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the sum of these four values equal to one) then p{s...s — Pipupss . 1f however
for m = 6 merely dyz = ds = 1 (realized if, in a notation analogous to (3), v , v ,
Vs, Uss, U1z, Vst , V1zs , Uiss are the only non-zero values of the 1.d.) then Pl e —
D12Ps4PsPe -

In general, with a proof which consists in a modification of the reasoning (p.
41), of my earlier paper, we may state the following complement to the main
limit theorem (9): If the L.d. is such that r < m disjoint groups Gy , Gy ,- -+ G
of completely linked characters exist,~i.e. such that within each group mo crossover
takes place, each group containing as many of the m numbers as compatible with the
definition but not less than two, and all groups together containing s = m of the m
elements, then, as n — ©, Pi3’.... converges towards the product of those marginal
distributions (of the original generation) which correspond to these groups multiplied
by the marginal distributions of order one of the remaining free elements which are not
contained in any such group. In aformula:

(10) lim P61.6o - CrvstirVstz s Tm — P& Pay.--Pe, Prys+1Prste -Prm:
n-—w

We may also characterize these linked groups of maximum size by stating that
while within each group no crossover takes place there must be at least one ¢.p. #
0 among any two such groups and at least one among any group and any free
element. It may however be noted that if there is one c.p. > 0 among two
groups of complete linkage (or among a group and a free element) then all ¢.p.’s
among these two groups are different from zero. In fact, it follows by repeated
use of the triangular relation (2) that if one c.p. among two disjoint groups of
complete linkage is zero, all of them are zero. If, e.g., (1,2,3) and (5, 6, 8) are two
groups of complete linkage, i.e. v12(000) = 1 and s5(000) = 1 and if besides
cis = 0, then 12565(000000) = 1 and these six elements form a group of complete
linkage. _

It may be noticed that the above statement of the generalized limit theorem
becomes simpler and more elegant by counting “free elements” as groups. It
might then run as follows: If Gy, Gz, - -+ Gi(¢ = m) are the maximal groups «of
completely linked characters, then, under the hypotheses of the earlier paper, the gene
distribution in successive generations approaches a limit in which the original (mar-
ginal) probabilities within each group G are preserved and genes and sets of genes
fromd ifferent groups are independently distributed.

ON THE DEFINITION OF DISTANCE IN THE THEORY OF THE GENE

By HiLpA GEIRINGER
Wheaton College
In several letters to this author Dr. I. M. H. Etherington of the University of

Edinburgh has raised questions concerning the author’s definition of “distance”
proposed in Section 10 of her paper on Mendelian heredity,' comparing it with

1 Annals of Math. Stat., Vol. 15 (1944), pp. 25-57.
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394 HILDA GEIRINGER

the definition implicit in Professor J. B. S. Haldane’s earlier treatment.” The
main content of the author’s paper consists of some general limit theorems and
the integration of a certain system of difference equations. The distance defini-
tion is a by-product subject to discussion.

“Distance” d;; between two genes 7 and j is defined by the author as the
mathematical expectation of the number of crossovers in the interval (z, ) with
respect to the “linkage distribution” (1.d.). This basic concept is introduced
as follows (page 32): If S is the set of numbers 1, 2, - - - m (m being the number
of Mendelian characters), A any subset of A and A’ = S — A, we denote by
1(A) the probability that an individual with ‘“maternal” genes 1, - ,Tm
and paternal genesy , - - -, ¥ transmit the paternal genes belonging to A and the
maternal genes belonging to A’. These 2™ probabilities constitute the l.d.
From these definitions the equality (G. (53"))

1) di; = Cijiv1 + Cigripe + o0 + Ccij (z <3)

is derived, where c;; is the probability of a “crossover” (c.p.) in (¢,5). This
distance has the required additivity: (G. (54))

2 di; + djx = du, (Z<j<k).

Etherington points out that the term ‘‘distance” has an established currency
in genetics being the basis on which chromosome maps are constructed, and
that there is a standard method of calculating it in accordance with which (1)
is an “approximation valid only when the adjacent c.p.’s are small.” Moreover
“the biological uniqueness has been lost for the value of di; now depends on the
particular set of intermediate genes which we happen to be considering. If any
of them are omitted from consideration then the inequality (G. (13)).

(3) Cij + Cit = Cir .

shows that in general d;; is diminished while if new genes are taken into con-
sideration d;; may increase.” “In order that d;; should not depend on a particu-
lar choice of intermediate genes the word ‘crossover’ in the definition given would
have to be interpreted as ‘chiasma’ instead of ‘odd number of chiasmata’; and
then d:; cannot be evaluated in terms of the 1.d. alone without further assump-
tions regarding the interference of crossovers.”

The point of view adopted in the author’s paper was to regard the l.d. as the
basis from which everything else has to be inferred. The number m of Men-
delian characters is considered constant and the distance, being a mathematical
expectation with respect to the 1.d. necessarily depends on it. In this conception
distance is not a geometric property which can be measured for any two genes
independently but rather a system of m(m — 1)/2 consistent numbers associated
to the m genes. There is no choice regarding the intermediate genes to be taken
into consideration; all known genes are to be considered, i.e. one has to use the
available relevant information in order to determine the 1.d., the c.p.’s and the

2 Quotation [4a] in the author’s paper. References to these papers will be distinguished
by the initials H and G.
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distances. If the information is incomplete the results will be provisional and
subject to change; if it is satisfactory the same will be true for the distances.
Thus it is nothing but natural that d;;is changed if some genes are omitted from
consideration, or if new genes are discovered. In this set up “crossover’—
defined by means of the marginal distributions of second order of the 1.d.—means
a transition from the paternal to the maternal set or vice versa. (Expressed
in terms of the chiasma-hypothesis this means “odd number of chiasmata
between adjacent genes.””) Additional assumptions “‘regarding the interference
of crossovers”’ are neither necessary nor admissible. All this is contained in the
1.d.

Haldane’s approach as translated by Etherington into the author’s notation
is as follows. “The genes are considered to be distributed continuously along a
chromosome. Thus this approach unlike G.’s is not based on the 1.d. of a
finite set of genes. We must think of one suffix, ¢, as referring to a gene at a
fixed locus on the chromosome, the others to variable loci, so that the c¢.p.’s
are variable. For any three genes 4, j, k a quantity p is defined by the equation

4 Cik = Cij + € — DCiiCji t<j< k).

Biological considerations show that p is a number between 0 and 2 (small when
cijand cj are both small, increasing, on the whole, with ¢;; + ¢;.). The distance
D;; is defined by the statement

5) Dy;/ci;— 1 as k approaches j (cxj— 0),
together with the additive property, and from this with (4) Haldane’s general
distance expression is derived:

i dC,;j

o 1 — pocy

(6) D;; =

Here po = po(c;;) denotes the limiting form of p when & approaches j, and repre-
sents biologically a property of the chromosome segment (7, 7), a measure of
interference. Any suitable specification of this function po(c:;) would constitute
a mathematical ‘model’ of the chromosome. If p were constant we should
have po = p and

1
©) D= — I—)log (1 — pcsj).

Both Haldane and Geiringer considered the special cases p = 2 (no interference)
and p = 0 (complete interference) for which respectively

7 Dij= — }log (1 — i)

(7") D,’j = Ci; = dij.

Since p is always between 0 and 2 Haldane concludes that the true value of D;;
is between (77 and.(7""), and he gives reasons for saying that (7’) is nearly correct
for genes ‘far apart,” (7"') for genes ‘close together.” ”’
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If the author is right, this seems to be the standard definition accepted in
genetics as mentioned above by Etherington. A few, not exhaustive, comments
may be added. Writing in (6) ¢ for the variable of integration and p, = po(t)
it is seen that the expression

wi gy

contains the unknown function po(t), which is unspecified except for the state-
ment that it is bounded between 0 and 2. It is immediately seen that with an
arbitrary p,(f) and without a restrictiou taking the place of (4) this distance (6)
will not be additive in the sense of (2). By imposing, after a choice of po(¢),
appropriate restrictions on the c;; additivity may be achieved. For instance in
the particular case pi(t) = p = const, (2) holds by virtue of (4). For such a set
of restrictions it has then to be proved that the corresponding “model” is “con-
sistent,” i.e. that the so restricted c.p.’s form a compatible set of marginal
distributions of second order of an m-variate distribution, the 1.d.

These different points will be exemplified presently by studying the particular
case po(t) = p, where p is a suitably chosen constant; the parameter p is to be
fitted to the observations under consideration. It may be impossible to repro-
duce a set of observations satisfactorily if one parameter only is available. In
fact, Haldane’s paper suggests that it is not only the particular case p = const
he has in mind. It seems however that if D,;is given by (6) with a non constant
Po(t), complicated and perhaps (biologically) not very meaningful conditions may
have to be introduced in order to assure additivity of the distances and con-
sistency of the respective model. This author was unable to work out examples
of more general and at the same time appropriate and fairly simple assumptions
for the unknown function po(f).

If p = const, then (7) under the restriction (4) furnishes an additive distance
definition because:

— P[Dij + Dyl = log (1 — peiy) + log (1 — pcj)

= log (1 — pei; — pej + p'eieq) = log (1 — peu) = — pDa,
because of (4). Let us now investigate whether there is a consistent system of
c.p.’s satisfying (4). Put, as in G.(48), ¢i,iy1 = p:, combine (4) with G.(50) and
write p = 2e. It follows that (4) is satisfied with 0 < ¢ < 1, if:

(8) Pij = €P;,  Pij = €DPPi,

Here p;; is the probability of the simultaneous occurrence of the “events”
numbered 7 and j, etc. For ¢ = 0 we get “disjoint events” (see G.z) for the
discussion of consistency). Assume now e¢ > 0. By some considerations,
analogous to those p: 54 G, the following necessary and sufficient condition of
consistency follows:

m—1

9) I (1—ep)21—ce (e > 0).

Te=]
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This restriction (not considered by Haldane or Etherington) is, of course,
relevant. If eg. m = 3, pr = p, = 4/5, then e must be = 15/16; or if m = 4,
PL=ps=ps =% ¢ =3 — v/5results. The restriction required by the “linear
theory” is

(10) P o, G=12-,m=1.

Hence this model is consistent under certain restrictions. It is, in contrast
to Etherington’s contention, different from iii) G. p. 54. The corresponding
distance definition (7) is different from the author’s. The D;; thus defined are
additive, and D;; depends on c¢;; only and not on the intermediate genes. The
author’s definition of distances, d;;, is general, additive and seems to the author
to be well adapted to the biological situation; since the definition of d;; is not
related to any particular model it is compatible with any model, which may
contain any desired—consistent—assumptions about ‘‘interference,” etc. For
examplein G. iv) p. 55, an n-parametric model has been suggested which seems
fairly flexible.

It may however seem more acceptable to the biologist not to use a general
distance definition but to define ‘“‘distance’’ merely in relation to some sufficiently
general “model”’ (such that the distance definition would vary with the model),
instead of accepting an all-over definition as ventured in the author’s paper.
The particular model (8) in connection with its related distance definition (7)
might give an example of such an approach.>

3 As Etherington remarks, eq. (14’) in the author’s original paper is not correct. One
can only state that (47) holds. The mistake is however without consequence since no
conclusions are drawn from (14’). The same mistake was pointed out by Professor Kai
Lai Chung. .

4 Etherington writes: “I have been kindly allowed to read Professor Geiringer’s MS.
and feel that some comments are necessary.

The standard procedure for calculating the distance between two linked genes is as
follows. A selection of intermediate genes is taken and the adjacent crossover values
calculated, giving a provisional estimate of the distance as in Geiringer’s formula (1).
When further intermediate genes are added to the selection, it is found that the provisional
distance increases, but there is apparently a maximum value beyond which it cannot be
increased. This unknown maximum value is the distance, and the geneticist accepts (1)
as the distance when he is sure that he has observed a sufficient number of intermediate
genes to give a good enough approximation to the true distance. Thus Geiringer’s formula
(1) gives the geneticist’s true distance only on the understanding that it includes all genes
intermediate between ¢ and j; but generally speaking the great majority of these genes
may be unobservable in the sense that they have no observably distinct alleles by means
of which the c.p.’s could be calculated, though from time to time fresh genes may become
observable by mutation.

In some cases the above procedure fails because not enough intermediate genes can be
observed; then Haldane’s analysis is useful. It should be emphasized that his distance is
additive by definition. (For a geometrical analogy, think of the genes as points closely
distributed along a curve, chords representing c.p.’s. Haldane’s definition of the distance
is analogous to-defining arc length of the curve as a limiting sum of chords.) In my tran-
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scription of his treatment, I should perhaps have made it clearer that the derived formula
(6) gives only the distance D;; measured from the initially chosen and fixed gene 7z to an
arbitrary gene j. Other distances D, (¢ < j < k), are deduced from it by the postulate
of additivity (Djx = D — D;j;). If the origin ¢ is changed, there will be a similar formula
(6), but it should not be assumed that the function po is the same. In referring to certain
conditions necessary ‘to assure additivity,” Geiringer evidently means conditions that the
function po may be the same for all origins 2. These conditions would be interpreted bio-
logically as asserting uniformity of interference along the chromosome. I agfee that there
are further points to be cleared up in this connection.

If T might sum up the discussion, I would say that the geneticist’s conception of the
distance between genes is an actual property of the corresponding chromosome segment.
Geiringer’s definition represents the best possible general approach to this from the limited
data of the 1.d. alone. Haldane’s definition fits the geneticist’s conception, and his in-
vestigation is an attempt to get the best estimate of the distance by making approximate
assumptions as to what happens between the observed genes. It is based on the unob-
servable crossover-distribution of a supposed infinite set of genes, but can be applied to
particular models of this infinite c¢.d. so as to derive results which involve only a finite and
observable ¢.d. Finally it should be mentioned that in the paper quoted, Haldane gave
also an alternative method for the case p = 2, leading to the same formula (7’); which is
really equivalent to defining the distance as the mathematical expectation of the number of
chiasmata (not crossoversin G.’s sense) in the interval (¢, 7).”’

A CRITERION OF CONVERGENCE FOR THE CLASSICAL ITERATIVE
METHOD OF SOLVING LINEAR SIMULTANEOUS EQUATIONS

By Crirrorp E. BERRY

Consolidated Engineering Corporation, Pasadena, Calif.

The recent development of two devices" * for solving linear simultaneous
equations by means of the classical iterative method® has stimulated the writer
to investigate convergence criteria for the method. There are in the literature®
necessary and sufficient criteria for convergence of symmetric systems, and suf-
ficiency criteria for general systems. So far as the writer knows, however, this
is the first development of a necessary and sufficient criterion for convergence
in the general case. The results obtained are applicable to any arbitrary square
non-singular matrix in which a; # 0.

Let the set of equations be represented by

(1) AX = @,
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