RANDOM ALMS
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1. Statement of the problem. Consider the problem of distributing one
pound of gold dust at random among a countably infinite set of beggars. Let the
beggars be enumerated and let the procedure for distribution be as follows:
the first beggar is given a random portion of the gold; the second beggar gets a
random portion of the remainder; - - - and so on ad infinitum. In this descrip-
tion the phrase “random portion” occurs an infinite number of times: it seems
reasonable to require that it have the same interpretation each time. To be
precise: let z; (j = 0, 1, 2, - - -) be the amount received by the jth beggar. Let
the distribution of zo be given by a density function p(\):

@ pA) 20, O0=\<=1;
@ ];p()\)d)\= 1;
b
3) P(a<xo<b)=fp()\)d)\, 0<a<bxsl.

After the first beggar has received his alms and the amount of gold dust left is
u, (.e. xgp = 1 — u), the value of x; will be between 0 and . The uniformity
requirement mentioned above means that the proportion of u that the second
beggar is to receive is again determined by the probability density p: in other
words the conditional probability that z; be between Au and (A 4+ d\)y, given
that zo = 1 — u, is p(A) d\. In symbols:

b
4) Plap <z < bplzo=1—p) = f p(\) d\.
Writing « = au, 8 = bu, (4) becomes

8
(5) P(a<x1<ﬁlxo=1—;.c)=fa%p<l)—:>d)\.

More generally I shall assume that the conditional probability distribution of
Z,, assuming that after the preceding donations there is left an amount gk, is

given in the interval (0, u) by ;1‘ P <%> . In symbols:

b

©6) P(a<xn<b|2x,.=1—ﬂ)=f1p<5>dx, 0<a<b=np

i<n o M M

This assumption completely determines (in terms of p) the joint distribution

of the whole infinite sequence {xo, @1, 2, ---}. Several interesting special
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questions may be asked about this distribution. For example: What are the
expectation, dispersion, and higher moments of the x, ? What, similarly, are
the moments of the partial sum S, = D <. %;? More generally what are the
exact distributions of z, and of S, ? Will the process described really distribute
all the gold, or is there a positive probability that some is left even after every
beggar had his turn? What is the rate of convergence of the series D n>0 %n ?
It is the purpose of this paper to answer these and a few related questions.

2. Calculation of distributions. The n + 1 dimensional probability density
of the distribution of (zo, @1, -+ -, &) is given by’

1 \i
7 )
@ iél_Inl_Zi«')\/p(l—EKi)\i
in the region defined by A; = 0, A + -+ + X\ = 1. For n = 0 there is only
one term in the product and that one is equal to p(\); the region is defined by

0 = X\ = 1. The formula reduces in this case to the definition of the distribution
of 2. The general case follows inductively by the use of the conditional prob-

ability formula (6). (For example: P(to = N, &1 = A1) = Pz = MN)P (1 =

NN 1 M
A]. ' Xy = A0) - p()‘O) 1 _ XO p <1 _ AO) ‘>
From (7) it is possible in principle to calculate the densities of the distributions

of z, and of S,. Thus for example the density ¢, of the distribution of z,
is found by integrating out the A ; with j < n from (7), so that
A

® aow=[[I ;o5 x,.p(l —p M)dxo---dxn_l,

where the integration is extended over the region defined by A; = 0 (0 < j < n),
> ica; < 1. Similarly V.(6) = P(S. < t) is given by

A;

®© vo=[[Ti=s—5( )@
T PRI DV A VD DY A "

(0 £ t < 1) where the domain of integration is defined by \; = 0 (0 £ j < n),

s i < L.

Working with integrals of the type (8) and (9) is often greatly facilitated by the
substitution u; = Z igiNiy, A = i — pin), 0 £ 4 = n. The Jacobian of this
linear change of variables is identically one. The domain of integration used
in (9) is defined in terms of the W’'sby 0 = po T w1 < +++ = pa = ¢ = 1, s0 that

) Ve = [ [T [T I g (D),

ignl — pia " \1 — ping

1 A summation or a product extended over an empty set of indices will, as is customary,
be interpreted as 0 or 1 respectively. Since throughout this paper only non-negative indices
are considered, whenever the notation indicates a negative index the quantity to which it is
attached is to be interpreted as 0.
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Hence the density of the distribution of S, is

12 Bn=—1 b1 . — .
va(t) = fo dpin1 /o dpn_g +++ L duo [ 1 P(m #‘—l)

icanl — piy ™ \1 — ping

(11) .
t— Mn—1
1= pa? <l - nn-x)'

For later purposes it is more convenient to set ¢ = u, in (11) and to express
v»(us) as a multiple (and not as an iterated) integral; then

My — Mi-1
(12) On(pn) = f f Ay— -7 <1 — m—l) dpo +++ dpp_

where the domain of integration is defined by 0 = wp < 1 < +++ £ oy S
pn = 1. The integrals (8) and (12) are explicitly evaluated below for a special

case.
It is possible from (8) to find the kth moment Mi” of z,, M{® =
1

f A @u(As) AN, . Write
0

w= [ Np0a, = [ -0

Clearly M{™ is obtained from (8) upon multiplication by A% and integration
with respect to A, .

1 A
(m) _ k u
(13) M = f f)\" zlgln 1— i Mp<1 - Dici )\,-) o Do

It is advantageous once again to write u; = »,;<iA;. The resulting integral
may be written in the iterated form as follows:

1 1 1
M(n) —_ [ d[.tof d[ll Ve / d}ln H 1
0 ko Bn—1

ign 1 — piy

(14)

Consider separately the innermost integral

1
n — HMn— dn
J =f p<”———“——1> (un —Mn—l)k'lfu—-

Bn—1 1 — paa

Writing A = (un — #n-1)/(1 — un-1) this becomes
1
T = [ B0 = st B = el = o)’

Hence

n ! ! 1 ¢ Mi-
15) MO = [ oo [ dns IT #,_lp(" ) (1= i)

Bn~2 i<n 1 — pia
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The innermost integral this time is
J = fl P (ﬂn—l - ﬂn—2) (1 _ #n—l)k dﬂn—l .
Bn—2 1 — pnoe 1 - Mn—2
Write A = (up—1 — pa—2)/(1 — pn—2); then (1 — ppq) = (I — AN)(1 — pas) and
1
7= [ 00 = VA = o) dh = (1 —

Hence, finally,
1 1
Zu-lgn) = akﬁk‘/‘: d‘uo cee f d#”__z H

Bn—3 i< n—1

(16)

L, (’“ - "‘"‘>'(1 — o).

1 — pia 1 — pigy

Observe now that the right member of (16) (except for the factor 8:) may be
obtained from (15) upon replacing n by n — 1. In other words M{™ = g, M ",
Since M{® = o, it follows that

17) M = apl, n =201 2 -..

1
Instead of calculating similarly the moments f o 0n(un) dutn of S, it is more
o

convenient to calculate the quantities
1
NIE'") = ~/0‘ (1 - ﬂn)kvn(ﬂn) dﬂno

The moments themselves may be obtained from the N’s by simple combinatorial

formulas.
It follows from (12) that

1 1 1
(18) N{” = fo dpo f"o dpy -+ f,, . dun I1 1 y (m — #H) (1 — m).

ignl — pia 1 — piy

The innermost integral in (18) is
J" = fl P (lJn - #n—l) (1 _ ”")k dl-‘n )
Bn—1 1 — g 1 — pasy
Writing A = (un — pn)/(1 - #n-1), (1 — pn) becomes (1 — A)(1 — w,_y), so that
1
77 = [P0 = N = e B = 801 = )

Consequently
1 1
n 1 i = M
ng ) = ﬁk‘/o‘ dpo -+ f A H p<'u - l)'(l - l‘n—l)k

. i<n 1 — pig 1 — pia

(19)
= B N, Ign—l),
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so that
(20) N® =™, n=01,2--.

The additivity of the first moment yields an amusing check on (17) and (20).
Since E(8,) = E( j<nj) = D <n E(z;) (where E denotes expectation, or
first moment), it should be true that 1 — N m =3 jen M . In terms of o’s
and @’s this means 1 — g7 M= Ején i, and this in turn reduces to the trivial
identity a1 = 1 — Bi.

Since 0 = Y, i<n ©; = 1 with probability 1 for every n, it is clear that the series
> isox; converges with probability 1 to asum z, 0 = z = 1. Since E(z;) =
a8l and since E(x) = I.izo B(z)), it follows that E(x) = X izoasfl = o/
(1 — B) = 1. This implies (since 0 = = = 1) that  must be equal to 1 with
probability 1. In other words it is almost certain that all the gold dust will
eventually be distributed.

3. Product representation. Considerable light is shed on some of the above
computations (and in fact the moment formulas (17) and (20) are proved anew)
by the following considerations. The principle of equitable treatment enun-
ciated in the introductory paragraph was subsequently formalized by the condi-
tional probability relation (6). It may also be formalized by the following
(equivalent) procedure. Let o, 1, %2, --- be a sequence of independent
chance variables each of whose distributions is given by the probability density p;
let ¥ be interpreted as the proportion, of the amount available to the nth beggar,
that he actually receives. In other words
(21) z, = ya(1 — ;x,-), n=2012---.

i<n
The first main problem in this formulation is to express the 2’s in terms of the
y’s. This is most easily accomplished by an inductive proof of the formula
(22) Yoa=1=1I10-y)
isn ig n
For n = 0, (22) asserts merely that 2, = yo. The inductive step proceeds as
follows:

E:Bi=$n+ Z (Bi=?/n(1—_<zlx1')+ Z i

isn i=n—1 iSn— i=n—1
=y II @Q=w)+1-= 11 Q-9
i=n—1 j<n—1
—1—0—y) I @=wp=1=11 10—
isn-1 jS=n

From (22) it follows that
(23) Tn = Yn H (1 —w)

i<n
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and

(24) Ri=1-8.=1—- 2>z =]] (01— ).
isn isn
The moment formulas (17) and (20) follow immediately from (23) and (24)
respectively.
Another very important application of (23) and (24) is the following theorem.
If the first geometric moment (geometric mean)

r — exp {E(log [1 — yi))} = exp { [ 108 @ = 2000 dx}

1
is different from zero (i.e. if f log (1 — AN)p(QA)dA is ﬁnite) then the limits
0

lim (z./y.)"" and lim RY"
n=—r0 70
both exist and are both equal to r.
Since according to (23) and (24), x./y. = R.: the two parts of the conclusion
are seen to be equivalent. For the proof take the logarithm of both sides of (24)
and divide by n, obtaining

a_ 1
(25) log Ru" = = 3l log (1 — uy).

Since, according to the hypotheses stated, the chance variables log (1 — y;)
are independent and all have the same distribution with a finite expectation,
the strong law of large numbers applies to the right side of (25) and (after
taking exponentials) yields the desired conclusion.

The result just obtained may be phrased as follows: with probability 1 z,
is asymptotically equal to 7"y, . This statement shows that in an obvious if
somewhat crude sense the rate of convergence of D ;>0 x; is that (at least) of a
geometric series with ratio r. This conclusion is further supported by the
behavior of R,, which again is the sort of thing one expects from a geometric
series. (That is: the nth root of the nth remainder of a geometric series always
does converge to the common ratio.) As usual, more delicate quantitative
results concerning the rate of convergence may be obtained by applying to
(25) not merely the law of large numbers but the law of the iterated logarithm.

The product representation of z, in formula (23) points the way to a generaliza-
tion of this theory which may be of some interest. In this generalization z,
is still defined by (23) and the y’s are still independent, but the distribution of y;
is given by a density p;, where the p’s need not be equal to each other. In
terms of random alms this means that the condition of equitable treatment is
replaced by the following weaker condition: the probability distribution of the
amount that the jth beggar receives depends only on j and on the amount left
by the preceding beggars, and in particular does not depend on the sizes of the
alms already distributed. Many of the conclusions obtained under the simpler
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hypotheses carry over to this generalized case with only slight changes. In
particular the distribution formulas (7), (8), and (12), and the moment formulas
(17) and (20), are changed only to the extent of acquiring an extra subscript
due to the difference of the p;.

4. Applications. (A) The original motivation of the present work was an
investigation of the notion of a random mass distribution, and the results ob-
tained may be considered as one possible solution of the problem of defining
randomness for mass distributions in the special (discrete) case where the entire
mass is concentrated on the non-negative integers. It would be of great interest
to extend the results of this note to various continuous cases in which the set of
integers is replaced by the unit interval, or the entire real line, or » dimensional
Euclidean space. I intend to study some of these extensions at another time;
at the moment I merely mention one implication of this statistical point of view.

Considering the sequence {%o, 21, 23, - - -} as a system of weights, the integer
n carrying the weight . , various questions may be raised concerning properties
of the discrete mass distributions so obtained. For example: do the moments
Mk = Y nz0M'T, exist and, if so, what are their averages and dispersions and,
more generally, their moments and their distributions? I shall settle here the
questions concerning existence and expectation.

The chance variable m; is non-negative and, even it if is infinite with positive
probability, its expectation is defined by E(mi) = Y .»0n'E(x,) =
anﬂ MW = ano n*ay87. Since 0 < B; < 1, the last written series con-
verges and therefore E(my) is finite. This implies that m, is finite with prob-
ability 1.

(B) It has been observed that the logarithms of the sizes of particles such as
mineral grains are frequently normally distributed. Kolmogoroff® has given
an explanation of this phenomenon; the results of the present paper yield an
alternative and in some respects simpler explanation. Suppose in fact that the
probability of a particle losing a chip the proportion of whose size to the size
of the original particle is between A and A + dX isp(A) d\. With this stochastic
scheme the size of the remaining particle after n chips have been lost is given by
R, . Since, by (25), log R, is a sum of independent chance variables with the
same distributions, the Laplace-Liapounoff theorem may be invoked to show
that the distribution of R, is for large » nearly normal. (It is necessary of course
to assume here the finiteness of the second geometric moment, or equivalently

1
of the integral f log® (1 — A)p(\) d\.) The mean and the variance of each
o

summand of log R, are

a = fl log (1 — M)p(\)dx and b = fl [log (1 — \) — al’p(\) dA,
o o

2 A. N. Kolmogoroff, ‘“Ueber das logarithmisch normale Verteilungsgesetz der Dimen-
sionen der Teilchen bei Zerstueckelung,’”” C. R. (Doklady) Acad. Sei. URSS (N. 8.) Vol.
31(1941), pp. 99-101.
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respectively; consequently (by the additivity of the mean and the variance)
the corresponding parameters of the distribution of log R, (and hence of the
approximating normal distribution) are given by (n + 1)a and (n + 1)b° re-
spectively.

(C) A special case of the distributions studied in this paper (namely the case
of uniform distribution, p(\) = 1) arises in the theory of scattering of neutrons
by protons of the same mass. According to Bethe®: “In each collision with a
proton the neutron will lose energy. As long as the neutron is fast compared
to the proton, the probability that the neutron energy lies between £ and E + dE
after the collision, is w(E) dE = dE/E,, where E, is the neutron energy before
the collision. This means that any value of the final energy of the neutron,
between 0 and the initial energy E, , is equally probable.”

To calculate explicitly the distributions it is most convenient to start from
(11). If p (with any argument) is replaced by 1 and the terms of the product
are distributed, each under its own differential, (11) takes the form

Aitns f“n—l Aptn_sz . " duo
o 1 — pa1do 1 — pno o 1 — o’

(26) () =

The value of the iterated integral is easy to obtain: v,(f) = (—1)"(1/a!)
log” (1 — #). Since v,(t) gives the distribution of the partial sum S, , the distri-
bution of R, = 1 — S,isgivenby.v,(1 — 1) = (—1)"(1/n!) log™t.* Ttis possible
but not necessary to derive similarly the distribution of z,. It is simpler to
obtain this distribution by exploiting the symmetry of the uniform distribution.
Since, according to (23) and (24), x, and R, are both products of n + 1 uniformly
and independently distributed chance variables they have the same distribution,
so that the density of the distribution of z, is also given by (—1)"(1/n!) log” ¢,
n=2=012---.

The roles of the geometric mean r (= 1/e¢ in case p = 1) and of the normal
distribution have also been observed in the physical situation. Fermi® has
expressed the geometric series like behavior of .50 2, by the statement - - -
an impact of a neutron against a proton reduces, on the average, the neutron
energy by a factor 1/e,” and Bethe® remarks that - - - the actual values of log &
after n collisions form very nearly a Gaussian distribution - - -”

3 H. A. Bethe, “Nuclear Physics, B. Nuclear Dynamics, Theoretical,”” Reviews of Modern
Physics, Vol. 9(1937) p. 120.

* This distribution has been calculated by E. U. Condon and G. Breit, ‘“The energy
distribution of neutrons slowed by elastic impacts,” Physical Review, Vol. 49(1936) pp.
229-231.

8 Quoted by Condon and Breit, loc. cit.

6 Loc. cit.



