NOTES

This section s devoted to brief research and expository articles on methodology
and other short ttems.
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NOTE ON ASYMPTOTIC VALUE OF PROBABILITY DISTRIBUTION OF
SUM OF RANDOM VARIABLES WHICH ARE GREATER THAN A
SET OF ARBITRARILY CHOSEN NUMBERS

By Braprorp F. KiMBALL
New York Public Service Commission, New York City

The purpose of this note is to present the following theorem which the author
needed in connection with a computational problem. Since the theorem has
general implications for statistical theory which do not seem to have been
brought out heretofore, readers of this journal may find it of interest.

TuroreM: In Buclidean space of n dimensions with coordinates x; (1 =
1,2, -+ n) let a; be n constanis whose sum is uo, and consider a hyperplane

) Tzt T = U Z .
Let k denote a positive constant, and I(u) the n — 1 fold integral defined by

@ T(w) = f f exp.[—k<g x>] day dzs - - Aoy

taken over that part of the hyperplane for which x; > a;. Then
®3) lim /7 e I(w) = (x/k)" V"

Proor: The integral may be reduced to another integfal by reduction of the
quadratic form

n n—1 n—1 2
le?= lef-l-(u— in)
1= 1=

i=1
to a sum of squares y: such that y; does not involve z; for j < 7. Dropping the

superscript n — 1 in the notation for = and letting the subscript on Z denote
the least value of 7 involved in the sum, the expansion of this form may be written

22xf—2z¢2x¢+22xix,~+u2, i < J.
1 1 1

The transformation may be performed progressively as follows:

(V2o + 2@+ 2+ - —wa+ [(u— 22:935)/\/5]2 =i

giving
n=1v2x— (u— sz,-)/\/z.
423
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424 BRADFORD F. KIMBALL

Using the remainder of the terms involving z,, one can complete the square
with terms not involving z,, and the value of y. is

¥ = 2V3/v/2 — (u — 2 2)/V/6.

3
Continuing until only terms involving x,—; and « remain,
Yna = Taa V1/N0 — 1 — u/A/n(n — 1).

The remaining term in u will be found to be %*/n.
Making the above transformation, the integral becomes

n—1

@ I = [*"/y/n] f ‘e f exp.[—k (;E-x yf)] dyrdys ++* dYn.

In order to fix the limits of integration on y, it will be noted that the projection
of the critical region of the hyperplane (1) upon the n — 1 dimensional space in
the original variables z; delineates a region in that n — 1 space bounded by the
n — 1 hyperplanes

T = Qi i=1,2---,n—1
and the hyperplane

ittt ot T =uU— .

Hence, if (2) is considered as an iterated integral with the integration per-
formed in the order of the subscripts of x;, the intervals of integration are

a <n Su—an—zxi
2

@ <z <u—@—a— 2 %
3

ar er Su“zxe—(uo,—zai)
r+1

r+1

.......

On1 L Tacy KU — U + Cny,

n—1
where it is recalled that ), denotes . .
r+1 i=r+1

Now transforming to y; and using the general transformation equation

5) Yo =21 + /1 — (u—;xi)/\/(r-l-l)r, 1<r<n-1

where 2 2, = 0 under definition of summation symbol noted above,

n

Lower limit of y, = — (u — ;lx,-)/\/ﬁl_); + a7 +1/A/7,
Upper limit of y, = (u — in) N1/ — (U — Zai) N+ 1/Vr,

r+1 7+1
since

Vr+ 1NV = 1YNVE+ D= Vr/Vr+ L
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It is not difficult to show that
g T = Copn(y) + (0 — 1 — ryu/n

where C,.1(y:) denotes a linear combination of y; for 2 > r + 1, which does not
involve the variable . In other words

u - ;xs = (r + Du/n — Cra(ys).

Making this substitution, the limits on y, are found to be
Lower limit of y, = — (u/n)(\/r + 1/4/7)
+ Coa@)/V T + Dr + aVr ¥ 1/VT,
Upper limit of y, = (u/n)(V/r@r + 1) = Crn@)Vr /A7 F 1
= (w0 = 2 a)Vr F1/Vr.

It will now be clear that as u becomes infinite, the limit of the integral in (4),
will be the » — 1 fold integral taken over the whole of n — 1 space. This latter
integral is easily evaluated to give (r/k)™ "%, and the theorem follows.

The following two corollaries, which are restatements of the theorem in less
general form, bring out the implications for statistical theory.

CoroLLARY 1. With k = 1/2 define F,(u) by

®6) Fa(w) = @m) ™" I(w).

The differential F,(u)du represents then the probability that n random variables z;
taken from a normally distributed population with zero mean and unit standard
deviation, fall into a region

(7) a; __<__ T

and have a sum with value in the neighborhood (% du) of u.
Recalling that u, is the value of u when each z; has value a;

(8) Pla; < 2] = f ) F.(u) du

is the probability that all values of z fall into the region (7). Denoting the normal
probability function by ¢(t), corollary 1 implies that

) Lim V'n Fu(u)/$(u/v/n) = 1.

Since ¢(u/A/n)du/+/n represents the probability distribution of the sum of
the » random variables when the condition (7) is removed, certain implications
for the theory of statistics emerge. One of these is noted in the example given
below. Corollary 1 can be stated in a different form as follows:

CoRrOLLARY 2. If pa(u)du denotes the probability that the sum of n random varia-
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bles from a normally distributed population be in the neighborhood (=% du) of u, and
p(u) denotes the probability that the sum of n random variables from the same
population that do fall in region (7) have a value in this nexghborhood of w, it follows
from (9) and the nature of the functions integrated that for arbitrarily small posttive
8, a value of u, say w' can be found, sufficiently large, such that for all uw > u/,

(10) (1 = 8) pa(u) < ps(u) Pla; < @] < pa(u).

Rate of convergence. The author having had occasion to compute F,(uw) for
values of n from 2 to 5, and a; = 0, a table showing the rate of convergence of
F.(u) to its limit for this range of n (and a; = 0) is shown below. In this table
the values of ‘the ratios of the minimum values of u (= «’) to the standard devi-
ation of u (= 4/n) are shown for a sequence of values of § which approaches
zero.

Rate of Convergence of \/n Fn(u)/d(u\/n) to Unity for a; = 0
Critical Ratio w'/A/n

8 n=2 n=3 n =4 n=25
.5 0.67 1.34 1.92 2.46
.25 1.15 1.95 2.65 3.27
.1 1.64 2.60 3.40 4.11
.05 1.96 3.02 3.89 4.65
.01 2.58 3.85 4.87 5.76
.001 3.29 4.84 6.03 7.08

Ezxample. An example showing the possible bearing of this theorem upon
practical considerations of sampling is the following: If in a quality control
problem, samples of size 4 were used, and a follow-up of samples which showed a
large deviation of sample mean were pursued, a case of a particularly large devi-
ation such as 4 would possibly receive special attention. With sample mean
equal to u/4, the ratio of this mean to its standard deviation is w/2. Turning
to the table, in column n = 4 it will be noted that the value of § for w//2 = 41is
somewhat less than .05. Hence from (9) and (10), for u > v’ (v’ = 8, n = 4),

95 ¢(u/\/n)/Vn < Falw) < ¢u/v/n)/v'n.
It follows that

95 f w d(u/A/n) du/v/n < f Fo(u) du < f °° d@/\/n) du// 7.

If one now considers a set of random samples of size 4, the last integral on the
right represents the expected proportion of the set which falls into the sub-set 4
for which v > ' (and hence with deviation of mean relative to standard devi-
ation of mean greater than 4//A/7n). The middle integral represents the expected
proportion of the original set which falls into a sub-set B for which v > ' and
z; > 0. It follows from the inequality on the left that the expected proportion
of the sub-set A which falls into the sub-set B is greater than 95 per cent. Hence
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one infers that the probability is greater than .95 that for a sample showing such
a large deviation from the mean (u/\/n = 4, n = 4) all the constituent elements
will have deviations on the same side of the population mean. Thus if all the
elements of the sample investigated are found to have deviations on the same
side of the population mean, this could not be construed as additional evidence
that the sample indicated an abnormal condition.

This conclusion is weaker than the facts of the example warrant, since it is
based upon the integral of F,(u) from %’ to infinity. Unfortunately the author
does not have data available on the rate of convergence of these integrals.

NOTE ON A MATRIC THEOREM OF A. T. CRAIG

By HaroLp HoreLLING
Columbia University

An extremely elegant theorem given recently by A. T. Craig' and applied
by him to establish a further theorem on independent x° distributions may be
stated as follows:

If A and B are the symmetric matrices of two homogeneous quadratic forms in n
variates which are normally and independently distributed with zero means and unit
variances, a necessary and sufficient condition for the independence in probability
of these two forms is that AB = 0.

The proof given that the condition is sufficient is adequate, but Craig’s
treatment of its necessity consists essentially in its assertion. In view of the
growing interest in such quadratic forms, for example in connection with serial
correlation, the neatness of this theorem is likely to lead to a wide usefulness.
It therefore seems worth while to give a complete proof of the necessity condition.

The form with matrix A is denoted by @; and that with matrix B by Q.
The characteristic functions, if defined as Ee™°' and Ee*®, are respectively the
reciprocals of the square roots of the determinants of the matrices 1 — AA and
1 — uB, while the characteristic function for Q; and Q, together, Eef®%:#e
is the reciprocal of the square root of the determinant of 1 — A4 — uB. A
necessary and sufficient condition for independence is therefore that

|1 =M |- |1 —uB|=|1—-2N — uB|
shall hold identically for all values of A and u. Since the determinant of the
product of two matrices is the product of their determinants, the left member is
the same as
|1 — N — uB 4+ MAB | .
From this it is immediately obvious that AB = 0 implies the independence of
the two forms. The converse will now be proved.

1 “Note on the independence of certain quadratic forms,’’ Annals of Math. Stat., Vol. 14
(1943), pp. 195-197.



