SOME COMBINATORIAL FORMULAS ON MATHEMATICAL EXPECTATION

By L. C. Hsu

National Southwest Associated University, Kunming, China

The main problem considered here may be stated as follows:

Let $f_1(x)$, \cdots , $f_n(x)$ be n polynomials. It is the purpose of this paper to establish formulas concerning the mathematical expectation (probable value) of the product

$$f_1(x_1) \cdot \cdot \cdot f_n(x_n),$$

where x_1, \dots, x_n are positive random variables and the sum of these is supposed known

Before establishing the formulas let us introduce some notations for convenience.

- **1. Notation.** (A) In this paper the notation $(m; k; x_1, \dots, x_n)$ or (m; k; x) is used to denote that a set of numbers (x_1, \dots, x_n) is over all different compositions of m into n parts with each $x \ge k$, i.e. over all different integer solutions of the equation $x_1 + \dots + x_n = m$ with each $x \ge k$.
- (B) Let m, δ be two positive real numbers. The notation $E(m, \delta, [f_1] \cdots [f_n])$ denotes the mathematical expectation of the product $f_1(x_1) \cdots f_n(x_n)$ in which the sum $m = x_1 + \cdots + x_n$ is known and for every $x_{\nu}(\nu = 1, \cdots, n)$ the value of x_{ν}/δ is a positive integer. The notation $E(m, \delta, [f_1] \cdots [f_n])$ thus implies that the value of m is a multiple of δ . We call the δ a "varying unit", i.e. the least possible difference between two different quantities x_i and x_j $i \neq j$. The notation $E(m\delta, [f]^n)$ is merely a special case that denotes the mathematical expectation of the product $f_1(x_1) \cdots f_n(x_n)$ under the known conditions

$$f_1 = \cdots f_n = f, \qquad x_1 + \cdots + x_n = m, \qquad \frac{x_{\nu}}{\delta} = \left[\frac{x_{\nu}}{\delta}\right] \geq 1,$$

$$(\nu = 1, \dots, n),$$

where [] represents "integral part of".

- (C) In order to simplify our formulas we always denote f(x) by $f^{(x)}$, $f_{r_1} + \cdots + f_{r_s}$ by f_{r_1, \ldots, r_s} and $1.p_1 + \cdots + k.p_k$ by $\sigma(p)$ or σ . It is a convention that $\left(\frac{m}{n}\right) = 0$ for m < n.
 - **2. Lemmas.** Lemma 1. Let m, r_1, \dots, r_n be non-negative integers. Then

(1)
$$\sum_{(m;0;x)} \prod_{\nu=1}^{n} {x_{\nu} \choose r_{\nu}} = {m+n-1 \choose r_{1}+\cdots+r_{n}+n-1}.$$

PROOF: The lemma follows immediately by considering the coefficient of the term $x^{m-(r_1+\cdots+r_n)}$ on both sides of

$$\left(\frac{1}{1-x}\right)^{r_1+1}\cdots\left(\frac{1}{1-x}\right)^{r_n+1}=\left(\frac{1}{1-x}\right)^{r_1+\cdots+r_n+n}$$

Lemma 2. Let a, b, c, \cdots be any constants, and k_1, k_2, k_3, \cdots any positive integers. Then

(2)
$$\sum_{(m;1;x)} \prod_{\nu=1}^{n} \left[a \begin{pmatrix} x_{\nu} \\ k_{1} \end{pmatrix} + b \begin{pmatrix} x_{\nu} \\ k_{2} \end{pmatrix} + c \begin{pmatrix} x_{\nu} \\ k_{3} \end{pmatrix} + \cdots \right]$$

$$= n! \sum_{(n;0;\alpha,\beta,\gamma,\cdots)} \binom{m+n-1}{\alpha k_{1} + \beta k_{2} + \gamma k_{3} + \cdots + n-1} \frac{a^{\alpha}}{\alpha!} \frac{b^{\beta}}{\beta!} \frac{c^{\gamma}}{\gamma!} \cdots$$

PROOF: Expanding the left-hand side of (2) we see that the coefficient of the term $a^{\alpha}b^{\beta}c^{\gamma}\cdots$ is equal to

$$\frac{n!}{\alpha!\beta!\gamma!} \sum_{(m;0;x)} \binom{x_1}{k_1} \cdots \binom{x_{\alpha}}{k_1} \binom{x_{\alpha+1}}{k_2} \cdots \binom{x_{\alpha+\beta}}{k_2} \binom{x_{\alpha+\beta+1}}{k_3} \cdots \binom{x_{\alpha+\beta+\gamma}}{k_3} \cdots$$

By Lemma 1 it becomes

$$\frac{n!}{\alpha!\beta!\gamma!}\binom{m+n-1}{\alpha k_1+\beta k_2+\gamma k_3+\cdots+n-1}.$$

Hence the lemma.

Lemma 3. Let $m, n (\leq m)$ be two positive integers. Then, for any given polynomial f(x) of the kth degree, we have

(3)
$$\sum_{(m;1;x)} f(x_1) \cdots f(x_n) = n! \sum_{(n;0;p)} {m+n-1 \choose \sigma+n-1} \prod_{\nu=0}^k \frac{[(f-1)^{(\nu)}]^{p_{\nu}}}{p_{\nu}!},$$

where $f^{(x)} = f(x)$, $\sigma = \sigma(p) = 1 \cdot p_1 + \cdots + k p_k$.

PROOF: Since f(x) is a polynomial of the kth degree, there exist (k+1) values β_k , \cdots , β_0 such that

$$\sum_{i=0}^{k} \beta_i \begin{pmatrix} x \\ i \end{pmatrix} = f(x).$$

By putting $x = 0, 1, \dots, k$, it is orderly determined that

$$\beta_{\nu} = f^{(\nu)} - {\nu \choose 1} f^{(\nu-1)} + \cdots + (-1)^{\nu} {\nu \choose \nu} f^{(0)} = (f-1)^{(\nu)}, \quad (\nu = 0, 1, \dots, k).$$

The lemma is thus obtained by (2).

For convenience we denote the summation $\sum_{(m;1;x)} (m;1;x) f_1(x_1) \cdots f_n(x_n)$ by $S(m, [f_1] \cdots [f_n])$. Thus the formula (3) can be written as

$$S(m, [f]^n) = n! \sum_{(n:0;p)} {m+n-1 \choose \sigma+n-1} \prod_{\nu=0}^k \frac{[(f-1)^{(\nu)}]^{p_{\nu}}}{p_{\nu}!}.$$

LEMMA 4. Let $f_1(x), \dots, f_n(x)$ be n given polynomials. Then

(4)
$$S(m, [f_1] \cdots [f_n]) = \frac{1}{n!} \sum_{\substack{(\nu_1, \dots, \nu_n) \\ 1 \leq k \leq n}} (-1)^{n-k} S(m, [f_{\nu_1} + \dots + f_{\nu_k}]^n),$$

where $(\nu_1 \cdots \nu_k)$ runs over all different combinations out of $(1 \cdots n)$, k = 1, \cdots , n.

Proof: The proof depends essentially on the formal logic theorem. Considering a typical term

$$\frac{n!}{q_1! \cdots q_t!} S(m, [f_{\nu_1}]^{q_1} \cdots [f_{\nu_t}]^{q_t}), \qquad 1 \leq t \leq n, \qquad q_1 + \cdots + q_t = n,$$

we see that it is contained in the last (n-t-1) summations of the righthand side of (4), i.e. in the summations $(\nu_1 \cdots \nu_k)$ as $k=t, t+1, \cdots, n$. The number of occurrences of the term in the right-hand side of (4) is therefore

$$\sum_{\nu=0}^{n-t} (-1)^{\nu} \binom{n-t}{\nu} = 0 \quad \text{if} \quad t > n$$

$$1 \quad \text{if} \quad t = n.$$

The term vanishes generally except when $q_1 = \cdots = q_t = 1$. Hence the right-hand side gives

$$S(m, [f_1] \cdots [f_n]).$$

3. Theorems with formulas. In the following statements of theorems and corollaries, the notation $(x_1 \cdots x_n)$ is always to denote a set of undetermined quantities, though the kind of the quantities of the set is stated.

THEOREM 1. Let $(x_1 \cdots x_n)$ be a set of natural numbers under a known condition $x_1 + \cdots + x_n = m$. Then, for any given polynomial f(x) of the kth degree, we have

(5)
$$E(m, 1, [f]^n) = \frac{n!}{\binom{m-1}{n-1}} \sum_{(n;0;p)} \binom{m+n-1}{\sigma+n-1} \prod_{\nu=0}^k \frac{[(f-1)^{\nu}]^{p_{\nu}}}{p_{\nu}!}.$$

Proof: Let m' = m + nr. By lemma 1 we then have

$$\sum_{(m;0;x)} \binom{x_1}{0} \cdots \binom{x_n}{0} = \sum_{(m';r;x)} 1 = \binom{m'-nr+n-1}{n-1}.$$

This is the number of compositions of m' into n parts with each part $\geq r$. In particular, for r=1 we see that the number of compositions of m into n parts is $\binom{m-1}{n-1}$. Thus by the definition of mathematical expectation, the required value is equal to

$$\frac{S(m, [f]^n)}{S(m, [1]^n)}$$
, i.e. $\binom{m-1}{n-1}^{-1} S(m, [f]^n)$.

The theorem is therefore proved by Lemma 3.

COROLLARY 1. Let $(x_1 \cdots x_n)$ be a set of positive quantities, of which the varying unit is δ , and the sum is m. Then, for any given polynomial f(x) of the kth degree, we have

(6)
$$E(m, \delta, [f]^n) = \frac{n!}{\left(\frac{m}{\delta} - 1\right)} \sum_{(n;0;p)} \left(\frac{m}{\delta} + n - 1\right) \prod_{\nu=0}^k \frac{[(q-1)^{(\nu)}]^{p_{\nu}}}{p_{\nu}!},$$

where

$$g(x) = f(\delta x), \qquad \sigma = 1p_1 + \cdots + kp_k$$

PROOF: It is deduced by the relation $E(m, \delta, [f(x)]^n) = E(m/\delta, 1, [f(\delta x)^n)$.

COROLLARY 2. Let $(x_1 \cdots x_n)$ be a set of non-negative real numbers under a known condition $x_1 + \cdots + x_n = m$. Then, for any given polynomial $f(x) = a_0 + \cdots + a_k x^k$, we have

(7)
$$E(m, 0, [f]^n) = \frac{(n!)^2}{n} \sum_{\substack{n:0:q \\ r \neq 0}} \frac{m^{\sigma}}{(\sigma + n - 1)!} \frac{(0! a_0)^{q_0}}{q_0!} \cdots \frac{(k! a_k)^{q_k}}{q_k!},$$

where

$$a_k \neq 0$$
, $\sigma = \sigma(q) = q_1 + \cdots + kq_k$.

PROOF: The proof of the corollary depends essentially on the concept that two different real numbers may differ by an arbitrarily small number h.

Let h be an arbitrary positive number and let $f(xh) = h^k g(x, h)$, where the number k is the degree of f(x). Then, since

$$\sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} (n-\nu)^{p} = 0 & \text{if } p > n \\ n! & \text{if } p = n \\ \binom{n+1}{2} n! & \text{if } p = n+1,$$

we may write

$$\sum_{s=0}^{\nu} (-1)^{s} {\nu \choose s} g(\nu - s, h) = h^{\nu-k} [\nu! a_{\nu} + h \cdot R_{\nu}(h)],$$

where
$$\lim_{h\to 0} R_{\nu}(h) = {\nu+1 \choose 2} \nu! a_{\nu+1}$$
.

Now we pass to the limit $h \to 0$, in which it is assumed that h runs through a sequence of rational numbers of the form 1/N. Thus by Corollary 2 we have

$$\lim_{h\to 0} E(m, h, [f]^n) = n!(n-1)! \sum_{(n;0;p)} \frac{m^{\sigma}}{(\sigma+n-1)!} \prod_{\nu=0}^k \frac{(\nu! a_{\nu})^{p_{\nu}}}{p_{\nu}!}.$$

Hence the corollary.

It may be noted that this corollary can also be independently deduced by the proportion of the two integrals:

$$\int \cdots \int_{\mathbb{R}} f(x_1) \cdots f(x_n) dx_1 \cdots dx_{n-1} : \int \cdots \int_{\mathbb{R}} dx_1 \cdots dx_{n-1},$$

where the integrals are all taken over the region $R: x_1 + \cdots + x_n = m, x_1 \ge 0, \cdots x_n \ge 0.$

COROLLARY 3. Let $(x_1 \cdots x_n)$ be a set of positive real numbers under a known condition $a < x_1 + \cdots + x_n < b$, where a, b are non-negative numbers. Then, for any given polynomial $f(x) = a_k + \cdots + a_k x^k$ $(a_k \neq 0)$, the mathematical expectation of the product $f(x_1) \cdots f(x_n)$, which we denote by $E((ab), 0, [f]^n)$, is given by the formula

(8)
$$E(a, b), 0, [f]^{n} = \frac{n!(n-1)!}{b-a} \times \sum_{\substack{(n:0;q) \ (1+\sigma(q)) \cdot (n-1+\sigma(q))!}} \frac{b^{1+\sigma(q)} - a^{1+\sigma(q)}}{q_{0}!} \cdot \frac{a_{0}^{q_{0}}}{q_{0}!} \cdot \cdot \cdot \cdot \frac{(k! a_{k})^{q_{k}}}{q_{k}!}.$$

PROOF: Since the required mathematical expectation is the mean

$$\frac{1}{b-a}\int_a^b E(u, 0, [f]^n) du,$$

Corollary 3 follows from Corollary 2.

On the other hand we see that

$$\lim_{h\to 0} E(a, a+h), 0, [f]^n) = E(a, 0, [f]^n).$$

Hence Corollary 2 can also be deduced from Corollary 3.

THEOREM 2. (First generalization of Theorem 1). Let $f_1(x)$, $\cdots f_n(x)$ be n given polynomials, of which the highest degree is k. Then we have

(9)
$$E(m, 1, [f_{1}] \cdots [f_{n}]) = \sum_{\substack{(\nu_{1} \cdots \nu_{s}) \\ 1 \leq s \leq n}} \sum_{\substack{(n;0;p) \\ (n;0;p)}} (-1)^{n-s} \times \frac{\binom{m+n-1}{\sigma+n-1}}{\binom{m-1}{n-1}} \prod_{\mu=0}^{k} \frac{[(f_{\nu_{1} \cdots \nu_{s}} - 1)^{(\mu)}]^{p_{\mu}}}{p_{\mu}!},$$

where

PROOF: In the proof of theorem 1 we have seen that

$$E(m, 1, [f]^n) = {\binom{m-1}{n-1}}^{-1} S(m, [f]^n).$$

Thus, by similar reasoning and lemma 4, we have

$$E(m, 1, [f_1] \cdots [f_n]) = \sum_{\substack{(\nu_1 \cdots \nu_s) \\ 1 \leq s \leq n}} \frac{(-1)^{n-s}}{n! \binom{m-1}{n-1}} S(m, [f_{\nu_1 \cdots \nu_s}]^n).$$

The theorem is proved by lemma 3.

Corollary 1. Let δ be a varying unit. Then

$$E(m, \delta, [f_1] \cdots [f_n]) = \sum_{\substack{(r_1, \dots, r_s) \ 1 \leq s \leq n}} \sum_{(n; 0; p)} (-1)^{n-s}$$

(10)
$$\times \frac{\left(\frac{m}{\delta} + n - 1\right)}{\left(\frac{m}{\delta} - 1\right)} \prod_{\mu=0}^{k} \frac{\left[\left(g_{\nu_{1} \cdots \nu_{s}} - 1\right)^{(\mu)}\right]^{p_{\mu}}}{p_{\mu}!},$$

where

$$g_{\nu}(x) = f_{\nu}(\delta x), \qquad g_{\nu_1\cdots\nu_s} = g_{\nu_1} + \cdots + g_{\nu_s}.$$

PROOF: By the relation $E(m, \delta, [f_1(x)] \cdots [f_n(x)]) = E(m/\delta, 1, [f_1(\delta x)] \cdots [f_n(\delta x)])$ we obtain the corollary.

COROLLARY 2. For any positive real number m, we have

$$(11) E(m, 0, [x^{p_1}] \cdots [x^{p_n}]) = \frac{p_1! \cdots p_n! (n-1)!}{(p_1 + \cdots + p_n + n - 1)!} m^{p_1 + \cdots + p_n}.$$

PROOF: Since $E(m, \delta, [f_1] \cdots [f_n]) = \sum (-1)^{n-s}/n! E(m, \delta [f_{\nu_1} \cdots _{\nu_s}]^n)$, we have, by letting $\delta \to 0$,

$$E(m, 0, [f_1] \cdots [f_n]) = \sum_{n \in \mathbb{N}} \frac{(-1)^{n-s}}{n!} E(m, 0, [f_{\nu_1 \cdots \nu_s}]^n).$$

The corollary is therefore deduced by (7).

THEOREM 3. (Second generalization of Theorem 1). Let $(x_1 \cdots x_n)$ be a set of integers under known conditions $x_1 + \cdots + x_n = m$, $a \le x_i \le b$, where m, a, b are given integers. Then, for any given polynomial f(x), the mathematical expectation of the product $f(x_1) \cdots f(x_n)$, denoted by $E(m, 1, [f]^n$, is given by the formula

(12)
$$E_{(a,b)}(m, 1, [f]^n) = \frac{\sum_{\nu=0}^n (-1)^{\nu} \binom{n}{\nu} S(m', [g]^{\nu}[h]^{n-\nu})}{\sum_{\nu=0}^n (-1)^{\nu} \binom{n}{\nu} \binom{m'-1}{n-1}},$$

where

$$g(x) = f(b+x), h(x) = f(a+x-1) \text{ and } m' = m - (a-1)n + (a-b-1)\nu.$$

PROOF: Define $S(m, [f]^n) = 0$ for m < n, and $S(m, [f]^0) = 0$ for m > 0. We shall now prove that

$$\sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} S(m', [g]^{\nu}[h]^{n-\nu}) = \sum_{\substack{(x_1, \dots, x_n) \\ a \leq x \leq b}} f(x_1) \cdots f(x_n),$$

where on the right-hand side of the expression the set $(x_1, \dots x_n)$ under the summation runs over all different compositions of m into n parts and

$$a \leq x_{\nu} \leq b, \quad \nu = 1, \dots, n.$$

For convenience we denote the left-hand side of the expression by S, that is,

$$\mathfrak{S} = \sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} S(m', [g]^{\nu} [h]^{n-\nu})$$

$$= \sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} \sum_{\bar{m}=\nu}^{m'} S(\bar{m}, [f(x+b)]^{\nu}) S(m'-\bar{m}, [f(x+a-1)]^{n-\nu}).$$

Let $f(\bar{x}_1) \cdots f(\bar{x}_n)$ be a product term contained in \mathfrak{S} , i.e., $\bar{x}_1 + \cdots + \bar{x}_n = m$; $\bar{x}_1 \geq a, \cdots, \bar{x}_n \geq a$. We assume that $\bar{x}_{\nu_1} \geq b + 1, \cdots, \bar{x}_{\nu_\ell} \geq b + 1$, where $\nu_1 \neq \nu_j$ if $i \neq j$. Then it is seen that the number of occurrences of the product term in \mathfrak{S} is given by

$$\sum_{s=0}^{t} (-1)^{s} \begin{pmatrix} t \\ s \end{pmatrix} = if \quad t \ge 1$$

$$if \quad t = 0.$$

Thus the product term $f(\bar{x}_1) \cdots f(\bar{x}_n)$ of \mathfrak{S} vanishes except when

$$a \leq x_{\nu} \leq b_{i} \qquad \nu = 1, \cdots, n.$$

Hence we have

$$\mathfrak{S} = \sum_{a \leq x \leq b} f(x_1) \cdot \cdot \cdot f(x_n).$$

Next, we shall find the number of different compositions of m into n parts with each $a \le x_r \le b$, i.e., the number of product terms of \mathfrak{S} . By the above result we see that the number is given by

$$\sum_{\nu=0}^{n} \sum_{m=\nu}^{m'} (-1)^{\nu} \binom{n}{\nu} \sum_{(\vec{n}, | 1; x)}^{\cdot} 1 \sum_{(m' - \vec{m}; 1; x)} 1 = \sum_{\nu=0}^{m} (-1)^{\nu} \binom{n}{\nu} \binom{m' - 1}{n - 1}.$$

Hence the theorem.

This theorem shows that the mathematical expectation $E(m, 1, [f]^n)$ can be expressed by $S(\bar{m}[g]^r)$ and is therefore expressible in terms of linear combinations of the coefficients of the polynomial f(x).

COROLLARY 1. Let δ be a varying unit for which $\frac{m}{\delta}$, $\frac{a}{\delta}$, $\frac{b}{\delta}$ are all integers. Then

$$E_{(ab)}(m, \delta, [f(x)]^n) = E_{((a/\delta), (b/\delta))}\left(\frac{m}{\delta}, 1, [f(\delta x)]^n\right).$$

COROLLARY 2. Let $f_1(x)$, $\cdots f_n(x)$ be n given polynomials. Then

$$E_{(ab)}(m, 1, [f_1] \cdots [f_n]) = \sum_{\substack{(\nu_1 \cdots \nu_s) \\ 1 \le s \le n}} \frac{(-1)^{n-s}}{n!} E_{(a,b)}(m, 1, [f_{\nu_1 \cdots \nu_s}]^n).$$

COROLLARY 3. The number of integral solutions of the equation $x_1 + \cdots + x_n = m$ with $a_1 \leq x_1 \leq b_1, \cdots, a_n \leq x_n \leq b_n$ is equal to

$$\sum_{\nu_1=0,\dots,\nu_n=0}^{1,\dots,1} (-1)^{\nu_1+\dots+\nu_n} \cdot \binom{m+n-(a_1+\dots+a_n)+(a_1-b_1-1)\nu_1+\dots+(a_n-b_n-1)\nu_n-1}{n-1}.$$

PROOF: We have shown that the number of integral solutions of the equation $x_1 + \cdots + x_n = m$ with $a \le x_r \le b$ is given by

$$\sum_{\nu=0}^{n} (-1)^{\nu} {n \choose \nu} {m - (a-1)n + (a-b-1)\nu - 1 \choose n-1}.$$

Hence the number of integral solutions of the equation $x_{11} + \cdots + x_{1n_1} + \cdots + x_{s1} + \cdots + x_{sn_s} = m$ with $a_{\nu} \leq x_{\nu\mu} \leq b_{\nu}$, $(\nu = 1 \cdots s, \mu = 1, \cdots n_{\nu})$, is given by

$$\sum_{\nu_{1}=0}^{n_{1}} \cdots \sum_{\nu_{s}=0}^{n_{s}} (-1)^{\nu_{1}+\cdots+\nu_{s}} \prod_{i=1}^{s} \binom{n_{i}}{\nu_{i}}$$

$$\cdot \left[\sum_{(m;1;m_{i})} \prod_{i=1}^{s} \binom{m_{i} - (a_{i} - 1)n_{i} + (a_{i} - b_{i} - 1)\nu_{i} - 1}{n_{i} - 1} \right]$$

$$= \sum_{\nu_{1}=0,\cdots,\nu_{s}=0}^{n_{1},\cdots,n_{s}} (-1)^{\nu_{1}+\cdots+\nu_{s}} \binom{n_{1}}{\nu_{1}} \cdots \binom{n_{s}}{\nu_{s}}$$

$$\cdot \binom{m - (a_{1} - 1)n_{1} - \cdots - (a_{s} - 1)n_{s}}{+ (a_{1} - b_{1} - 1)\nu_{1} + \cdots + (a_{s} - b_{s} - 1)\nu_{s} - 1}$$

$$\cdot \binom{n_{1}+\cdots+n_{s}-1}{n_{1}+\cdots+n_{s}-1}$$

The corollary follows at once by putting $n_1 = \cdots = n_s = 1$, s = n

This corollary can be restated in a more interesting manner as follows:

Let there be n store rooms, and let b_1, \dots, b_n be the numbers of stocks contained in 1st, 2nd, \dots , n-th storerooms respectively. Then m stocks containing at least a_i stocks of the i-th storeroom $(i = 1, \dots, n)$ can be chosen from these n storerooms in

$$\sum_{\nu_1=0,\dots,\nu_{n}=0}^{1,\dots,1} \left(-1\right)^{\nu_1+\dots+\nu_n} \binom{m+n+(a_1-b_1-1)\nu_1+\dots+\dots+(a_n-b_n-1)\nu_n-a_1-\dots-a_n-1}{n-1}$$

different ways.

So far we have established several combinatorial formulas concerning the mathematical expectation of the product $f_1(x_1) \cdots f_n(x_n)$ under certain conditions. In the next section, we shall explain how to apply these formulas.

4. Applications. (a) A criterion. In order to make the above formulas applicable to practical problems we state a criterion as follows: The mathemati-

cal expectation of a function $F(x_1, \dots, x_n)$ can be estimated by the above combinatorial formulas if and only if the sum of these undetermined quantities x_1, \dots, x_n is known and there exist n polynomials $f_1(x), \dots, f_n(x)$ such that $F \propto f_1, \dots, F \propto f_n$, where the quantities x_1, \dots, x_n may or may not be continuous. When the quantities are discontinuous, the varying unit is certainly given.

(b) Some approximations. For $f(x) = \beta_0 + \cdots + \beta_k x^k (\beta_k \neq 0)$ we may write $(f-1)^{(r)} = \sum_{k=0}^{r} \nu! \beta_k S_{r,k}.$

where $S_{\nu,s}$ is a Stirling number of the second kind, as used by Jordan, and defined by

$$\nu! S_{\nu,s} = \sum_{x=0}^{\nu} (-1)^{\nu-x} {\nu \choose x} x^{s}$$

Thus, the formulas (5) and (9) can be written as follows:

(5')
$$E(m, 1, [f]^n) = \sum_{(n;0;p)} \frac{(m+n-1)! (m-n)! n! (n-1)!}{(m-\sigma)! (\sigma+n-1)! (m-1)!} \cdot \prod_{\nu=0}^k \frac{(\beta_{\nu}, \overline{S}_{\nu,\nu} + \cdots + \beta_k, \overline{S}_{\nu,k})^{p_{\nu}}}{p_{\nu}!}$$

$$E(m, 1, [f_{1}] \cdots [f_{n}]) = \sum_{\substack{(\nu_{1} \cdots \nu_{s}) \\ 1 \leq s \leq n}} \sum_{\substack{(n;0;p)}} (-1)^{n-s} \cdot \frac{(m+n-1)! (m-n)! n! (n-1)!}{(m-\sigma)! (\sigma+n-1)! (m-1)!} \prod_{\nu=0}^{k} \frac{(B_{\nu} \, \overline{S}_{\nu,\nu} + \cdots + B_{k} \, \overline{S}_{\nu k})^{p_{\nu}}}{p_{\nu}!},$$

where

$$\overline{S}_{\nu s} = \nu! S_{\nu s}, \quad f_i = \beta_{i0} + \cdots + \beta_{ik} x^k, \quad B_i = \beta_{1i} + \cdots + \beta_{ni}.$$

Now we state some convenient formulas concerning the number \bar{S}_{re} .

If m is sufficiently large and t is smaller than m, the following recurrence relation is useful:

$$S_{m,m+t-1} = \lambda_0 \binom{m+t-1}{t} + \lambda_1 \binom{m+t-1}{t+1} + \cdots + \lambda_{t-2} \binom{m+t-1}{2t-2}$$

$$S_{m,m+t} = \binom{m+t}{t+1} + [(t+1)\lambda_0 + 2\lambda_1] \binom{m+t}{t+2} + \cdots + [(2t-1)\lambda_{t-2} + t\lambda_{t-1}] \binom{m+t}{2t},$$

where $\lambda_{\nu} \equiv 1$, $\lambda_{t-1} \equiv 0$ and λ_1 , \cdots , λ_{t-2} are all independent of m.

Starting from the first equality and using the recurrence relation $S_{m,n+1} = mS_{m,n} + S_{m-1,n}$ successively we have

$$\begin{split} S_{m,m+t} &= \sum_{\nu=1}^{m} (m-\nu+1) S_{m-\nu+1,m+t-\nu} \\ &= \sum_{j=0}^{t-2} \lambda_{j} \bigg[\sum_{\nu=1}^{m} \binom{m+t-\nu}{t+j+1} (t+j+1) + \sum_{\nu=1}^{m} \binom{m+t-\nu}{t+j} (j+1) \bigg] \\ &= \sum_{j=0}^{t-2} \lambda_{j} \bigg[\binom{m+t}{t+j+2} (t+j+1) + \binom{m+t}{t+j+1} (j+1) \bigg] \\ &= \sum_{j=0}^{t-1} \left[(t+j) \lambda_{j-1} + (1+j) \lambda_{j} \right] \binom{m+t}{t+j+1}, \end{split}$$

where $\lambda_{-1} = \lambda_{t-1} = 0$. The recurrence relation is thus deduced. Writing

$$S_{m,m+t} = {m+t \choose t+1} + \lambda_1 {m+t \choose t+2} + \cdots + \lambda_{t-1} {m+t \choose 2t},$$

and using the recurrence relation as obtained above, the coefficients λ_1 , \cdots , λ_{t-1} may be exhibited as follows:

\boldsymbol{t}	λ_1	λ_2	λ ₃	λ4	λ ₅	λ ₆	λ ₇	λ ₈
1								
2	3							
3	10	5						
4	25	105	105					
5	56	490	1 2 60	945				
6	119	1918	9450	17325	10395			
7	246	6825	56980	190575	270270	135135		
8	501	22935	302995	1636635	4099095	4729725	2027025	
9	1012	74316	1487200	12122110	47507460	94594500	91891800	34459425

Now let

$$\vec{S}_{n,n+t} = \left\lceil \binom{n+t}{t+1} + \lambda_1 \left(t \right) \binom{n+t}{t+2} + \cdots + \lambda_{t-1} \left(t \right) \binom{n+t}{2t} \right\rceil n!.$$

The recurrence relation obtained above gives

$$\lambda_{t-1}(t) = (2t-1)\lambda_{t-2}(t-1)$$

$$\lambda_{t-2}(t) = 2(t-1)\lambda_{t-3}(t-1) + (t-1)\lambda_{t-2}(t-1).$$

Thus we obtain

$$\lambda_{t-1}(t) = \frac{(2t)!}{t! \, 2^t}.$$

$$\lambda_{t-2}(t) = (t-1)! \sum_{\nu=1}^{t-1} 2^{t-2\nu-1} \nu \cdot {2\nu \choose \nu}.$$

Let

$$\theta(t) = \sum_{x=1}^{t-1} \frac{x}{2^{2x}} \binom{2x}{x}.$$

Since the orders of $\binom{n+t}{t+1}$, \cdots , $\binom{n+t}{2t-1}$ are all less than 2t as $n\to\infty$,

and since

$$\binom{n+t}{2t} \lambda_{t-1}(t) = \frac{1}{t!} \left(\frac{n^2}{2}\right)^t \prod_{x=0}^{2t-1} \left(1 + \frac{t-x}{n}\right)$$

$$= \frac{1}{t!} \left(\frac{n^2}{2}\right)^t \left(1 + \frac{t}{n}\right) \prod_{x=0}^{t-1} \left(1 - \frac{x^2}{n^2}\right)$$

$$= \frac{1}{t!} \left(\frac{n^2}{2}\right)^t \left(1 + \frac{t}{n}\right) (1 - O(n^{-2}))$$

$$= \left(1 + \frac{t-O(n^{-1})}{n}\right) \left(\frac{n^2}{2}\right)^t \frac{1}{t!},$$

$$\binom{n+t}{2t-1} \lambda_{t-2}(t) = \frac{2t}{n-t+1} \binom{n+t}{2t} (t-1)! 2^{t-1} \theta(t)$$

$$= \frac{4^t \theta(t)}{n-t+1} \binom{2t}{t}^{-1} \binom{n+t}{2t} \lambda_{t-1}(t)$$

$$= \frac{4^t \theta(t)}{n-t+1} \binom{2t}{t}^{-1} \left(1 + \frac{t-O(n^{-1})}{n}\right) \left(\frac{n^2}{2}\right)^t \frac{1}{t!}$$

$$= \frac{4^t \theta(t) \binom{2t}{t}^{-1} + O(n^{-1})}{n} \left(\frac{n^2}{2}\right)^t \frac{1}{t!}.$$

We may write (by Stirling's formula)

$$\bar{S}_{n,n+t} = \left(\frac{n}{e}\right)^n \left(\frac{n^2}{2}\right)^t \frac{\sqrt{2\pi n}}{t!} \left(1 + \frac{t + 4^t \left(2t\right)^{-1} \theta(t) + \epsilon_n}{n}\right),$$

where $\epsilon_n \to 0$ as $n \to \infty$.

Now it is easily proved that the inequality

$$\sqrt{\frac{x}{\pi}} > \frac{x}{2^{2x}} {2x \choose x} > \sqrt{\frac{x-1}{\pi}}$$

holds for every positive integer x. We have, therefore,

$$\theta(t) < \sum_{x=1}^{t-1} \sqrt{\frac{x}{\pi}} < \int_{1}^{t} \sqrt{\frac{x}{\pi}} dx = \frac{2}{3\sqrt{\pi}} (t^{\frac{1}{2}} - 1);$$

$$\theta(t) > \sum_{x=0}^{t-2} \sqrt{\frac{x}{\pi}} > \int_{0}^{t-2} \sqrt{\frac{x}{\pi}} dx = \frac{2}{3\sqrt{\pi}} (t-2)^{\frac{1}{2}};$$

and

$$\sqrt{t\pi} < 4^t \binom{2t}{t}^{-1} < \frac{t}{\sqrt{t-1}} \sqrt{\pi}.$$

Using these inequalities we have

$$l_t = \frac{2}{3} \sqrt{t} \left(t + 2 \right)^{\frac{1}{3}} < 4^t \binom{2t}{t}^{-1} \theta(t) < \frac{2}{3} \sqrt{\frac{t^2}{t-1}} \left(t^{\frac{1}{3}} - 1 \right) = u_t,$$

where it may be noted that

$$\lim_{t\to\infty}\frac{u_t}{l_t}=1.$$

Hence we have in conclusion

$$(14) \qquad \sum_{x=0}^{n} (-1)^{n-x} \binom{n}{x} x^{n+t} = \left(\frac{n}{e}\right)^{n} \left(\frac{n^{2}}{2}\right)^{t} \frac{\sqrt{2\pi n}}{t!} \left(1 + \frac{k(t) + t + \epsilon_{n}}{n}\right),$$

where

$$\frac{2}{3} \, (t-2)^{\frac{1}{3}} < \frac{k(t)}{\sqrt{t}} < \frac{2}{3} \, \sqrt{\frac{t}{t-1}} \, (t^{\frac{1}{3}} - 1).$$

Evidently the formula (14) implies (15) and (16):

(15)
$$\sum_{x=0}^{n} (-1)^{n-x} \binom{n}{x} x^{n+t}$$

$$\sim \left(\frac{n}{e}\right)^n \left(\frac{n^2}{2}\right)^t \frac{\sqrt{2\pi n}}{t!} \left(1 + \frac{2t^2}{3n}\right), \qquad t = 0(n^{1-\epsilon}), \qquad \epsilon > 0.$$
(16)
$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}. \qquad \text{(Stirling's formula)}.$$

REFERENCES

- [1] Paul S. Dwyer, "Combined expansions," Annals of Math. Stat., Vol. 9 (1938), pp. 97-132.
 [2] John Riordan, "Moment recurrence relations for distributions," Annals of Math. Stat., Vol. 8 (1937), pp. 103-111.
- [3] K. MacMahon, Combinatorial Analysis. Vol. 1, Cambridge University Press, 1915.
- [4] M. Josephine Roe, Interfunctional expressibility problems of symmetric functions, 1931 (Privately printed).