatment effects
are large.

If the relation between the scales is non-linear, and the assumption of a con-
stant error variance throughout an individual scale is valid, the relative sensi-
tivity differs for different treatment comparisons. Even in this event estimates
of relative sensitivity may be of interest. Attention might be restricted to a
single degree of freedom from the treatment comparisons, in which case the
definition for two treatments could be applied.

Alternatively an estimate might be wanted of the average relative sensitivity
over all treatment comparisons. For a given number of replicates, the' power
function of the variance-ratio test of the treatment effects in the ith scale de-
pends only on the quantity

(32)

zt: (g — )

03

33)

Consequently this quantity, which is an extension of (29), might be chosen as
a measure of average sensitivity. The corresponding generalization of the
unbiased sample estimate (20) is

(ne — 2)ai
(34) nlr’b“

1
-5
Since the quantity a;:/b;; is a multiple of a non-central variance ratio, the com-
parison of two scales involves a test of significance of the hypothesis that two
non-central variance ratios are equal.

10. Summary. This paper discusses the analysis of data obtained when the
results of a replicated experiment are measured on several different scales which
we wish to compare. Recent work in multivariate analysis provides tests of
the hypothesis that the treatment effects are the same in all scales, and of the
hypothesis that the scales are linearly related. When the number of Error
degrees of freedom is large, the significance levels of these tests are obtainable
from the standard tables. For small sample tests, further investigation and
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tabulation of certain distributions will be needed, particularly that of the sample
canonical correlations when one population correlation differs from zero.

A Dbrief discussion is given of methods for comparing the relative sensitivity of
two scales.
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