CONTRIBUTIONS TO THE THEORY OF SEQUENTIAL ANALYSIS. I

By M. A. GIrsHICK
United States Department of Agriculture

PART 1 APPLICATIONS OF SEQUENTIAL ANALYSIS TO THE RANKING oF Two
PoruraTioNs WiTH RESPECT TO A SINGLE PARAMETER.

1. Summary. Given two populations m and m; each characterized by a dis-
tribution density f(z, ) which is assumed to be known, except for the value of
the parameter 6. It is desired to test the composite hypothesis 6; < 6. against
the alternative hypothesis 6, > 6, where 6; is the value of the parameter in the
distribution density of w;, (z = 1, 2).

The criterion proposed for testing this hypothesis is based on the sequential
probability ratio and consists of the following:

Choose two positive constants @ and b and two values of 6, say 6] and 63.
Take pairs of observations 214 from 7, and 25 from 7, (@ = 1,2, .. .), in sequence

1
and compute Z; = 2 2, where

a=1

—_ f(x%f ) etl))f(xla ) 0‘2))
% = log [f(xza, ) (21, o‘n]'

The hypothesis tested is accepted or rejected depending on whether Z, > a or
Z. < — b where n is the smallest integer j for which either one of these relation-
ships is satisfied.

The boundaries a and b are partly given in terms of the desired risks of making
an erroneous decision. The values 6} and 63 define the magnitude of the differ-
ence between the values of 6 in m, and in m, which is considered worth detecting.
It is shown that the power of this test is constant on a curve h(6: , 6;) = constant.

0 .
If E (log %) is a monotonic function of §, then the test is unbiased in the
» Y1

sense that all points (6, 6;) which lie on the curve h(6:, 62) = constant are such
that either every 6; < 6 or every 6, > 6, . For a large class of known distribu-
tions the quantity h is shown to be an appropriate measure of the difference
between 6; and 6, and the test procedure for this class of distributions is simple
and intuitively sensible.

For the case of the binomial, the exact power of this test as well as the distribu-
tion of n is given.

1.1 General discussion. Consider two processes (populations) m and
each yielding a measurable quantity x whose distribution density f(z, 6) is as-
sumed to be known except for the value of the parameter §. On the basis of a
random sample obtained from each, it is desired to choose that process which
yields the smaller (or larger) 6. That is, it is desired to devise a test which will
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result in a high probability of accepting ; if the 6 characterizing its distribution
density is smaller (or larger) than the 6 in 2, a high probability of rejecting
(i.e. accepting ) when the opposite is true, and approximately equal probability
of making one or the other decision if the value of 6 in m is the same as in .

As an illustration of the type of problem here considered, let us assume that a
manufacturer is faced with a choice between two competing processes of pro-
duction, each process yielding an unknown fraction defective p and each entail-
ing about the same operating cost. Based on the evidence of a random sample
selected from each, the manufacturer wishes to choose that process which yields
the smaller fraction defective. If the fractions defective in the two processes
differ by a significant amount, he will want a test which guarantees a high prob-
ability of making a correct decision. If, however, the fraction defective in the
two processes are of approximately the same magnitude, it will be a matter of
indifference to him which decision is reached.

The solution given in this paper to the above problem is based on Wald’s
sequential probability ratio test [1]. The resulting procedure not only requires
on the average, fewer observations for the same protection than any other test
(which is always the case with sequential tests of this type) but is also direct and
simple when applied to a large class of distributions commonly met in practice.

1.2 Derivation of the sequential test when the existence of a priori probabili-
ties is assumed. The choice of the probability ratio as a method of discrim-
inating between the two processes is suggested by considerations of a priori
probabilities. Let us assume that each process may have either 67 or 63 as the
value of a parameter 6 in its distribution density and that the value 6} is more
desirable than 65 . Let us further assume that there exists an a priori probability
g1 that a process will have 67 as a parameter and an a priori probability g, = 1 —
¢1 that it will have 63 as a parameter. Let the likelihood for n observations
T, Tz, -+, T1n drawn from m be designated by p(zu, 212, - -+ , Z1n, 67) When
6! is the parameter in m; , and by p(y , 212, - * , T1n , 63) When 63 is the parameter
inm . Letthe likelihoods p(za, &as, =+ * 5 T2n , 63) and p(Lar, T, **+ , Tan , 63)
be similarly defined for n observations s , Zs2, * - * , Z3a drawn from w, . Then

(1°201) p(xil’ Tiz, **°y Lin, 0(1,) = IIl f(xia’ 0?)7 7:).7 = 17 2.

Let 8s;, (¢, j = 1, 2), be the a posteriori probability that having obtained %ia , (o =
1, 2, - -+, n), that process ; has 69 as a parameter in its distribution density.
Then

glp(xily Ligy ==y Tin, 0(1))

(1.202) B = GpTa, o, Tin, 02) + ¢p@a, -, Tin, og)
and
(1 203) B = g2p(x"17 sy Tin, ag)

. e =

glp(x‘lv ccty Tiny 02) + 92P(x€1; ccty Tin, 0(2,)
for 2 = 1, 2.
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In order to decide whether the hypothesis that 6 belongs to the distribution
density of m is more tenable than the hypothesis that it belongs to the distribu-
tion of m; , it is only necessary to compare By with 85 .  But if By is equal to or
greater than B, , the ratio 811/B1 must be equal to or greater than B,/ and con-
versely. For assume that 8y > B2 . Subtracting 81184 from each side of the in-
equality we get Bu(1 — Ba1) > Bar(l — Bu). But since 1 — By = B and 1 — B
= ﬁ21 , We see that ﬁu/ Blz Z ﬁzl/ 1322 . Conversely, let Bu/ Bl2 2 B21/ 322 . Then
Bu(l — Ba1) = Bu(l — Bu), or Bu > Pu .

From the above it would appear that a sensible sequential procedure for de-
ciding whether 6] is more likely to belong to ; than to m, is as follows: Select two
positive quantities A and B with A > 1and B < 1. Take a pair of observations
Z1a , T20), (@ = 1,2, ---), at a time, one from each process. At each step (i.e.,
for each sample size n) compute the ratio A = Bu s % . If at any stage A < B,

22, 12
terminate the sampling and accept the hypothesis that 6} is a parameter in the
distribution density of ;. On the other hand, if at any stage A > A, terminate
sampling and accept the hypothesis that 6} is a parameter of the distribution
density in m, . If neither holds, that is if B < A < A, then take another pair of
obseryations, consisting of one from each process. Continue this procedure
until one or the other decision is reached.!

The interesting point here is that the decision function A is independent of g
and g, . In fact, it is easily seen from equations (1.202) and (1.203) that

A = p(xﬂyxﬂy cccy Lo, og)P(xu, T12, ***,y L1, 03)
(21, Ta2, -+ -, Ton, 09)P(T11, Trzy « -, T1n, 603)

(1.204)

1.3 The proposed sequential test as a special case of a sequential probability
ratio test. If we examine the expression given in (1.204) we see that it is a ratio
of two likelihoods. The numerator of the ratio is the likelihood of the 2n ob-
servations under the hypothesis that 63 is a parameter in 7, and 6] is a praameter
in m; ; the denominator is the likelihood of the 2n observations under the hy-
pothesis that 6] is a parameter in = and 63 is a parameter in =, . Thus, the pro-
posed sequential test is equivalent to a sequential probability ratio test (see [1])
for testing the simple hypothesis that 6 belongs to m; and 63 belongs to =, against
the alternative hypothesis that 63 belongs to m; and 6] belongs to =,. We can,
therefore, apply the theory of sequential analysis developed by A. Wald ([1] and
[2]) to this problem.

While the test is posed in terms of a simple hypothesis, the solution, as will be
shown later, is in fact a solution to a composite hypothesis. In order to bring
this out more clearly we shall rederive a few of the results which have already
been obtained by A. Wald. This will be done in sections 1.4, 1.5, and 1.6.

1That a decision will be reached eventually can be asserted with probability one if the
variance of the variate z. (defined by (1.301)) below is different from,zero (or if it is zero,
the value of z. is different from zero). See [2],Lemma 1. Aswe shall see later, if, in faet,
both processes have either 6] or 0: as parameters, then the above sequential procedure will
result in the acceptance of either process with approximately equal probability.
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In what follows we shall speak of the hypothesis (61 , 62) to mean the hypothesis
that 6 is the value of the parameter in the distribution density of m; and 6, is the
value of the parameter in the distribution density of =, . The hypothesis (67,
63) will represent a specific hypothesis which we may wish to test and will be
used to define the decision function (the probability ratio) of the sequential test.

Letusfix A > 1and B < 1 and set

(1.301) Za = log [ﬁz Zéiﬁii“ Z'g]

where ;. is the ath observation from 7y, Z:. is the ath observation from
and (67, 65) is the particular hypothesis to be tested against the alternative hy-
pothesis (62, 61) . Let a = log A and —b = log B. Then a and b are positive.
Since the observations from m; and =, are assumed to be independent, log A =

D 2.. Hence the proposed sequential test can be carried out in the following

a=1

manner. Draw one pair of observations at a time, one from m;, and one from ..
Let 21, 22, - - - be the values of z. obtained from the first, second, etc. trial.
letZ,=2a1+2+ -+ 2.,,(n=1,2 ---). Continue sampling as long as
—b < Z, <a. WheneverZ, > a,(n =1,2,3, --- ), terminate sampling and
accept m (or m). Whenever Z, < —b, (n = 1, 2, 3, - - -), terminate sampling
and accept m (or m).

1.3a. Basic assumptions. In this section and throughout this paper, we shall
be dealing with sequential tests involving, as above, a decision function Z, =
at+zmt - F2,,mn=1,2 ---,adinf.), where the z,’s are independently
distributed random variables having a common distribution function. Let 2z
denote a random variable whose distribution is the same as the common distribu-
tion of z., (@ = 1, 2, ---, ad inf.). It will be assumed, even if not explicitly
stated, that the distribution of z satisfies the following conditions.

CoNDITION 1. Both the expected value Ez of z and the variance of z exist and are
unequal to zero.

ConpITION 1. There exists a positive 8 such that P(¢* > 1 + 8) > 0 and
Pl <1—35)>0. _

ConorrionN 11 For any real value h, the expected value Ee™ = g(h) exists.

ConprTioN 1v. The first two derivatives of the function g(h) exist and may be
obtained by differentiating under the integral sign.

1.3b. Fundamental properties of sequential tests. Let z be defined as in 1.3a.
Then under the assumption that the distribution of z satisfies the conditions
specified, Wald [2] has proved the following:

LemMA 1. The probability that a decision s reached in a finite number of steps is
unity.

LemMA 1. There exists one and only one real value b 5 0 such that the expected
value Be™ = 1.

FUNDAMENTAL IDENTITY: The fundamental identity Ee*™[o(t)]™" = 1 holds
for all points in the complex plane for which | $(t) | > 1 where $(t) = Ee".
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0
Let w = log ;Ez’—z;; and let the distribution density of z be f(z, ). Let 6;and
» V2
6, be any two values of # which may be distinct from 6 and 63. Then it can
easily be verified that if w satisfies the conditions specified in section 1.3a under
the hypothesis § = 6, as well as the hypothesis 6 = 6, , and if moreover the ex-

pected values of w under these two hypotheses are not equal, then z = log
0 0

%%“—Zg will also satisfy these conditions when the joint distribution
y V2 1, U1

density of z; and z; (2; representing the measurable characteristic in =, and z.
in 1l’2) is either f (:vl N 01) f(xz , 02) or j'(a:l 5 02) f (Zz s 01).

In what follows, we shall assume that the distribution of w satisfies the re-
quired restrictions for the 6; and 6, under consideration and that the expectation
of w under the hypothesis 6 = 6; is unequal to the expectation of w under the
hypothesis # = 6,. Consequently, we shall assume that Lemmas I and IT and
the Fundamental Identity hold for all the sequential tests we shall consider.

14 The power of the proposed test. Let z; be an observation from = and
Z an observation from m, . Let

where 6} and 65 are specified parameters in the probability density of =, and .
respectively. Furthermore, let ¢(¢ | 61, 62) = E(e* | 6, 6;) be the moment gen-
erating function of z under the hypothesis (6;, ;). Then

. 2 2T s, 6)f (2, 62)7

(102) BE"lo,00=[ [ %ﬁ] F@r, 0@z, 63) dy das.
By Lemma II there exists one and only one real number A # 0 such
that E(¢" | 61, 6,) = 1. Let L, = P(Z, < —b| 6:, 6,) be the probability that
the sequehtial test terminates and Z, < —b under the hypothesis (61, 6;). Then
by Lemma I,1 — L, = P(Z, > a| 61, ;). For any random variable u consid-
ered under the hypothesis (6;, 6), let the symbol E,(u) stand for the expected
value of » under the restriction that Z, < —b and E,(u) stand for the expected
value of u under the restriction that Z, > a. In terms of the above definitions,
the Fundamental Identity can be expressed as follows:

(1.403) LaEwe'®o(t | 01,01 " + (1 — Li)Ese™[¢(t| 61, 62)]" = 1.
Setting ¢ = h in (1.403) we get
(1.404) LiEwe'® + (1 — Li)E." = 1.

Following Wald [2], we define a two valued random variable Z,, in this manner:
Z,=aifZ,>aandZ, = —bifZ, < —b. LetZ, — Z,=¢. Theneisalsoa
random variable. In what follows, we shall substitute O for e. The error com-
mitted in neglecting e is small when 6} is close to 63 . As we shall indicate later,
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the quantity e can, in fact, be neglected without error in the special case where
S(z, 6) is the binomial distribution.
Substituting Z, for Z, in (1.404) we get

(1.405) Lie™ + (1 — L) = 1
Solving for L, we get’

1 — ¢ et _ hb
(1.406) Li= m—m = e —1°

As we shall see later, h = 0 when 6, = 6,. But when h = 0, L; in (1.406) is
indeterminate. However, it can be easily seen that

1.407 lim Ly = —2—
( ) hl—?: "Ta+b
It follows from (1.406) that the power of the test is constant for all 6, and 6,
which give the same root ¢ = h. The quantity & is thus fundamental in this
test, and as we shall see later, is an appropriate measure of the difference between
6, and 6, for a large class of distributions.

156 Method of determmmg the sequential test. Let z be defined as in
(1.401) and let ¢,(t) = E(e" | 67, 62) be the moment generatmg funection of z
under the hypothesis (61, 63), and let ¢o(f) = E(e" |63, 69) be the moment gen-
eratmg function of z under the hypothe31s (63, 63). Furthermore, let « = P(Z,
=a] 01,02)and6 P(Z.= —b| 6, 01) Then by Lemmal, 1 — a = P(Z,
=—b|6l,60)and]l — B =P(Z,=al|6d,06). Now, applying Wa.ld’s Funda-
mental Identity we have,

(1.501) (1 = e Buls()]™" + ac“Buln()]" = 1,
(1.502) Be " Enlt()] ™ + (1 — B)e"Eadldo()] ™ = 1,

where the symbol E,, stands for the conditional expectation knowing that Z, = a
and Ey; stand for the conditional expectation knowing that Z, = —b; with both
expectations taken under the hypothesis (67, 63). The symbols Es, and Es
are similarly defined but under the hypothesis (63 , 63). Setting ¢ = 1in (1.501)
and ¢ = —1in (1.502), we get, in view of Corollary 2, Theorem 2 below,

(1.503) (1 — a)e?® + ae® =1,
(1.504) B+ (1 — B =1

2 In what follows, Ly will always stand for the probability that a sequential test will
terminate with Z, < —b. Inany given problem, the interpretation of the event Z, < —b
will be clear from the context.
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Nowa = log A and —b = log B. Hence, equations (1.503) and (1.504) become

(1.505) (1— ) B+ad =1,
B, 1—8_

(1.506) Syl Py,

or

(1.507) A = 1-8 and a = log B,

(1.508) B=rt and p-10gl2

From (1.507) and (1.508) we see that the sequential test is completely determined
by the function 2, which, in turn, is defined by 67 and 65 , and by the probabilities
of making a decision for the two hypotheses (6%, 63) and (63, 63).

Once z is defined in terms of a specific (6}, 63), the probability that Z, < —b
will be equal to 1 — a and the probability that Z, > a will be a (if we neglect
the fact that | Z, |, at a decision point, might exceed a or b) for the totality of
hypotheses (6, 6;) for which the moment generating function ¢(¢ | 6;, 6:) = 1
when ¢t = 1. A similar statement can be made for the corresponding hypotheses
(6, 6;) for which the moment generating function will equal unity when ¢t = —1.
Hence, we see that while the test is defined by specifying two points (67, 65)
and (63, 6}) in the parameter space, the pre-assigned risks « and 8 of making
the correct decision will be approximately constant on the set of points for
which the moment generating function equals unity when ¢{ = 1 and when ¢ =
—1, respectively. This set of points usually will constitute a smooth curve.

If01= 02,Lo=a_t|l_b
will be close to % if a is close to b, and will equal % if @ = b. But from (1.507)
and (1.508) we see that @ = b if @« = 8. Thus, if we construct a test which
will give a probability of rejecting ; when (6] , 63) is true equal to the probability
of accepting m; when (65, 6)) is true, we shall be accepting =; and =, with equal
frequency when in fact 6, = 6, .

(by 1.407). Hence, the probability of accepting

1.6 The average number of pairs of observations required to reach a decision.
Let E(n | 6:, 6,) be the expected number of pairs of observations required to reach
a decision under the hypothesis (6, , 6;). We shall show that

(1 — L) — bLy
Ez )

(1.601) E(n|6,8) =2

Proor: Differentiating the Fundamental Identity,
(1.602) Ee®p(t)]™ = 1,
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with respect to ¢, we get®

(1.603) E{Z. "¢ — ne' "' ()s()] "'} = 0.
Setting ¢t = 0, we get

(1.604) EZ, — ¢'(0)E(n | 6., 6,) = 0.

But

(1.605) EZ, = a(1 — L) — bLs

and

(1.606) ¢’'(0) = E-z.

Hence, solving for E(n | 6;, 6) in (1.604) and substituting from (1.605) and
(1.606) we get
1 — L) — bLa

Ez )

While L; is approximately constant for all values of (6, , 6;) for which the mo-
ment generating function equals unity for ¢ = h the expected value of n given by
(1.607) will depend on the particular hypothesis (6;, 62). This follows from the
fact that Ezis not necessarily constant for the same set of points (6, , 6;) for which
L; is constant.

(1.607) En |6, 0) = %

1.7 Some general properties of the proposed test.
f(xz ) og)f(xl ) 02)
f(xe, 09)f(21, 69)
and x; from w2. Then if F(z) is the distribution density of z under the hypothesis
(61, 62), F(—2) is the distribution density of z under the hypothesis (6, , 6y).

Proor: Let ¢ be a real number and let y1(f) = E(e*** | 61, 6;) be the character-
istic function of z under the hypotbesis (6:, 62). Then

— Y f(x% ag)f(xly 02) i
(1701) '¢1(t) = f_w '[_w [W] f(.’l:l, Ol)f(xz, 02) dx1 dxz.

Now let y2(t) = E(¢™**| 6, 6:) be the characteristic function of —z under the
hypothesis (6;, 61). Then

— e f(x ’ o(l))f(xl’ og) B
702) v = [ [ [ e e BT s )0, ) do .

Interchanging the variables of integration in (1.702) we see that ¢1(f) = ().
Consequently, the distribution of z under the hypothesis (6;, 6;) is the same as

TaEOREM 1. Let z = log where x; ts an observalion from m

3 This assumes that the Fundamental Identity can be differenfiated with respect to ¢.
The results that follow can be derived without any reference to the Fundamental Identity.

See Wald [1], page 142.
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the distribution of —z under the hypothesis (8, , 6;). This theorem in conjunc-
tion with the fact that E(z| 61, 6;) # 0 when 6, 6, shows that the decision
function z discriminates in a real sense between the two alternative hypotheses
(01 y 02) and (02, 01)

TuroreM 2. Let E(e' | 6;, 6;) be the moment generating function of z under the
hypothesis (61, 0;) and let E(e" | 62, 6:) be the moment generating functwn of 2
under the hypothesis (8;, 6,). Then, if t = h is a root of the equation E(e” | 61, 6,)
= 1, then t = —h is a root of the equation E(”]6,,6) = 1.

Proor: The same as Theorem 1. As we have seen in Section 1.4, the power
of the proposed sequential test (neglecting ¢) depends only on h. This theorem
shows that if the probability of accepting m is large under the hypothesis (61,
62), it will be small under the hypothesis (6., 61), and conversely.

CoROLLARY 1. The only value of t for which E(e” |6, 6) = 1ist = 0. This
follows from Theorem 2.

COROLLARY 2. The values of t for which E(e | 67, 05) = 1 and E(e" | 63, 01)
= laret = 1andt = —1 respectively. This can be seen by expressing E(” | 67,
63) as a double integral and setting ¢ = 1.

THEOREM 3. Let w be the totality of points (8:, 62) in the parameter space for
which 6, < 6. Then a necessary and sufficient condition that the values of h (for
which E(¢"* | 6;, 6:) = 1) be of the same sign for all points in w ts that

(1.703) Bwlo = [ log % ((z, 0) da
) e f(x, 09)7 7
be a monotonic function of 6.

To prove this theorem we need the following lemma.

Lemma 1. Let g(z, 6) be the distribution density of x and ¥(f) its moment gen-
erating function. Let h be the real non-zero value of ¢ for which v({#) = 1. Then
the sign of h is opposite in sign to Ex (the expected value of x)if Ex # 0.

Procr: For any random variable v, Wald [1] has shown that the inequality

(1.704) Eu < log Ee*
holds.

Setting u = tx, where { is a constant, we get
(1.705) tEx < log Ee'* = log ¢(1).

Setting ¢t = hin (1.705) we get hEx < 0. This proves the lemma.
Now let E(z| 61, 62) be the expected value of z under the hypotheses (6, 62)
where (6, 6:) belongs to w. Then

E(Z l 01 3 02) = f f log f(xz ! Bl)f(xl 2 02) f(xl , 01)f(x2 y 02) dxl dIz

f(iL'z ) eo)f(xl ) 00
(1.706) — f‘ o ;gr zg f(z, ) da

f(:c 02) _
_fl E Heg /5 ) do = w6 = Ewl6s.
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From (1.706) we see that if Ew | 6 is monotonic in 6, E(z | 6:, 6;) will have a con-
stant sign for all points (6; , 6;) in w and hence by Lemma 1, 2 will have a constant
sign. Conversely, if h is of constant sign for all (6, 6;) in w, so will E(z | 6,
6;) be. Consequently, by (1.706) Ew | 6 must be monotonic.

CorOLLARY 1. Let Ew | 6 be a monotonic function of 0 and let w,, (b 5 0), be
the totality of points (6, , 6;) in the parameler space for which the power of the se-
quential test is constant. Then the coordinatss of the points (61, 62) in wy, are such
that either every 6; < 6 or every 61 > 0, . '

Proor: By assumption all points in w; have the same power. Since L in
(1.406) is a strictly increasing function of A, the points in w; must yield the same
h. However, if we assume that ws contains a point (6; , 6;) with 6; < 6, and a
point (6;, 6;') with ;' > 65 , the sign of E(z | 61 , 65) by (1.706) will be opposite
to the sign of E(z | 67 , 6;). Hence, the value of h yielded by (61 , 63) is opposite
in sign to that yielded by (6, , 65), which contradicts the assumption that both
points yield the same h.

Theorem 3 and Corollary 1 show that if Ew | 6 is monotonic in 6, the proposed
sequential test is unbiased in the sense that all points (6; , 6;) that lie on the curve
h = constant (and hence have the same power) will have the property that
either the inequality 6; < 6, holds or the inequality 6, > 6, holds. The equality
sign will hold if and only if A = 0.

1.8 The proposed test applied to distributions which admit sufficient statis-~
tics. Let f(z, 0) admit a sufficient estimate of 8. Then it is well known that
f(z, 6) can be written in the form*

(1.801) f(z, 6) = @@ @@
0 0

Setting z = log M———-% , we see that for this class of distributions the
2,y U2 1, 01

decision function assumes the simple form:

(1.802) z=[u(z2) — u(z)]p(69) — v(67)].

. _ o . _ b .. .
Let a* = (6 — o(6)) and b* = (6 — o8 Then the decision function
becomes
(1.803) 2* = u(z) — ulzy).

We shall now show that, for this class of distributions, the power of the sequen-
tial test is a function of v(8;) — v(8:). To prove this, it is only necessary to show
that E(e"* | 6, , 6) equals unity for ¢ = v(6;) — v(6:). Now

E(etz* ,01 , 02) - j f et[u(xg)-u(z;)]f(xl, 01)f(x2, 02) dxl d:l'z
(1.804) N

-} -]
_ f f (U ROV oG 4rGa)tr ) oG Y@ g0 g
—w0 J—oo

If we set t = v(6;) — v(62) in (1.804), we see that the statement is proved.

4 See, for example, [3].
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Let En | h be the average number of pairs of observations required to reach a
decision when v(6,) — v(6z) = h. Then by formula (1.607) we have

a*(1 — L) — b*Ly _ (1 — Ly)log A + Ls log B
Elu(zy) — u(z)] ho Elu(zs) — u(z1)]

Since the expected value of u(zx) will not necessarily equal v(8), the average num-
ber of pairs of observations required to reach a decision will depend not only on
v(6) — v(6,) but also on the particular hypothesis (6; , 6:) considered.

Since the power of the test for this class of distributions depends on »(6,) —
v(82), it will be constant for all 8, and 8, which lie on the. curve defined by v(6)
— v(6;) = constant. In particular, if the sequential test is defined with risks a
and B8, the probability of accepting m (or m;) will be approximately « for all
hypotheses (6;, 6;) which lie on the curve defined by »(6;) — v(8:) = v(67) —
v(63) = ho and the probability of accepting , (or m) will be approximately 8 for
all hypotheses (6,, 6;) which lie on the curve defined by v(6:) — v(6) = ho.
Now, the decision function z as well as the boundaries ¢* and b* will be identical
for all sequential tests provided they are defined by the same risks « and 8 and
the parameters 6, and 6, which determine the decision function all lie on the
curve v(6,) — v(6;) = ho. Since Wald [1] has proved that the sequential proba-
bility ratio test minimizes E(n), the expected number of observations required
to reach a decision, when the hypothesis tested is true as well as when the
alternative hypothesis is true, it must follow that in the oase under: consid-
eration E(n) is minimized for all hypotheses (6, , 6:) which lie either on the curve
defined by v(6,) — »(6;) = hy or on the curve defined by v(6;) — v(61) = ho. If
v(0) is a monotonic function of 8, then the test is unbiased (i.e. all points (6, , 6,)
which lie on the curve »(6,) — v(6;) = constant will have the property that either
every 6, < 6, or every 6, > 6).

For this type of distribution, the importance of the difference between 6; and
6, may be measured by v(6,) — v(6:). We shall'now show that the function
v(61) — v(6;) is an appropriate measure of the difference between these param-
eters for a wide class of distributions which often occur in practice.

(1.805)  E(n|h) =

1.9 The proposed test applied to known distributions.

1.9a. The problem of discriminating between means when the variances are known.
Let f(x, 1) be a normal distribution function with unknown mean u and known
variance o> which we shall assume, without loss of generality, to be unity. Let
z1 be an observation from x; and z, an observation from m, . Let the distribu-
tion density of x; be designated by f(x: , 1) and that of z, by f(xs-us). The prob-
lem is to decide which process has the larger u.

Since f(z, u) is a normal distribution, it is given by
e—i(z-n)"

1
(1‘901) f(x’ ”') = 7—2__""_

Hence f(z, p) is of the form considered in Section 1.8 with u(z) = z and v(x) =
p. Therefore, the decision function is given by

(1.902) =1 —
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and the power of the test depends on h = y; — u, and is given by (1.406) with
a and b replaced by a* and b*, respectively.
The sequential test is performed in the following manner: We take a pair of

observations, one from m; and one from , , in sequence. If at any stage 2 (Z2a
a=1
— Z10) < —b* we accept the hypothesis that 7 has the larger mean. If, how-
ever, at any stage . (T2« — #1a) > a*, we accept the hypothesis that m has
a=1

the larger mean. If neither holds, we continue sampling. According to section
18a* = log 4 and —b* = log B , where u1 — u» is assumed to be positive.
M1 — M2 M1 — M2

In order to determine a sequential test, we must fix ¢* and b*. That is, we
must fix the quantities p1 — pa, 4, and B. This can be accomplished by de-
ciding: (1) the smallest difference between the means of the two processes which
is considered worth detecting. This determines ho = uj — u3 , which we shall
assume to be positive: (2) the maximum probability « of rejecting the hypothesis
that m has the larger mean when in fact y; in m differs from u, in 7 by as much
as ho; and (3) the maximum probability 8 of accepting the hypothesis that =
has the larger mean when in fact the difference between u; and p, is as large as
ho negatively.’ When « and B are fixed, A and B are determined by equations
(1.507) and (1.508).

1.9b. The problem of discriminating belween variances when the means are known.
Let us assume that the distribution of x; in m, and x, in 7, are normal with known
means but unknown variances. We are required to choose that process which
has the smaller variance. Without any loss of generality we shall suppose that
the means of x; and z, are zero. Since f(z, o) is normal, it is given by

1 —(22/202) _ —(2%/202)—logo, /3%
(1.903) \/é_;rd € = e )
1
which is of the form considered in Section 1.8 with w(z) = z* and V(e) = .
20
Hence the decision: function z* is given by
(1.904) * = 13 — 28

and the power of the test depends on h = (s3> — ¢7°) and is given by (1.406)
with a and b replaced by a* and b*, respectively. The sequential test is per-
formed in the following manner: We take one pair of observations at a time, one

n
from m; and one from 7, . We continue sampling as long as Z (234 — z14) lies
a=1

between —b* and a*. Whenever Z(xﬁa — z1,) > a*, we conclude that o5 > o,

a=1

5 The power curve defined by (1.406) is a monotonic function of b = p; — u, . Hence the
probability of rejecting the hypothesis that x; has the larger mean is < a whenever u; — u,
> ho. Thus a is in fact the mazimum risk of making an erroneous decision. A similar
statement can be made concerning the risk .
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Whenever Z (a2« — z1) < —Db* we conclude that ¢ < oi. The quantities

a* and b* are deﬁned by

log A
(o2 — (o)
and

log B
D)™ = @)7T"

Thus a* and b* are defined by a specific value of ¢3° — 67> and A and B. If we

—h* =

and B= 1——6 where a = proba-

take (o3) % — (o1) *as negative, then A =

bility of concluding that ¢} < o3 when in fact 0l — o = [(0'2)_2 (6))"*] and
B is the probability of concluding ¢ < o3 when in fact ozl — ot = [(e9)? —
(oD 7.

1.9c. The problem of discriminating between variances when the means are un-
known. Let the measured characteristics in 7 and m, be assumed to be normally
distributed with unknown means and unknown variances. We desire to choose,
on the basis of a sequential test, that process which has the smaller variance no
matter what the means are. This will be accomplished by reducing the problem
to that treated in Section 1.9b.

Let 211, 12, Z13, - - - be the successive observations from m; and x5 , %22, %3,

- the successive observations from m, . Consider the transformation

1 1

Yyun = '\/§ Z1
1 1 2
Y2 = \/’zjn + V23 Tiz — \/ﬁxm,

xlz ’

1 n—1
Yin—1y = \/ (n xll + \/ (n — 1) - \/n(n——T) Tin

o s o o o o o o o o

with %21, ¥22, * * * Yan—y * -+ similarly defined in terms of o1, Zs2, - - T2 -+ - .
It is obvious that this transformation can be applied sequentially. Moreover,
it is easy to show that

(1) The expected values of the y’s are zero.

(2) The variances of the y’s are the same as the variances of the x’s.

(3) The y’s are normally and independently distributed.
Hence we can apply the sequential test developed in Section 1.9b to the y’s
without any alterations. The decision function Z% will be given by

(1.905) Zy = ; (Y3a — Yla).
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But it can be easily shown that

n n+1

az—:l yga = az—:l (x2a - @)’
and

n n+1

z:l y%a = z:l (xla - 51)2

where #; and 7, are the arithmetic means of the observations in x; and ; respec-
tively. Hence (1.905) is equivalent to

% n+1 n41
(1.906) Zn = El (T2a — &)’ — 21 (X1 — F1)°.

Thus, to perform this sequential test, the population means need not be known.
The only difference between the tests considered in 1.9b and 1.9¢ is that 1.9¢
requires one additional pair of observations.®
1.9d. The problem of discriminating between means when the variates have a
e—mlmlzx
ICII

Poisson distribution. Let the distribution of z; in m be given by and

e-’"tmgﬁ

172!

values 0, 1, 2, --- . It is desired to test the hypothesis that the mean in =
is smaller than the mean in 7, against the alternative that the reverse is true.

Since the Poisson distribution can be written as

where z; and x; eachtake on the

the distribution of x, in m be given by

(1.907) S, m) = =, oo,

.

it is of the form considered in Section 1.8 with u(x) = z and »(m) = log m.
Hence the decision function z* is given by

*=n-n
and the power of the test depends on A = log % . The sequential test is per-
2

formed in the following manner: We take one observation from m; and one from

m in succession. If at any stage . (T2« — T1a) < —b*, we conclude that m,
a=1

is smaller than my . If O (%2« — %1a) > a*, we conclude that m; is smaller than
a=1

my . If neither holds, we take another pair of observations. This process is

¢ The method employed here was discovered independently by Charles Stein and the
author as a solution to a different sequential problem.
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continued until one or the other decision is reached. The quantities a* and b*
are given by

B
(1.908) o = 87—,
log uo
1—-8
(1.909) p* = 108 —
log wy

where u, = m}/mj which is assumed to be less than one, a is the desired proba-
bility of concluding that m, is smaller than m, when in fact mi/ms = uo < 1, and
B is the probability of concluding that m, is smaller than m, when in fact
my/my = 1/uy. The power curve is given by

a*+b* ub‘

u -
(1.910) L, = 1

where u = my/m; .

1.9e. Double dichotomies.” We are given two processes m; and m, , one yielding
a fraction defective p, and the other p;. We shall assume that p, and p, are
unknown. We desire to choose on the basis of a sample that process which gives
the smaller fraction defective. That is, we wish to devise a test which gives a
high probability of accepting m if p1 < p. and a high probability of accepting
me if p» < p1. If p1 = p2, we might be more or less indifferent as to which
process we select,

Before we can answer this question, we must decide: (a) the minimum differ-
ence between the two processes which we consider worth detecting; and (b)
if the two processes differ at least by the amount specified in (a), the minimum
probability with which we desire to make the correct decision.

In the proposed test, the decision function is given by z* = z, — ; where
zi, (1 =1, 2), takes on the values 0 or 1, depending on whether the ith process
yields a nondefective or defective item. The difference between the two proces-
ses is measured by® u = lf_;m / 1—%’; (the ratio of the odds). It can easily be
seen that when u < 1, p1 < p;and when v > 1, p. > p.. lfu=1,p, = p,.
Let u, represent a quantity less than 1. Furthermore, let o be the probability
of accepting m when in fact the point (p:, p.) lies on the curve gl—z—; = U ; and

1

8 be the probability of accepting m when in fact the true point (p, pz) lies on the

7 For a solution of a more general problem 'in double dichotomies using a different

approach, see [1], section 5.32 and [4] section 3.
8 This follows from the fact that the binomial distribution can be written as f(x, p) =
erloa(rltoge where = takes on the values 0 or 1. Hence the distribution is of the form

considered in section 1.8 with v(p) = log p/q, w(p) = logq,and z* = x; — 7, .



138 M. A. GIRSHICK

curve P24t % . Once 4y, o and B are chosen, we compute

Q21
8
1) a* = log1 -«
log u
and
1—5
@ —b* =85,
log uo

We then proceed as follows: We take one item from each process in sequence
and cumulate the number of defective d; in process m and d; in process = .
Whenever d; — di < —b*, we choose process m,. Whenever d; — dy > a¥*,
we choose process my . Whenever d; — d, lies between a* and —b*, we take
another pair of observations, one from each process. This procedure is con-
tinued until one or the other decision is reached.

1.9el. The exact value of the power function for double dichotomies. Since
d; — dy changes at most in steps of one unit, it must follow that whenever a de-
cision is reached at a*, the difference between a* and d, — d; is either zero (if
a* is an integer), or the difference between a* and d» — d; is constant for all
values of n. A similar argument holds for b*. This permits us to compute the
power function without any approximations. Let @ be the next positive integer
larger than a* if a* is not an integer, and @ = a* if a* is an integer. Let b be
the next positive integer larger than b* if b* is not an integer, and b = b* if b* is
an integer. Then we see that the equation (1.406) for the power curve can be
given without any approximations by the formula

(1.9101) L, = (¥ — b/ - 1)
1.9e2. The exact average sample number for double dichotomies. let Z, =
d; — d, and let the point (p:, p;) be on some curve g—:-g—z =u. Let E(n|p1, p;) be
1

the expected number of pairs of observations required before a decision is reached.
Let L, = probability of reaching —b (i.e., L, is the probability that = is ac-
cepted). Then 1 — L, is the probability of reaching a (i.e., 1 — L, is the prob-
ability that m; is accepted). Then by Wald’s Fundamental Identity we have®

(1.911) EZ, = EzE(n | p1, pe)-
Now, Ez = p, — p1,and EZ, = —L,b + (1 — L,)a. Hence
(1.912) E(n|p, p) =L@+ b —a

P2 — P

9 For a derivation of formula (1.911) which does not depend on the Fundamental Identity,
see Wald [1], page 142.
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It will be noted that while L, depends only on u = %%2 , E(n | p1, p2) depends not
21

only on the ratio of the odds but also on the difference between the two fraction
defectives.

1.9e3. The distribution of n for double dichotomies. In this section we shall be
concerned with the probability of reaching a decision with exactly n pairs of

observations.
Let a and b be two positive integers and let the sequential test be defined by

the decision function Z% = > z, where z, takes on the values — 1, 0, and 1 with

a=1

probabilities Py, Py, and P;, respectively. In terms of double dichotomies,
Zy = dy — dy where d; and d, are the cumulative number of defectives obtained
sequentially from m and m, respectively, and P, = pigz, P2 = pip: + @ige,
P; = pq1 , where p, is the fraction defective yielded by m and p, the fraction
defective yielded by .

By the Fundamental Identity we have for any ¢ in the complex plane for which
l¢() | = 1,
(1.913) L PEe()]™" + (1 — Ly)e®Efp()]™ = 1

where L, is the probability that Z5 = —b when p, and p, are such that % = u,
3

E, and E; are the appropriate conditional expectations, and
(1.914) ¢(t) = Pie™* + Py + Py’

If we examine Wald’s proof of Lemma II [2], we see that ¢(f) > 1 for all real
values of ¢ which lie outside the open interval (0, h) where k is the root of the
equation ¢(f) = 1. Hence, it must follow that the Fundamental Identity (1.913)
must also hold for all real values of ¢ with the possible exception of the open in-
terval (0, b). This fact will be used in the subsequent discussion.

We shall first obtain the distribution of » when ¢ = «. From equation
(1.910) we see that when a approaches «, L, approaches 1 for « > 1 and #® for
u < 1. We shall assume that w > 1. Then for ¢ negative and @ = «, the
Fundamental Identity (1.913) becomes

(1.915) e PElp() ™" =1
or
(1.916) Elp()]™ = €®.

Now for all w > 1, P, > P;, and hence Ez = P; — P, is negative. Since the
real roots of ¢(f) = 1 are opposite in sign to Ez, it must follow that (1.916) holds
for all ¢ in the interval (— «,0). Now set ¢’ = z. Then (1.916) can be written

as

(1.917) E(P, }c + Py+-Pa)™ = o
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and (1.917) is valid for all x in the mterval 0<z<1.
Now set

~\|n—a

(1.918) + P, + P =

Then for any specified value of 7 there will be two values of z, say ,(7) and z(7).
As 7 approaches 0, one of these values of z will approach zero and the other
infinity. Let x:(r) be the value of z in (1.918) which approaches zero as
approaches zero. Substituting (1.918) in (1.917) we get

(1.919) Er" = [z(r)]".
But E7" is the generating function of n. Hence if we could expand E+" as a
power series in , then the probability Z% = —bin exactly n steps would be given

by the coefficient of 7". We are thus led to consider the expansion of [z(#)]°
in a power series in .

We multiply (1.918) by 72 and get
(1.920) z = 7(Pg’ + Pz + P).

Then since xl(r) approaches 0 as 7 approaches 0, we can expand [z:(7)]’ by La-
grange formula,” and get

(1.921) e =X 2 - ,Z,,_l

where the expansion is valid for 2,(7) sufficiently close to zero, Hence, if P.(b)
is the probability that exactly n pairs of observations are required to reach a
decision, then

m—1

E7 (P + Pot + Py )"l

n—1

(1.922) Pab) = 3 G €7 (P Prt o+ Puf) o,
Now ‘

n—1

(Z__”__l 7P+ Pt + Ps £)" s

(1.923) n—1 (n 1;) 1 d”—]_

= n - i pn—i—j ni—j+b—1

S P i ey PP =t e
But
(1 924) d”‘l En+i'—i+b—l:| =0
’ dgnt [

unlessn =n 4+ ¢ — j+ b,ie., j = 7 + b, in which case

n—1
d gt

dgm1
10 See, for example, Mathematical Analysis, Vol. 1 (paragraph 189), by Goursat-Hedrick.

(1.925) = (n — 1)!
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Also, since the subscript j ranges from 0 to n — 4, it must follow that j < n — 1.
Hence,i +b <n — i,0ri < ’.‘_;—b Substituting (1.924) and (1.925) into (1.923)

and simplifying, we get for P.(b)

W (= DIPP PR P
(1.926) P.(b) = bg.:o G+ b)!(n — 2 — bt
where m = n—;—bwhenn — bisevenand m = n—?g——l when n — b is odd.

‘We shall now obtain the distribution of » when a is finite.
As before, let z;(r) and z5(7) be the roots of the equation (1.918). Then from
(1.913) we have

(1.927) L0 "B 4+ (1 — L) [m(n)]"Eer” = 1,
(1.928) Lz Err™ + (1 — L) [ma(1)]°Eer” = 1.

Solving for Eir" and E;7" from (1.927) and (1.928) we get

n _ [m@za(n)[2a(r)* — 2(7)]
L,E, " = (1) — (1)

b L (r b
(1.930) (1 — LB 7" = .xjf;ﬂ)q, = zlg,;m :

We shall first obtain the probability Qa(b) that Z% = —b. This is given by the
coefficient of 7" in the expansion of L,E;7" in a power series in 7. From (1.918)

(1.929)

we see that z,(7)%a(7) = 1!;_1 . Hence we can write (1.929) as
3

() — (g-j)“ ()t

— 5 .
1 - (I—;E) * z1(7) B+

Applying Lagrange formula, we get for Qa(b)

(1.931) L,E\m" =

(1.932) @) = L [P+ Pt PoEY S Ol
where

g — (B) g
(1.933) 1 = <P‘)

—_ E? ot +2a.
- () e
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But f(£) can be expanded in a power series in £,

(1.934)  f() = Z <P3> 5(2""'1"""’*" - (P 3>kb+(h+1)¢ OBk D0
. B

B,
Hence
kbt+ka
%® = 1 3 1@k + b + 24a) (P )
Ci” :1 [(3+0 et (p L P L Py,
(1.935)

) kb+(k+1)a
= L3 @k + 1 + @k + 2 (P)

n—1
. ;lsn_l [gHHCRDL (P L P 4 Py E) e

Comparing (1.935) with (1.922) we see that

b+a
980 @uRPat) = (52) Puo + 20) + (B) 7 Py + 20 -
the terms in the series being alternately of the form

(IP_;_;;)kaa P,[(2k + 1)b 4 2ka] and
1

Py

The series stops by itself as soon as the argument of P, becomes greater than n

If we compare (1.930) with (1.929), we see that the probability that Z% = q
with exactly n pairs of observations is given by (1.936) with a and b interchanged
and the result multiplied by (Ps/Py)°.

It is to be noted that the problem of double dichotomies is similar to the fol-
lowing problem in games of chance. Two players A and B, possessing a and b
dollars, respectively, are playing a game of chance which admits a draw. The
stake is one dollar per game. The probability that A will win one dollar is
Py, the probability that B will win one dollar is P; and the probability of a draw
is P,. In terms of this game, L, given by (1.910) is the probability that B
will be ruined in the long run, and Q,(b) in (1.936) is the probability that B will
be ruined in exactly n games.

For a discussion of games of chance which do not permit a draw, see Introduc-
tion to Mathematical Probability, Chapter VIII, by J. V. Uspensky. The develop-
ment presented above is in some respects similar to that given in Uspensky’s
book. In Part II, we shall give a different and more general approach to the
problem of deriving the distribution of n for sequential tests in which the variate
takes on a finite number of integral values.

- <113>kb+<k+l>b P.[(2k + 1)b + (2k + 2)al, fork = 0,1, --- .
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