ON THE NORMAL APPROXIMATION TO THE BINOMIAL
DISTRIBUTION
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1. Although the problem of an efficient estimation of the error in the normal
approximation to the binomial distribution is classical, the many papers which
are still being written on the subject show that not all pertinent questions have
found a satisfactory solution. Let for a fixed nand 0 < p < 1,¢ =1 — p,

Y T = (Z) p'¢ Pu=2 T

k=A\
For reasons of tradition (and, apparently, only for such reasons) one sets
(2) 2k = (k - np)o'—ly g = (’nPQ)m,

and compares (1) with

@) Ni= @0 and I, = cp(z, + 1_) - <1>(zx - l)

20 20
respectively,! where ®(z) stands for the normalized error function. Many
estimates are available for the maximum of the difference | Py,, — Iy, | for all A, ».
Now this error is O(¢ ") and even a precise appraisal will break down in the two
most interesting cases: if ¢ is small, or if X and » are large as compared to ¢.
Indeed, even for moderately large values of k (such as are usually considered)
the contribution of T to the sum in (1) will be considerably smaller than ¢
so that any estimate of the form O(¢ ") leaves us without guidance. With some
modifications this remains true also for more refined estimates like Uspensky’s
remarkable result’

4) Py, =T, + (A — e | 2H + o

9—p
60 (2m)"*
with

lo| < {134+ .18|p —ql|ld  + >

provided ¢ > 5. What is really needed in many applications is an estimate of
the relative error, but this seems difficult to obtain.

It should also be noticed that the accuracy of the normal approximation to the
binomial is by no means quite as good as many texts would make appear. Exam-

1 1
1 Very often the limits z)\ and 2, instead of z, + % and 2\ — o are used. This naturally

results in an unnecessary systematic undervaluation.
2 Uspensky [3], p. 129. A two-term development of 7', with an error of O(s72) valid for
| £ | < 2,0 > 3 has been given by Mirimanoff and Dovaz [1927].
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320 W. FELLER

ples using p = 3 and intervals which are symmetric with respect to np are hardly
conclusive, since there the main error term drops out and systematic positive
and negative errors cancel. Again, in practice comparatively small ¢ and com-
paratively large » are frequently used. It works well to compare a Py, of a
numerical value, say, .93 with a corresponding value II,, of, say, .95. In class-
room discussions the error may seem insignificant. However, in most actual
applications one would consider the complementary probabilities, and the very
same figures mean an approximation .05 to the correct value .07. If a confidence
limit is set to the five per cent level, the normal approximation would in our
example mean that two out of seven critical cases are missed. Consider next the
example p = 15, n = 10,000. For values of k around 1120 the relative error of
N, is about .30; it increases rapidly with increasing k. Around k& = 1150 the
relative error exceeds 2/3, around 1180 it is nearly 1.4. And yet this example
is conservative in comparison with many cases where the normal approximation
is used in practice.

It is surprising that the classical norming (2) is generally accepted although
there does not seem to exist any deeper reason for it. The use of moments,
though usually very convenient, does not necessarily lead to best results. For
example, the density function

() falz) = 7%' e

is the (n + 1)-fold convolution of fo(x) with itself and therefore, for large n,
of nearly normal “type.” The conventional norming would approximate
fa(x) by {27(n + 1)} V2 EmHIDIRMAD while the use of the norming factor n
instead of (n + 1) seems clearly indicated.

Actually, as will be seen, it is natural (at least for small values of k — np)
to replace (2) by :

6) w = {k+ 3 — (0 + Dplo,
and accordingly to approximate P, by the error integral taken between the limits
(7) (N—(+ Dple™" and {»+1— (n+ Dp}e ™

For example, let p = 75, n = 500, A = 50, » = 55. The correct value is Py 55 ~~
.317573; the norming (2) leads to Iz 5 =~ .32357, while the more natural limits
(6) lead to an approximation .31989. More important are the quite unexpected
simplifications which the norming (6) permits when one studies the error for
large xx or small o.

We are now led to reformulate the problem: instead of starting with arbitrary
limits for the error tntegral and to estimate the resulting error, we shall try to determine
the limits so as to minimaze the error. Theoretically, for any given A, » these limits
could be determined so as to give an exact value for Py, . However, such limits
would depend in the most intricate way on A and ». For practical purposes one
would restrict the considerations to certain simple functions such as polynomials.
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We shall here consider only the case where the limits are at most quadratic
polynomials. Essentially our problem seems that treated by Serge Bernstein
(and, apparently, only by him). In a series of papers since 1924, S. Bernstein
has considered the accuracy of the normal approximation. Quite recently’
he has, by a considerable computational effort, extended the range of validity
from npq > 365 to npg > 62.5 and proved the following

TueoreM (S. Bernstein): Let

8 npg > 62.5
and let a. , B. be the solutions of the quadratic equations

T —3— np = as(npg)”’ + gg—p ar
9

44— np = Blnpg)”* + L 6L
If
(10) a >0, B < 2%npg"*
then
(11 d(B) — 2B = Py < B(a) — ().
The conditions (10) are practically equivalent to
(12) A>np+3 v <np+ 2"%"

The remarkable feature of this excellent result is that the error remains O(¢")
throughout an interval which increases with ¢ (instead of the conventional uni-
formly bounded intervals). .

In the sequel it will be shown that startling simplifications can be obtained if
the norming (6) is used from the beginning instead of (2). Our main result is an
improvement of S. Bernstein’s theorem. The condition (8) will be.replaced by
(n + 1)pg > 9. The first condition in (10) will be relaxed to &k > (n + 1)p, that
is to say, our theorem will hold for all k exceeding the central value (for those less
than the central value an analogous theorem holds); in the other condition (10),
the numerical value 2"* will be replaced by an arbitrary constant. Instead of
quadratic equations, we shall consider quadratic polynomials. And finally, the
gap between the two sets of limits will be reduced.

It will be seen that the computations leading to this improvement arc almost
negligible in comparison with S. Bernstein’s deeper method; with slightly more
sophisticated arguments and numerical evaluations, our results can be con-
siderably improved. Our consideration will be based on a new expression for
Ty , in which only exponential terms appear but the usual square root is missing.

3 S. Bernstein [1], the first paper of the series appears to have appeared in Uéenyc Zapiski,
Kiev, 1924.
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In passing from approximations to T, to approximations to P\, one has to
replace sums by integrals. This procedure is cumbersome if an estimate of the
relative error is desired. Euler’s formula and other standard formulas are of
little use. We shall therefore start with a lemma which, it is hoped, may be
useful in this connection; it will therefore be proved in a slightly more general
form than actually required for the present paper.

2. Lemma*l. ForO0 <h <3%and|zh| <1

z+h/2 . . . . .
(13)~ f . e qu = e tHEHEIDA 2GR ’
z—h/2
with
4
T 1
(14) _gg(‘) o< §§‘5

Proor. Denote the integral in (13) by J. Then

h/2 h/2
(15) Wt s =it [t = ot [ chate "
0

h/2
We begin by showing that for 0 < a <
(16) ea2/2—a4/11 < cha
In fact

ad/11 d o PNy |
a0 ez (1454 5)( ) 21+ 5+ 52 (5
and

2 " 4 2 ¢
a?/2—a4/16 a o —_2)s e, >
ay ()i f)z ey i Dy 2

1
2
< ea2/2—a4/lﬁ

16
=1
It follows from (15) and (16) ‘that
h—lezzﬂJ Z 2h—1 fhlz e(xz—l)tzl&—z‘t‘/ﬁﬁ_e(zz—l)t2/3—4£‘t‘/55 dt
0
(19) > o -/o‘m R Ll {1 + 7’ 3— 1 2 _ 4;45114} dt

_ 2_1)42/6—r4¢4/5514/2
— 2h l[te(z 1)¢2/6—r4t4/ ]0/

which proves one part of the lemma.
To obtain an upper estimate we make use of the inequalities

2,2
2_1)¢2 T\ —e2/3+z4e4
e(:c 1)t ISS(1+ 3>e t2/3+z4t4/18

¢ The fraction % is chosen quite arbitrarily; if h be restricted to0 < & < 1 the first member

1 : 1
of (14) remains unchanged, while the fraction -2_83 on the right side has to be replaced by 264"
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1 tﬂ + t‘
x2t2>( £\ s~ 3 18
< LV v zit /18_
(20) __(1-+— £ )(1-5) —
3
2
< (1 + r© —1 tz) 184285
- 3

Using (16) and (20), the proof of the second part of the lemma follows from a
computation analogous to (19).

For our purposes'it is convenient to use Stirling’s formula in a form which is
not quite the usual one.

Lemma 2. (Stirling’s formulas). For n > 4,

(21) n! = (2r)*(n + %)n+% e—(ﬂ+%)—l/24(n+})+(7l2880)(1+01)/(n+%)3’
or

(22) nl = (27)4 pnH g nH112n—(148) (36083

where

(23) [ ] < &, 4—0 as n— «,

Formula (21) can be derived from the gamma function or in any other way
that leads to the standard form (22).°
3. From now on we shall put

(24) o = (n + 1)pg
(25) o={k+3%— (n+ Dpla;

the subscript £ will be omitted whenever no confusion is to be feared. To trans-
form T we shall use (21) for the factorials in the denominator, but (22) for
(n + 1)! in the numerator.

5A éimple proof runs as follows. Put B, = nl(n + §)~wtbertitl/2entdh Then

B i L )1 _ 11+
B, 6 @ + D[ @7 60 (204

v=2

1
with0 < § < 7 if p = 5. From here (21) follows using the fact that

£

B,_
E log =2~ = log B, — } log (2r)
p=n+1 BP

and that for n = 4
1 -3 <1 1
< - <
3(n + 3)° ,; et 3(n 4 3

3
with0 < 8 < % In this way the estimate (23) can be considerably improved.
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Then
3 - k+ 3
leg ((2r)}6Ty) = (n + 1)log (n + 1) — (k + 3) log
—k+ 3% 1 1
—(n—k+1 n 2
(n — k + 3)log Y Bm D T2k D
1
(26) tTom—k+3d "
2 ) 2
(e mo08) 502 -)
q 4 g P o c
Pq q p
+ o=+ + —p
12* 244’ (1 + q—x) 244° (1 — EE)
ag g
7 1 7 1 1
<p<t
@) 0<r<§\360(n+ 10 2880 [<k+ T Py %)3]}
7 1 33, (,3 3
< & 3600° {p q¢ + g(p + q)},

provided only that k > 4, (n — k) > 4. Asymptotically p is equivalent to the
right-hand member without factor & (which, by the way, could be replaced by
1 4+ 4. Obviously
1
< o
(28) 0<p< 30058 °
it k> 4,n — k > 4. We shall consider later on the case ¢ > 3, |2 | £ %o;
then clearly k > 4,n — k > 4, s0 that the use of (28) will be justified. Expand-
ing (26) into a power series we obtain
TaeoreM. Ifk > 4,n — k > 4,

© v—1 _ _ v—=1 v
T = (2r)" o' exp {— > P (=97 a,_q

3 viv — 1) ot
(20) i

__1__ v—1 o vl X v 14 2pq _
+ -240223: {p (-9 }<;) + o p}

where p satisfies (28) (and (27)); x and o are defined by (25) and (24), respectively.

Each term of the second series will usually be small as compared to the cor-
responding term of the first series; the second series can therefore, if desired, be
absorbed in the error term. If z is small the first term of the first series will be
preponderant. However, as x increases, more and more terms will make them-
selves noticeable; if x ~ o', three terms will be essential, and so on.

Formula (29) permits us to approximate Pi, by means of integrals. The
tangent rule would suggest to compare Py, to

1 1
(30) @ <x + 27,) - ¢ (xu - 2—0_>,
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and (29) together with lemma (1) permits easily to estimate the relative error
in the practically most important cases. It is also seen that the limits in (30)
are essentially the only limits depending linearly on A and » which will render the
relative error O(¢c™") for x = O(1). Instead of elaborating on these simple
questions we proceed to the more intricate problem of limits which are quadratic
polynomials in A and ».

4. For brevity we shall from now on put

31) p_é—__q = a.

The estimate | ¢ | < 3 will be used constantly. It obviously suffices to consider
values of A < » which exceed the central value [(n + 1)p].
TaEOREM. Suppose that

(32) >3

and

(33) A>2(m+Dp  v+3<(n+Dp+ 3
Then

(34) Pry < e 20 (B(n,0) — @)},
of

=k—(n+l)p+_¢_zjk——(n+l)p}2+gg_
g { (4

1
a T 20’

(35) I

while the inequality in (34) is reversed if

. 2 .
(36) ,,k=’£_ﬂ1_h’+§fk__(g+_l)p}+2_a+gg+_1_,
o o g 60 7o
where
2d _ v+3— (n+ Dp)
(37) M= T: ; _

g [

The gap between the limits (35) and (36) is 0(c™) if z1 = O(s). In S. Bern-
stein’s case (12), M < A/2 and the gap is about 2/(5¢). It will be seen from
the proof that it requires only routine computations to improve the correction

M0 4. .
term {E + 7fa in (36).
Proor. Put
(38) o= + gxi

again suppressing the subscripts wherever convenient. As a consequence of
(33), we shall be concerned only with values z; satisfying

1 2
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Consider first the main series in (29) and write

(40) p y(_v e

where
3 r—1 v
_(P+d _ ¢ P — (=@ &
(1) 4= ( 12 ) + Z vy — 1) o

We shall require some estimates of A. First consider the case a > 0. Then all
terms of the series are positive, while the expression within parentheses assumes
its minimum 4 for p = 1. By (39) ¢ < %> x, whence

(42) A>2E i a>o
74 o*
If @ < O the signs in the series (41) alternate, each negative term being smaller
in absolute value than the preceding positive term. Therefore, using (39),
3 3 2 4
pP+d_a _qg-pl\*

> S A S A S

(43) 42 { 12 2 30 }

The expression within braces is a cubic in p which assumes its minimum for p =
(1 + /793)/72 = .405....It follows that

12t 1£
> >
(44 A“‘ﬁOo“‘ﬁO 4

(half of this estimate would actually suffice for our purposes). On the other
hand, it is evident from (41) that the ratio 4 /" attains its maximum for p = 1.
Therefore, using (39)

if a<0

2z
(45) A< 18
Next we write

1 00 y—2 a
(46) oagt 2 (P = (=9 (g) =S5
whence

3 3 2 2 o0 —2

_ifptg oz, 1 -1 .-1()

an =3[Pkl ] LS - o (B)

A trivial computation analogous to (43) shows that B > 0. Again, if ¢ < 0,
the signs in the series (47) alternate and in this case

3 3 27 .2 2
pP+4d ala @ _ 17
(48) OSBS%[ _‘] S"'—j '2—;

12 2
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If @ > 0 we can majorize (47) by a geometric series and obtain

1£
(49) 0<Bs§93804
Now put
(50) Afy, = a“‘(l + ?;“ xk).
Then
(51) & + A8 = Er — 3G

327

so that the intervals with endpoints & -+ 1A% are non-overlapping and con-

tiguous. Clearly
1/2
(52) At = ¢! {1 +% s} .
Introducing (40), (46), and (52) into (29) we obtain

T, = (21r)*”2A$-exp{—%2 — A+ B +:L%”E — log(l +4a£)

(53)
+ 1 + 2pq
2402
To appraise the logarithmic term we write
(54) 1log (1 + 4“5) 75 —c.
C £* attains its maximum value when a = — %, and it is readily seen that

2
0<(J<4‘;,$2 if a>0
(55)

2
0<c<%f i 4<o.
0-2
Finally we put, with a parameter u to be determined,

(56) y=$+2a:u, Ay = At
If one puts

1 a
57 U=o ~

and u; is defined by (35), then
(58) Yk + 3AYE = M, Yr — AU = k.

_,,}.
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On the other hand, if

7 4

and 7 is defined by (36), the identities (58) hold again. Accordingly, all we have
to show is that, with u defined by (57),

(60) Ty < {®(ye + 3Ay0) — By — 3Ays) }Om07

and that the inequality in (60) is reversed if u is defined by (59).
Elementary transformations lead from (53) to

M 1 a

61) Ti= (207 Ay e‘{p{ + (Ay) @ - 1)+ (36 y )+ E}

2
where
(62) E_--z—fi’l‘ (71— 5“)5— ! (1+4“’5> — 44+ B+C—,
T 126% 4q2 T

Let now u be defined by (57). In view of lemma 1 and (61), the inequality
(60) will be proved if we show that

y'(ay)*
(63) E, =E + S0 < <.

Now clearly

(64)

2 2 2 4 S
y_(1+4;a£) RGN C )
2442 7 24 880

Moreover, introducing the estimates (28), (32), (42), (44), (48), (49), and (55)
into (62) it is seen that for a > 0

1

2
(65) 0E1<‘271;_—£+ f £
and for a < 0
(66) 0E1<£'—§£+5£ 14
9q 60

The derivatives of the right-hand members in (65) and (66) are both negative
for £ > 0. Now we are interested only in values x satisfving (39). For such

107 107 . .
values § > 2160 For ¢ = 2160 the right-hand members in (65) and (66) are

1
negative, so that E; < 0 for x > % This proves the first part of our theorem.

The proof that with (59) the inequality in (60) is reversed proceeds on similar
lines. We have to show that

(ay)*
>
85 = O

67) B =
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Suppose that @ < 0, which is the less favorable case. Then, by (45), (37), and
(39), ‘

2Mx _3M ¢
(68) A%,
Similarly
1 daf 2 _ 1 (, uY
© (1 9)7 < a6 - 2)

Using (62) we have therefore, neglecting the non-negative terms B and C,
2 2

S _ w w1

— 262 240* 30* 2500*

w5 M w1

+ E{ o 720 200 + 1243 240° £

The expression at the right side represents a parabola, and it suffices to show that
it assumes positive values at the endpoints of our interval (39). Now

2
u 1 u 1 1 6
21 - ) =¥%s _ 2 — -
(71) 2 (1 12.;2) 32 71, _ 1 7 Tiov
124?
and simple arithmetic shows that, with (59) the expression within the braces

more than counterbalances the negative terms outside.® If @ > 0 the situation
is more favorable and the estimate (59) can then be further improved.
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