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1. Summary. The negative binomial distribution of Greenwood and Yule is
generalized and modified in order to obtain distribution curves which could be
used in many concrete cases of chains of rare events. Assuming that the num-
bers of single, double, triple, and so on, events are distributed according to Pois-
son’s law with parameters A1, A2, A - - - respectively, and that A, is given by

s—1

A=\ %—, the probability of obtaining M successful events is studied. In the

considered relation A, , for convenient values of a, first increases with s and after
a certain saturation value of s starts to decrease. A relation of this type is very
suitable for studying the distribution of score in a match between two first class
billiard players, the probability of accidents on a highway of dense traffic, etc.
The general methods of finding the distribution curves for arbitrary relations
between the N’s are indicated. The method of steepest descent is applied to find
an acceptable approximation of the distribution function; and the advantage of
this method-is pointed out for other similar cases, in addition to the concrete one
which was developed, in which the method of direct expansion into power series
becomes inapplicable.

2. Introduction. M. Greenwood and G. U. Yule [1] have deduced the nega-
tive binomial distribution from a compound Poisson law:

Pm)) =2 &7,

where A itself is a random variable distributed according to Pearson’s law of
type III:

PO)dN = B"“:? ™,

They obtained the distribution

P(m) = (1 . q)a'l'l (a + m)!am

’ a!m! !

8
g+1°

of ™ in the expansion of:
—(a+1)
1 — ¢+1.(1 — x ) .
-9 FF1

! Research done at Harvard Astronomical Observatory as Guggenheim Fellow.
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where 1 — a = As is easily seen, P(m) is given by the coefficient
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R. Liiders [2] has arrived at a negative binomial law by the following considera-
tions. Certain events, like automobile accidents, can be classified as simple or
multiple according to the number of units involved. Assume that the numbers of
single, double, triple, and so on, events are distributed according to Poisson’s law
with the parameters A1, Az, As, - - - , respectively. The probability of obtaining

n, single, n; double, ng triple, - - - successful events is (assuming mutual inde-
pendence)

ATTAZ? _
1 Py, ng,mg, o+ 5N, M, s, o00) = n%'ngi' fee g Quthaten),

The total number of successful events is
@ n=m+ 2+ 3ns+ - +ini+ -

The probability of obtaining n successful events is given by the sum of all expres-
sions (1) subject to the condition (2). This sum is given by the coefficient of
z" in the expansion

(3) f(x) — e_()\l+)‘,+...) 6)‘1’+)‘2:2+“..

Now if the parameters A, satisfy

a—1
@) A, = x,“s
one finds
1—a\l

® 0 =(+22)
and

_ Ma M ) (x‘ )a"
(6) P(")_(I_G)EE“"I el -1

Taking 2;—1 equal to a + 1 one gets Greenwood and Yule’s distribution in the

form given above [3]. The negative binomial law has useful applications, for
instance in some cases of accidents of workers in factories. It is proved that
with values of a near 1, the most probable value for n is n = 0 and the average
value is a finite number different from zero. Therefore the distribution will be
in some way similar to the distribution of the scores in a match between two first
class billiard players whose most frequent scores are zero and their average may
be, say, 50. In the case of the Poisson distribution the most frequent score and
the average score should be nearly the same. The relation (4) does not provide
an adequate description of many practical distributions. For instance, in a
match between two first class billiard players, the probability of making a second,
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third, - - -, point will be considerably greater than the probability of making
the first. With the relation (4) A, is a decreasing function of s, while we shall
investigate cases in which A, first increases with s and after a certain value of s
starts to decrease. As other examples of distributions of similar types we shall
mention the following: On a highway with dense traffic at high speeds the prob-
ability of only one car being involved in an accident may be smaller than the
probability of having several cars involved. Something similar may be said for
the cases of work accidents in factories where the work of one is interconnected
with the work of others. In many cases of telephone calls (business transactions,
organization of meetings, etc.) the sample Poisson law is not suitable to interpret
the distribution of calls, since one call may increase the probability that the
called person makes one or more calls.

The purpose of this paper is to treat the problem when, instead of (4), we take
other expressions which may in a better way describe some processes such as the
ones which we have referred to.

8. Modification and generalization of the scheme of Greenwood-Yule and
Liders. According to the relation (4) A, is a decreasing function of s and the
parameter a must be in the interval 0 < a < 1. Instead of (4) we shall use

s—1

@ A=

8!’

where a may have any positive value. In particular for @ = 0 our case reduces
to the Poisson case.

From (7) it follows that
'ka-{»l _ e

As s+1

8)
and we see that A, increases with s for 1 < s < a and dectreases for s + 1 > a.
Substituting from (7) in (3) we get

©) f(@) = ¢t gilanes,

As the probability of obtaining n successful events is given by the coefficient
of 2" in (9), we shall expand e in power series (a, 8 being two arbitrary
constants). We have

O T i TR LAre) y s
=1 0! Nl n! m=1 m! )
Now
0 n

(11) 2 o = ya(e)e
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where [4]
) = a
y(a) = o’ + a
(12) ys(@) = o + 30" + a
Ynla) = Z A-O oL
f==1 'L!
Here we use the notation of differences of zero: A*0". We have
(13) eaeﬁz = ¢° [1 + Z yn(;:')ﬁ IB”]
n=1 M
or
(14) i B S-S SE V] |
=1 n! = 1!
Now in our case
A _
(15) o E’y B = a,
whence
_ ) (60— n n AiOn )\ [
(16) P(n) = ¢ /9" “‘:L_! 2 = (;‘) n> 0.
17 P(0) = ¢ M/@@D, forn = 0.

We have in particular
P(1) = MP(0)

P@) =5 O+ PO

P@) = 51-, (Al + 3\e + Ma’)P(0)

P@4) = 411 (\ + 6Ma + A’ + Ma®)P(0)

PG5) = é (! + 10Ma + 25A\ia’ + 15Ad® + Ma')P(0)

P6) = Esl'z (A + 15M\a + 65M1a” + 90Ma® + 31Ma' + Ma’)P(0)

(18) P(7) = %(M + 21\l + 140Mja’ + 350Mia® + 301Aia' 4+ 63Aia°
+ Ma®)P(0)

P@8) = §1_! (8 + 28)\a + 266M\{d” + 1050\a® + 1701Na’ + 966Aia’
+ 127Ma® + Ma)P(0)
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1
PO) =g O + 3603 + 462 Ao + 2646Ma° 4+ 6951\ia* + 7770Md’

+ 3025M\a® + 255010’ + Ma®)P(0)
1

= 15;N° + 45Ma + 750Ma” + 5880Ma’ + 28827Nia’ + 42525Na"

P(10)

+ 34105Ma® + 9330Aa" + 511Aja® + Ma’)P(0).
For \; = a it follows that
19 PO) = ¢ "

(20) P(n) = ¢ ‘;—, Yn(1)

i P(n) = e [1 + i g:;y,.(l):l.
n=0 n=1 M.

Particular values of (20) are

P(1) = aP(0)

P(2) = @’ P(0)
P@ =% PO)
P@4) = li—?‘P (0)
PE) = 5%‘5 P(0)

(21) P@) = 22 p)
P() = 8777!“7 P(0)
P@®) = 41;?“8 P(0)
P@©) = 213’:!7“9 P(0)
P(10) = 1%31-0 P(©0).

In Figure 1 we have graphed the curves P(n) for the va)lues%1 =1;M =01,

M = 1, Ay = 2. We see in particular, that for A, = 1 we have P(0) = P(1)
and for \y = @ = 1 we have P(0) = P(1) = P(2).
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4. Application of the method of steepest descent. If A, isnot given by (7)
the above method of direct expansion of f(x) into a power series, usually becomes

1.0
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F1Gc. 1 DistriBUTION CURVES FOR j =1,a =01; ;l =1,a=1; -a—l =1la=2

inapplicable. In many cases it is possible to use instead the method of steepest
descent [5] in order to obtain approximate values for the coefficients of z" in the
relation (3).
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As is well known, if f(2) is an analytical function we have

no_ f@) _ 1 X (z,4)+i¥ (z,9)
(22) coeff. of 2" = 21.‘"_ o dz = o P € dz
f@)

where X + 7Y = log “735 o and the integral is taken along any closed path around

the origin.
To evaluate the integral (22) we shall follow a method similar to the one used
by R. H. Fowler [6]. Putting z = pe'® the relation (22) may be written:

+x Ta
(23) Coeft. of 2 = L [ £ 4,

21!'—1 p e

where the value of p is arbitrary. We shall put in particular p = 2, where z, is
the root of

xof’ (o)
S (o)

f()

(24) = n.

For most functions which interest us*=-* — « as £— 0 and as z — K (a positive

number which in some cases may be mﬁmte) and the second derivative is always
positive. Consequently f(x)/z" has only one minimum between 0 and K, and (24)

has therefore only one root z,. Developing log f(”‘::: 2 into powers of a, (24)
becomes
25) coeff. of z" = L Lx:) [“ ¢ GOt Gt et g
2r o b
where
o) =10g 1.

2
In the case where ¢” (o) 120- >> 1 the first term in the exponent in (25) increases

in absolute value very rapidly in the neighborhood of z,. For small values of «

we may therefore in a first approximation drop all other terms. Also, as this

first term tends rapidly towards zero one does not appreciably increase the error

by replacing the integral from — = to + = by the integral from — « to + oo.
In such cases we have, therefore, the approximate formula

1 f(x) (xo) ¢~ E0zdiDat f(xo)
P L AN e )

We are now in a position to deduce asymptotic values for the probabilities P(n)

(26) coeff. of 2" ~ 2im
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which we have previously calculated directly. In fact, for f(z) defined by (9)
we obtain from (26) for large n

e—()\l/a)ea e»/azo

@ Pln) ~ V2r z¢vnlazo+ 1)

where z, is given by

azg

n
e —_—

M Zo

In particular for \; = @ and putting az, = y, it follows that

evg
e

Valy + 1)

Comparing the numerical values given by the relation (28) with the exact values
we find that even forn = 4 and \; = 1 (28) gives an approximation with an error

of about 5%.
Formula® (26) can also be used to evaluate the numbers y,(1) defined by (12)

for a = 1. Relation (13) givesfora =g =1
ez _ =~ Ya(1) n
e = 6[1 + Z 7 x ]

n=1

(28) P(n) ~ 0.3989 (;L‘) M
0

and therefore
Coeff. of 2" in expansion of ¢ = 6?/;;('1)_

Putting f(z) = ¢* and using Stirling’s formula for n! we have from (26)

L)

yn(l) ~
Va+1
2 Applying this relation to f(z) = e* one obtains immediately Stirling’s Formula:
o) = logz(—i) =2 —nlogz
z
o' (2) =1—7—l, Zy = n,
2z .
n . n
= = ” e C
() = =, ol =2,

1 (e )" 1

n! n) A/2mn’
Also relation (26) is useful to find other symptotic expressions; e.g. for f(z) = (pz + 9)" one
obtains for n — « the Laplace-Gauss formula.
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where 7, is given by

= —

&3

Forn = 4,z = 1.202 and y:(1) ~ 15.56. As the exact value of y(1) is 15 we
obtain in this case an error of less than 49,.

Repeating the calculations for n = 6, o = 1.432, we find that ys(1) is given
with an error of less than 3%,.
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