NOTES

This section 1s devoted to brief research and expository articles, notes on methodology
and other short items.
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ON DISTRIBUTION-FREE TOLERANCE LIMITS IN
RANDOM SAMPLING

By HersBeErT ROBBINS
Post Graduate School, Annapolis, Md.

Let X;, ---, X, be independent random variables each with the continuous
and differentiable cumulative distribution function o(zx) = Pr(X; < z). A
continuous function f(x;, - - - , z,) with the property that the random variable
Y = o(f(Xy1, -+, X,)) has a probability distribution which is independent of
o(z) will be called a distribution-free upper tolerance limit (d. f. u. t. 1.). We

shall prove
TurorEM 1. A necessary and sufficient condition that the continuous function

flay, -+, x,) be a d. f. u. t. l. is that the function

n

f(xl’ cre, Tn) =H {f@r, -+, xa) - x)

=1
be vdentically zero.

Proor. Since f is continuous, we can prove the necessity of the condition by
deriving a contradiction from the assumption that f is a d. f. u. t. 1. for which
there exist distinet numbers a;, * -+, a, such that f(a;, -+, a.) = 4 # as,
Z=1---,n).

Since the numbers a;, ---, a,, A are distinct, there will exist a positive
number e such that the (n + 1) intervals

I: A—-—e<z<L
I a;—eSxSa.--}-e (i=1,---,n),
have no points in common. Moreover, since f is continuous, there will cor-
respond to € a positive number ¢ < e such that
A —¢ Sf(xl, ce )xn)'s A+ €,
provided that simultaneously
lz: — a| < @ G=1,---,n).
Now let p be any number between % and 4. Corresponding to p we define
the function o,(x) as follows. In the interval I we set o,(x) = p. In every
interval
Jii e — a <1< a+ a Z=1,---,n)

1Cf. S. 8. Wilks, Mathematical Statistics, Princeton University Press (1943), pp. 93-94.
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we let ¢,(x) increase an amount (:9)17) Outside the intervals I, Ji, -+, Ja

we define ¢,(z) in any manner so that it is continuous, differentiable, and non-
decreasing for every z, and has the properties o,(— ) = 0, 0,(0) = 1. Itis
clear that we can do this.

Let S denote the set of all points (21, - -, x.) of n dimensional space such
that simultaneously

|2 —ai| < & G=1,-,n).
Then by construction, for o, (x) defined above,

Pr(Xs, -+, Xa) e 8) = (317)

But if (X3, ---, X,) €8, then by construction,
A—e<f(Xy, -, Xa) <A+ e

and

Y = o,(f(X1, -+, Xa)) = p.
Hence for ¢(z) = o,(z) we have

Pr(y =) 2 ()
But since fis a d. f. u. t. 1., this inequality must hold for any ¢ (z).
Now choose a set of numbers

I<p<p<--<pm<}

where m = 2(3n)". Then from the above,
Pr(Y = one of the numbers p1, -+, pn) > 2.

This is the desired contradiction.

Let O.(x1, - - - , T») be the function whose value is the rth term when the num-
bers 1, - - - , &, are arranged in non-decreasing order of magnitude. In terms
of the functions O, we can characterize the continuous functions f which satisfy
the identity f = 0 as follows. Let ¢;, -- -, 7. be a permutation of the integers
1, ---,n. Denote by E(%, - -, i,) the set of all points (z;, - - - , z.) such that

Ty < Tip < ¢ < Ty, .

The n! sets E are open and disjoint. Since f is continuous and f = 0, in each

E(i, ---, ,) we must have, for some r,
f(xlr ot 7xﬂ) = Or(xly e ’xn)y
where the integer » = (41, - - - , %) must depend on the permutation %, , - - - , 7a

in such a way that f may be extended continuously over the whole space. (The
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condition for this is as follows. Two permutations #;, -+« , 2, and ji, -+, Ja
may be called adjacent if they differ only by an interchange of two adjacent
integers. Then for any two adjacent permutations, either r(i;, --:, %) =
r(j1, -+, ju) or the two values of r are the two interchanged integers. For
example, the function

_ JOs(1, 2, x3) if Os(z1, 20, ) = m
f.(xl y Tz, Tg) = {Oz(xl , &2, ¥3) otherwise

satisfies this requirement.)

We shall now prove that the necessary condition, f = 0, of Theorem 1 is suf-
ficient to ensure that the continuous function f be a d. f. u. t. . Fromthe
argument of the preceding paragraph, any continuous function f such that
f = 0 will in each set E(iy, -, 2,) have the value O.(x;, - - - , T»), Where 7 is
an integer from 1 to n. Since the variables X;, - -- , X, are independent and
have the same probability distribution, the probability that (X, - - -, X,) will
belong to E(41, -+, 1,) is equal to (1/n!) for every permutation 4, -, %, .
Let

W=f(X17 "'7Xn)'

Then if ¢(x) = do(x)/dx denotes the probability density function of each X;,
the conditional p. d. f. of W = 0.(Xy, -, X,), given that (X;, -+, X,)
belongs to E(s;, - - - , 2,), will be nl{,.(w), where

_ ew)e™ W)l — e(w)I*
) = = T Tt

Thus ¢,(w) will be of the form
¥r(w) = o(w)F,(o(w)),

where F.(s(w)) is a polynomial in o(w). Hence the conditional p. d. f. of YV =
(W), given that (X;, ---, X,) belongs to E(31, * - -, %), will be nl¢.(y), where

&(y) = F(y),

and the p. d. f. of ¥ will be
£y) = ZF,(y),

where the summation is over the n! integers r = r(41, + -+, %,). This is inde-
pendent of o(z), so that fisa d. f. u. t.1. This completes the proof of Theorem 1.

A function f(z;, - -+ , ) is symmetric if its value is unchanged by any permu-
tation of its arguments. It is clear that the only continuous and symmetric
functions f which satisfy the identity f = 0 are the » functions O.(z;, - - , Z.).
Hence we can state

THEOREM 2. The only symmetricd. f.u.t.1.’s are the n functions O,(xy, -+ , Tn)
(r=1,--+,n).



