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1. Summary. It is generally assumed in the application of distribution
theory that, if the actual population function is not very different from the one
used in the theory, then the true sampling distribution of a statistic will not be
very different from the one obtained in the theory. But elsewhere in mathe-
matics we do not assert that a conclusion will be only slightly modified by a small
deviation in the hypothesis. This paper presents some theorems which are
useful in determining the maximum effect on a sampling distribution of certain
kinds of small changes in the population function. In particular, if the popula-
tion is denoted by the function ¢(¢), if a sample of n independent measurements
(t, -+, t,) is taken from this population, if a statistic x = g(t:, --- , ) is
formed from the sample, and if D(z) denotes the distribution of this statistic;
then, when ¢ (¢) is changed by a small proportionate amount to ¢:(¢), D(z) will
be changed to Di(zx), and the relation between D and D; will be subject to the

inequality:

fa "D - Dz | = ¢ f Dy,

where

e=(14+8"—1, and [/ — 1| < 6.

2. It is generally assumed in the application of distribution theory that, if
the actual population function is not very different from the one used in the
theory, then the true sampling distribution of a statistic will be not very different
from the one obtained in the theory. For example, we commonly apply to
practical problems the distribution theory that has been obtained on the hy-
pothesis that the population is normally distributed even though we know that
our actual populations are only approximately normal in form, and we commonly
assume that our results are approximately correct. But elsewhere in mathe-
matics we do not assert that a conclusion will be only slightly modified if we only
slightly modify the hypothesis. An example of our unwillingness to do this
in other branches of mathematics is illustrated in the following example.

Ezample 1. Let y = ¢(f) have the derivative y' = ¢'(f). Let #(t) be re-
placed by ¢1(f), where ¢1 — ¢ = s(0)¢(t), and | s() | < ¢, € being small. We
have thus chosen to make (¢;1 — ¢) small relative to ¢ rather than small abso-
lutely so that this example may be useful in another connection. The derivative
of ¢, may of course differ very greatly from ¢'(t), as for example in some of the
approximations made by a few terms of a Fourier series; and it would be a major
error to assume that the two derivatives are approximately equal. How can we
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EFFECT OF SMALL CHANGES 227

be sure that, in the process of finding a distribution function, we are not making
an error of the same’ sort?

The following theorems partly answer this question. The theorems will first
be stated and proved in great generality. Then we shall return to the functions
in Example 1 as a special case. We shall be concerned with a sample consisting
of a single observation of n measurements (4, -+, t,) drawn from the multi-
variate universe Y(t, - -+ , &), or, more briefly, with the vector T’ as a sample
from the n-way universe ¢(T). Throughout this paper ¥ and y; shall be func-
tions which are non-negative and whose integrals over the entire spaces of their
definition are unity. Let the statistics (21, - -, &), or more briefly the vector
X, be constructed from T thus:

(1) = gT), -+, 2m = gu(T).

If now p represents any ieasurable point set in X space and if dX is used for
(dzy -+ dzm) and dT for (dt - - - dt,), a fundamental theorem [1] of distribution
theory asserts that, if ¢ is the point set in T space for which X is in p, then the
distribution D(X) is determined by the equation,

@) f D(X) dX = f W(T)dT, if these integrals exist.
¥4 q
TeEOREM 1. Using the foregoing notation, let Y(T) be replaced by ¥1(T) and
let yo(T) — Y(T) = Y(T)S(T), where | S| < ¢, and as a consequence let D(X) be
replaced by Di(X); then
@ | [ pxax — | D(X)dX] <ef DX <
b4 P »
To prove these inequalities we merely need to notice that the point set ¢

depends on the g’s but not on the universe, and that therefore we may use the
same p and ¢ as in (2) in the following equation which determines D; :

@) f,, Dy(X)dX = f,, W (T)dT.
Subtracting (2) from (4) we obtain
(5) prldX - _/;DdX - fp(pl —D)dx‘ - fq(:p,— ¢)dT'
- fq¢SdTlse jq'-pdT;=e prXmge,

1The general question being raised here has been approached heretofore from differ -
ent points of view. In particular, other exact population functions besides the normal
have been studied, and in some cases the distribution theory has not been greatly dis-
turbed as a result. Also, the effects of slight changes in the parameters of a population
function have been studied.
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since ¢ is never negative, and the integral of D is never greater than unity. It
should be noticed that the final inequality of (5) is independent of the g’s, al-
though this is not true of the preceding inequalities, which do depend on the
g’s becayse they involve p and g.

CorOLLARY. In particular® let ¢ = ¢(t) - - - ¢(t.), where ¢(t) defines a one-
way universe function, and t, , + - - , t, are independent samples from it. Letx =
glt, -+, t.). Then, if ¢(¢) is replaced by ¢:(t), and if 1 — ¢ = s(O)¢(?), and if
| s(t) | < 8, and if D(x) is the distribution of x before the replacement, and Di(x)
is the corresponding distribution after the replacement,

f., ' Daz

e=(1+8"—1l,and —» <a<b< .

[b (D, — D)dx

< e

<
where

This corollary follows from the theorem because of the universe,

Yty -+ 5 ta) = ¢(t) - - - d(tn),
and
Yalts, -+ 5 t) = &(t) +-- S(E)I1 + s@)] - -+ [1 + s(t)],
so that, in the notation of the theoremi,
(T) = ¢(T) + ¢(T)8(T),
where
S(T) = [s(t) + -+ + s(t)] + [s(t)st) + - -+ + s(ta1)s(t)]
+ e 3@ - s(ta)]

Hence

n! 2 | . n__ 1 —
S‘S n6+21(n——_2)!8+'--8 —(1+6) 1 =ce
The interval (a, b) now replaces the point set p of the theorem.

This theorem and its corollary are powerful in that they may be applied to all
statistics, but they are weak because of the restrictions on S(T) and s(®. Itis
to be noted also that the corollary is ineffective when = is large, a difficulty which
seems to the author to be implicit in the sampling process. The restrictions on
s(¢) make it impracticable to apply the corollary to the following example since,
as will be observed, if | ¢| > ¢, ¢1 — ¢ = —¢, and so then | s| = 1; and when
6=1€e=2"—1.

Ezample 2. Let ¢(f) = (2m) %" in (— w, «), and let ¢2(f) = 4(2m) ™"
¢ % in (—c, c) and let ¢:(f) = 0if [ ¢| > ¢, where ¢ is not infinite and A is so
chosen that the integral of ¢; over (— e, ) is unity.

This type of example is important because, in the attempt to apply the theory
of normal distributions to practical matters, the first discrepancy that appears

20ne could as well use ¢'(¢;) -+ ¢™(t,), but we choose the simpler case on account of
its importance.



EFFECT OF SMALL CHANGES 229

is that in the theory the given distribution is infinite in extent while in practice
it is finite. The following theorem generalizes the preceding one so as to permit
it to apply to this example.

TraEOREM 2. Let all of T-space be divisible into two parts, Qo and Q, , satisfying
the following conditions. In Qo let y1(T) — Y(T) = S(TYWY(T), and let | S(T) | <
€. In @ let yo(T) = 0, and let

[ war) < a.
Then
prldX—_/;DdX’SeLDdX+e1$e+e1.

It is not required that Qo or @ be the totality of points for which its attendant
conditions are true.

Proor. As before, if the integrals exist,
DdX = arT, d DdX = dT.
[ wc = fpn, s [oux= [
Hence
DdX — | DdX = — 9)dT = — $)dT — )dT,
[pax - [ [ —war = [ —war + [ g -
where g is that part of ¢ which is in Qo , and ¢: is that part of ¢ which is in Q.

0) f Diax - [ Dax | < fqo(¢1—¢>dT|+ [ l(th—ll/)dT’-

@ )fqo<¢1—¢)dT}= fqoSwﬁdT’Sef“#/dT

< e[¢dT=efDdX,because¢_>_o.
q P

(®) [ = viar =1 war

because Y1 = 0 in ¢:. The inequalities (7) and (8), when substituted in (6),

prove the theorem.
CoroLLARY. In particular, let ¢, and x be defined as in the corollary to Theorem

1, and let ¢:1(t) be so defined that, if | t| < ¢, ¢i(t) — ¢(t) = s(t)¢(t), where as before
|s@® | <é,ande= (148" —1;and,if | t]| > ¢, letgs(t) = 0. Alsolet

&) « - ¢(ta)dT < € where Q, is the set where | t;| > c for at least one value
of ©. Then

fabDl(x)dx - j;bD(x)dx

S S‘ely

vaT
e

b
<e[D@is+a<eta.

provided these integrals exist.
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Proor. This corollary is implied in the theorem if we let ¥(T) =
é(t) - -+ ¢(tn) and ¢a(T) = ¢u(tr) - - - ¢1(¢n), and then let Qo be the point set in
T-space where | t; | < ¢ for all values of 4, and @, be the point set where | ;| > ¢
for at least one value of 7. As in the corollary to Theorem 1, p becomes the
interval (a, b).

Ezample 3. Let ¢ and ¢, be as in Example 2, and choose ¢ = 3. Then 4 =
1/0.9973 = 1.0027, and

é(t) - - d(ta)dT = 1 — (.9973)".
Q1
This quantity may be taken as ¢ . Also

| (41 —¢)/¢| =4 — 1] = 0.0027.

This quantity may be taken as . Then e = (1.0027)" — 1. Hence
b b

‘ f Dy(x)dx — f D(x)
If n is not large, an approximate value for both e and € is 0.003n. This quantity

is not particularly small unless n is small, but it could not be expected to be
very small since the corollary pertains to all statistics of the form z =

b
dr < e f D@z + « .

g(tl y °° tn)
Example 4. In one of the author’s earlier papers [2] he found the distribution
of the geometric mean, z = (#; - - - t)"'" of n observations chosen from the

universe described by the so~called curve of equal facility, whose equation is

1 —(1/2c2) (log t/ @)

y= te\/ 2w

The author stated that there was about as good justification for assuming that
the distribution of statures was given by that universe as for assuming that it
was normal. After one more theorem we shall now be'able to state that, if one
wishes to cling to the assumption that the distribution of statures is normal, then
the distribution of the geometric mean is close to the distribution found in that
earlier paper. We do need another theorem for this because we should be deal-
ing with two distributions, ¢1(¢) and ¢(¢), which do not obey the requirements of
the corollary of Theorem 1, because they approach zero at different rates as ¢
becomes infinite, and do not obey the requirements of the corollary of Theorem
2 because neither vanishes throughout the infinite intervals for which || > c.
But the following theorem and corollary will take care of this and of similar
cases. It will be ohserved that Theorem 3 includes Theorem 2 as a special case.

TuroreM 3. Using the foregoing notation, let all of T-space be divisible into
two parts Qo and Q, satisfying the following conditions. In Qo let Y1(T) — ¥(T) =
S(TW(T), and let | S(T) | < e. Let T = @ + Qand

[ W) + [ DT < .
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Then
‘ f Dy(X)dX — f D(X)dX’ < e f DX)AX + & < e+ &.
y P ¥4
Proor. As before,

f, D.dX — f,, DdX = f,, (2 — P)dT = f, =T+ fq &= 9T

prldX —prdX{g f“(.pl—qz)d'_rjﬂfh (¢1—¢)dT‘=I+II.

ISefDdXSe.
b4

< T T < aT T < «.
II—'/;1¢1d +‘£1¢d —‘/;1'#1 + Ql¢d =

These inequalities together prove the theorem.

CoRroLLARY. In particular, let y, ¢y, and x be as in the corollary of Theorem 2,
except that now, instead of requiring ¢1(t) lo vanish when |t| > ¢ we shall let Q,
and € be so chosen that

[ @) oo i) + [ 9() -+ 4T < a1,
Q1 Q1
Then
b b b
[ Dy(z)dx — f D(z)dx ‘ < ef D@)dr + ¢ < e+ «.

As before stated, the inequalities of this paper apply to all statistics for which
the integrals involved exist. It seems probable that closer inequalities could be
devised by placing appropriate restrictions on the g functions which define
these statistics.
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