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The main problem considered here may be stated as follows:

Let fi(z), -- -, fa(x) be n polynomials. It is the purpose of this paper to
establish formulas concerning the mathematical expectation (probable value)
of the product

fi@) - -+ falza),

where z,, - - - , x, are positive random variables and the sum of these is supposed
known.

Before establishing the formulas let us introduce some notations for con-
venience.

1. Notation. (A) In this paper the notation (m;k;z,, -+, 2.) or (m; k; z)
is used to denote that a set of numbers (z1, - - - , z,) is over all different composi-
tions of m into n parts with each = £, i.e. over all different integer solutions of
the equation z; + -+ - 4+ x, = m with each z = k.

(B) Let m, 6 be two positive real numbers. The notation E(m, §, [fi] - - - [fa])
denotes the mathematical expectation of the product fi(z:) - -+ fu(x,) in which
the sum m = 2; + - -+ + x, is known and for every z,(» = 1, - - - , n) the value
of z,/6 is a positive integer. The notation E(m, §, [fi] - - - [f.]) thus implies that
the value of m is a multiple of 6. We call the 6 a “varying unit”, i.e. the least
possible difference between two different quantities z; and ;7 # j. The nota-
tion E(ms, [f]") is merely a special case that denotes the mathematical expecta-
tion of the product fi(z1) - - - fo(x,) under the known conditions

fl="'fn=f, x1+"'+xn=m, %=[%’]gl)
(v=1)""n)r

where [ ] represents ‘‘integral part of”’.
(C) In order to simplify our formulas we always denote f(z) by f, for + o
+f,byf, ..., and Lpy + - -+ + k.pi by o(p) or ¢. It is a convention that
m

—)=0form < n.
n
2. Lemmas. LemmA 1. Let m, 7, -+, T, be non-negative integers. Then
“r (2, m-+n—1
1 = .
W (n%z)vgx(h) <71+~-+rn+n—1>
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Proor: The lemma follows immediately by considering the coefficient of the
term 2™ "1t on both sides of

1 rit+l 1 ratl 1 ritetratn
(=) (=) - ()

LEmMA 2. Let a, b, ¢, - -+ be any constants, and ki, ke, ks, - - - any positive
integers. Then

L)+ () + G+ ]

= n! Z ( m+mn—1 ).(_l_éf_...
(nviaBoye-) \ak1 + Bk + yks + --- +n — 1/ a! Bl y! ’

Proor: Expanding the left-hand side of (2) we see that the coefficient of the
term a°b°c” - - - is equal to

a!B!’Y!(m;O;z) y k1 ks ke ks ks :

By Lemma 1 it becomes

)

n! ( m+n—1 )
a!Blyl\aks + Bks + vks + -+ +n —1)°

Hence the lemma.
LemMA 3. Let m, n(< m) be two positive integers. Then, for any given poly-

nomial f(x) of the kth degree, we have
— k _ 1\
® 3 f) @) = T (':j_r:_ 11) 1=

(n:0;p) v=0 Dy !

where f© = f(z), ¢ = o(p) = Lps + -+ + kps .
Proor: Since f(x) is a polynomial of the kth degree, there exist (k + 1) values
Bk, -+ , Bo such that

> (?) = @,

=0

By puttingz = 0, 1, - - - , k, it is orderly determined that
=70 = (s e ()10 0= G0t h.

The lemma is thus obtained by (2).
For convenience we denote the summation Y, (m;1;z) fi(xy) - - - fa(xa) by
(m;1;z)

S(m, [f1] - - - [fa]). Thus the formula (3) can be written as
" m +a — 1\ 77 [ = D"
son 1) = T (T2

(ni0:ip) ve=0 D! :
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LevMMa 4. Letfi(z), - -+, fa(x) be n given polynomials. Then

@ S D) =5 X (DS, [fy -+ £l

AN S)
1<k<n

where (v1 - -+ ) runs over all different combinations out of (1 ---n), k = 1,
-, m.
Proor: The proof depends essentially on the formal logic theorem. Con-
sidering a typical term

n!
Q! gl S(m’ [fl'l]ql e [fn]‘“)) 1 <t<n, a+ - +q=mn
we see that it is contained in the last (n — ¢ - - 1) summations of the righthand
side of (4), i.e. in the summations (v, --- ») ask = ¢, ¢+ 1, -+ ,n. The num-

ber of occurrences of the term in the right-hand side of (4) is therefore

n—t .
yfn—1ty _0 if t>n
;}(*D( v )_1 if t=n.
The term vanishes generally except when ¢; = --- = ¢, = 1. Hence the right-
hand side gives

S(m, [fi] - -+ [fa))-

3. Theorems with formulas. In the following statements of theorems and
corollaries, the notation (z; - - - x,) is always to denote a set of undetermined
quantities, though the kind of the quantities of the set is stated.

TueorEM 1. Let (x; - - - x,) be a set of natural numbers under a known condition
i+ -+ + x, = m. Then, for any given polynomial f(x) of the kth degree, we have

: SN m+n'— 1\ 777 — DT
6)  Em,1,[f" = (m - 1) = (a m_ 1>,I__IOT'

n—1

Proor: Let m’ = m + nr. By lemma 1 we then have

x .\ _ _fm —nr+n -1
(n%x)(o)n.(‘)) B (m;m)l _( n—1 )

This is the number of compositions of m’ into n parts with each part = r. In
particular, for r = 1 we see that the number of compositions of m into n parts is

(Z : i) Thus by the definition of mathematical expectation, the required

value is equal to

Sm 1) . (m— 1) i
sl e (W21) s .

The theorem is therefore proved by Lemma 3.
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CoROLLARY 1. Let (x1 - -+ &») be a set of positive quantities, of which the vary-
ing unit is 8, and the sum is m. Then, for any given polynomial f(x) of the kth
degree, we have

b

. ﬁ‘z —_— 1 k — )P,
6) E(m,3sI[f1") = (”-zn——ll> (Z) (6 -|—|- " 1> I [(q pl') ]
—— ni0ip ' n — y=0 v
8

n—1
where
gx) = f(éx), o =1pr+ -+ + kps.
Proor: It is deduced by the relation E(m, 8, [f(z)]") = E(m/s, 1, [f(62)™).
CoRrOLLARY 2. Let (2, --- x,) be a set of non-negative real numbers under a
known condition x, + --+ 4+ x, = m. Then, for any given polynomial f(z) =
a + -+ + ax®, we have

n _ ()’ m’ ©la)™  (klan)™

)

where
a#0, o=90@ =q+ -+ ka.
Proor: The proof of the corollary depends essentially on the concept that two
different real numbers may differ by an arbitrarily small number A.
Let & be an arbitrary positive number and let f(xh) = h*g(z, h), where the
number k is the degree of f(x). Then, since

> (1) (") m—w=" i.f p=
> )n -

y=0 4

we may write
2 (=1 (Z) gv — s, h) = K" Bla, + h-R,(R)),
3m=()
where lLim R,(h) = (,, —; 1) v,

h—0
Now we pass to the limit & — 0, in which it is assumed that h runs through a se-
quence of rational numbers of the form 1/N. Thus by Corollary 2 we have
> m’ b (vla,)?™
7n,0;p) (0' + n — 1)! y=0 pv! )

lim E(m, h, [f]") = nl(n — 1)! (
h—0

Hence the corollary.
It may be noted that this corollary can also be independently deduced by the

proportion of the two integrals:
f N j;f(xl) e f(xn) dz: -+ dTp_1: f ./;dxl e dxn—l,

|
|

|



COMBINATORIAL FORMULAS 373

where the integrals are all taken over the region R: z; + -+ + & = m, 21 2
0,:--z, > 0.

CoroLLARY 3. Let (z; - -+ x,) be a set of positive real numbers under a known
condition a < 23 + ++- + x, < b, where a, b are non-negative numbers. Then,
for any given polynomial f(x) = a, + --- + aix’ (ax 5~ 0), the mathematical ex-
pectation of the product f(z;) - - - f(x,), which we denote by E((ab), 0, [f]17), is given
by the formula

Ba, b), 0, [f1") =20 = D!
8
( ) %" Z bl-hr(q) . al+a(q) al® o (k!ak)u
v A+ 0@)-(n — 1+ o()! go! @l

ProorF: Since the required mathematical expectation is the mean
1 b
= [ B 0,11 du,

Corollary 3 follows from Corollary 2.
On the other hand we see that

hm E(a,a + h), 0, [f]") = E(a, 0, [f]").

Hence Corollary 2 can also be deduced from Corollary 3.
TaeoreM 2. (First generalization of Theorem 1). Let fi(z), - - - fa(x) be n
given polynomials, of which the highest degree is k. Then we have

E(m, 1, [f1] .o [fn]) = (”;v ) (n;p) (_1)"—.0

) (m +n— 1)
Aot n—1 H [(foyoow, — D@

m—1 pu=0 p," ’
n—1
where

Proor: In the proof of theorem 1 we have seen that

Bom, 1,110 = (7 2 1) 0w, 11,

Thus, by similar reasoning and lemma 4, we have

lyé...sya) ' m
se=n n—1

E(m, 1, [fl] L [fn]) = Z '_'(_(—I)L‘)‘S(m [fvl v] )
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The theorem is proved by lemma 3.
CoRrOLLARY 1. Let § be a varying unit. Then

E(m, o, (A --- [f]) = Z 2 (=D~
1 'a) (n;0;p)

T +n—-1
(10) <3 >k W
o ot 1= 1) F (@, = DOT
(m_1> =0 Du! ’
F
n—_l

gv(x) = f,(&x), Iryoovy = G + -+ v, -

Proor: By the relation E(m, 8, [f (z)] - -- [fa(x)]) = E (m/3, 1, [fi(62)] -
[f2(6x)]) we obtain the corollary.
CorOLLARY 2. For any positive real number m, we have

where

< palln — 1! mPr e

(p+ +pn+n—1)!

Proor: Since E(m, 6, [fi] - - -[fa]) = Z (=1D""/nl E(m, 8[f,, - - - »,]"), we have,
by letting 6 — 0,

(11) E@m,0,[z™] ... [2™]) =

n—s

Bm, 0,1+ 1) = = EDE (m, 0, U0,

The corollary is therefore deduced by (7).

TraeoreM 3. (Second generalization of Theorem 1). Let (x; - - - 2,) be a set
of integers under known conditions x1 + -+ + Tu.=m,a < x; < b, where m, a, b
are given integers. Then, for any given polynomial f(x), the mathematical expecta-
tion of the product f(x1) - - - f(x.), denoted by E (m, 1, [f]", is given by the formula

(12) E (m, 1, [f]") = §( ol ( )S(m b
Sy (M™oh)

y=0
where
glx) =fb+2),h(x) =fla+z—1)andm' =m —(a—1)n+ (@ — b — ).
. a oo _Oform >0
Proor: Define S(m, [f]*) = 0 for m < n, and S(m, [fT) = Lform = 0° We

shall now prove that

> -0 () stw, ) = B sten - Stow),

aSz b
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where on the right-hand side of the expression the set (z;, --- x,) under the
summation runs over all different compositions of m into n parts and

a <z, <D v = 1, -+ m.

For convenience we denote the left-hand side of the expression by &, that is,

& =3 -1 (%) s, r v

v=0

-2 v (1) £ 56, e + b1 St — 7, e + 0 = DI,

v=0
Let f(&1) - - - f(&.) be a product term contained in &, i.e.,, &1 + -+ + T, = m;
#r2a - ,% = a Weassume that &, > b4+ 1,---,%, > b+ 1, where
v # v;if ¢ % j. Then it is seen that the number of occurrences of the product

term in & is given by
- St i t2>1
g(“l) (s) T i t=0.

Thus the product term f(Z) - - - f(£,) of & vanishes except when
a <z, < b v = 1,---,n.

Hence we have

& = aszxjsbf(xl) “o e (@)

Next, we shall find the number of different compositions of m into n parts with
each a < z, < b, i.e., the number of product terms of &. By the above result
we see that the number is given by

n , . iR s (™ — 1
> 3 (-1 (") > 13 1=Z<—1>()( _ )
o= M=y V] (alz) (m!—m;1;z) y=() 14 n 1

Hence the theorem.
This theorem shows that the mathematical expectation E (m, 1, [f]*) can be
(ab)

expressed by S(mi[g]") and is therefore expressible in terms of linear combinations

of the coefficients of the polynomial f(z).
CoroLLARY 1. Let & be a varying unit for which? g l—;are all integers. Then

) b

B mo @ - E (7L 006r).
(ab)

((al8),(b/8))

CoroLLARY 2. Let fi(x), - - fa(x) be n given polynomials. Then

E m,L,[f] - [fu) = 2 (_1?"—6 E (m, 1, [f,....]").
(ad) (lv L -a-;:‘) n. (a,b)
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CorOLLARY 3. The number of integral solutions of the equation 1 + - - - + z, =
mwitha, <1 < by, o0, an < 2o < b, s equal to
1,0+ 4,1 e
Lyt
v1=0,* «+,vp=0 ( )
,(m’+n—(al+ ta)F (@ =bi— Dyt 4 (@ — b — 1)v,.—1>
n—1 ’

Proor: We have shown that the number of integral solutions of the equation
T+ - + x, = mwitha < 2, < bis given by

g(_l),(v:Xm- (@— l)n-:(fl—b -1y — 1).

Hence the number of integral solutions of the equation zy + -+ 4+ x1., +
oo+ Tyt o+ T, = mwithe, <z, <b,p=1---8,p=1,---n),
is given by

B8 o T (%)

v1=0 vg=0

) : m,-—(a.-—l)n;+(ae'“bi—1)”-'_1:l
I:(m;n;) 'I=Ix( =1 )
B [SRERE e, m L Ne
B v1=0;v.=0 ( 1) <V1> (Va)

m — (@ — g — -+ —(a. — 1)n,
.< +(a1—b1-‘l)ll1+""l‘(a,—bg—l)Vs—l)_

mt et n -1

The corollary follows at once by puttingn; = -+ =n, = 1,8 =n

This corollary can be restated in a more interesting manner as follows:

Let there be n store rooms, and let b, , - - - , b, be the numbers of stocks con-
tained in 1st, 2nd, - - - , n-th storerooms respectively. Then m stocks contain-
ing at least a; stocks of the i-th storeroom (¢ = 1, ---, n) can be chosen from
these n storerooms in

m+n—|—(a1—b1— 1)V1+
Lot (=1t + (@ — by = g —ax — -+ —an — 1
v1=0,¢ 0 pe=0 n — 1

different ways.
So far we have established several combinatorial formulas concerning the

mathematical expectation of the product fi(xy) --- fa(xs) under certain con-
ditions. In the next section, we shall explain how to apply these formulas.

4. Applications. (a) A criterion. In order to make the above formulas
applicable to practical problems we state a criterion as follows: The mathemati-
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cal expectation of a function F(z,, ---, z,) can be estimated by the above
combinatorial formulas if and only if the sum of these undetermined quantities
Ty, -+, T, is known and there exist n polynomials fi(x), - - - , fa(x) such that

Fe«f,, ---, Faf,, where the quantities z;, - - - , £, may or may not be conti-
nuous. When the quantities are discontinuous, the varying unit is certainly
given.

(b) Some approximations, For f(x) = B+ -+ + Biz*(B: # 0) we may write

k
(f =1 = Zou!ﬂ,S,,

where 8, is a Stirling number of ‘the second kind, as used by Jordan, and de-
fined by

v18,. = Z( 1)'—’() 3
z=0
Thus, the formulas (5) and (9) can be written as follows:
n m+n—1Im — n)!n!(n — 1)!
Em, 1, 1) = (,.;p) (m—oa)le+n— 1lim— D!

5/
( ) . fI (ﬂv S',r + ce + ﬁh Sv.k)"
ya==0 py!
E(m,1,[f] -~ [fa) = ,Z:) (E) (-~
lSa ‘n ni0ip
9,
©) S (m4+n—D!Im—n)nl® — 1)! H(B 8., + .- + B: 8™
m—o)le+n—Dlm— 1 = p.!- >
where

B = 9180, fi= B+ - + Buz®,  Bi=Bu-t -+ Bui.

Now we state some convenient formulas concerning the number 8, .
If m is sufficiently large and ¢ is smaller than m, the following recurrence rela-
tion is useful:

I\ —— =>\o(m+tt— 1>+)\1 m;i__:l—l)

m+t—1
+ e +Al—2( 2t—2 )
_(m+t m+ &

4 oo 4@ = Dhce + D] (m )

(13)

where A, = 1, A,_; = 0 and A1, - -+, A are all independent of m.
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Starting from the first equality and using the recurrence relation S, .4 =
MSm,n + Sm_1,» Successively we have

Sm.m+t = }:{ (m -V + I)Sm—V+l,m+t—v

-INE0E T Deriv v+ S (M F T o)

y=l V==

-SM( ) erivn+ (A ) o+ ]

=Sttt a+a( ),

1
where A_; = X\..1 = 0. The recurrence relation is thus deduced.
Writing

_(m+t m+ . m + ¢
S’"'"+“(t+1)+"‘(t+2 +- +"“‘( 2 )

and uging the recurrence relation as obtained above, the coefficients A, « - -, Ay
may be exhibited as follows:
t | M| N s M | s e M e
1
2 3
3 10 5
4 | 25| 105 105
5| 56| 490 1260 945
6 | 119 | 1918 9450 17325 10395
7 | 246 | 6825 | 56980 | 190575 | 270270 | 135135
8 | 501 (22935 | 302995 | 1636635 | 4099095 | 4729725 | 2027025
9 1012 74316 1487200 [12122110 47507460 (94594500 (91891800 34459425

Now let
Suntt = [(?-:-lt) + M (@) (?j;) + o A @) (n;t- t)] n!.

The recurrence relation obtained above gives
Ma(t) = (28 — DAt — 1)
Aeca(t) = 2(t — DAes(t — 1) + (¢ — DAea(t — 1).
Thus we obtain
2t)!

A[_l (t) = W .

A2 () = (¢ — 1) il ot=2-1 (2,,) .

y=1 14
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Let
t—1
z [2x
0@t) = ; o (x) .
n+t n 4+t .
Since the orders of( t + 1) ey, (2t _ 1) are all less than 2t as n — o,

and since

(n 2—|t- t) Moot (8) =

]

bl t:l'-'
SIENEN
~—
TN vy
~ Ir
+ A
S e -
T
(-] -

Ve 3 l
= 8
I N
8,

~—

I s

g

=% (1+;)a-o@™
(=)

(gt-'_: i) A2 (t) = — t+ 1 (n t) t — 1127100

+
40 [2\'(n+t
-t (1) ()

- i (1) (=525

4'6(t) 2t>_l+ on™) (n2>‘ 1
= =) i

n t

o~
—

We may write (by Stirling’s formula)

8o = (2) (&) V2 <1 Pl (32—10@) + )

2 t!

where ¢, = 0asn — .
Now it is easily proved that the inequality

T _
1/§>2_2z<2x)> rz—1
T T T

holds for every positive integer z. We have, therefore,

8(t) < 21/5’-<f‘1/§dx=?:\27—(t*—1);
0(t) > 21/ fH‘/ _ _._;r(t_z)g
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and

Vi < 4 (2;)—1 \/_—— V7.

Using these inequalities we have

L=3 2Vit+2) <4 (2‘)—10(0 < 31/t{_’—1 @ —1)=wu,

where it may be noted that
lim % =
t—e lt
Hence we have in conclusion

(14) 2_,‘,0 (—1 (:) 2 = (1‘) (Zg)' \/t27r5 (1 + k@ +nt + e,)’

e

;(t—2)’<\/t 1/ - (@ - D).

Evidently the formula (14) implies (15) and (16):

g (=1)™ (:) L

where

(15)
~ (g) (2) V 27 2"'" (1 +2t) t=0(n"), e>0.
(16) n! ~ (g)” éwn. (Stirling’s formula).
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