ON THE ASYMPTOTIC DISTRIBUTIONS OF CERTAIN STATISTICS
USED IN TESTING THE INDEPENDENCE BETWEEN SUCCESSIVE
OBSERVATIONS FROM A NORMAL POPULATION
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1. The statistics to be considered here have the general expression

Q S 3 2
=’S‘) Q=§aii(x‘_i)(xi_j)} S=§(x"_j)’
where (21, - - -, zx) is a sample from a normal population whose mean and vari-
ance can evidently be assumed to be 0 and 1 respectively.! The purpose of this
note is to study the asymptotic distribution of 7 assuming that the x; are inde-
pendent. The whole work may be regarded as a straightforward application of
Cramér’s theory of asymptotic expansion (see [1], pp. 69-88).

If A = [a;:;] and v is the row vector N71,1, -+, 1, 1] the quadratic form Q
has the matrix (I — v"¥)A(I — v'y). The latent roots of this matrix, which are
also the latent roots of A(I — v'y)’ = A(I — v'y), will be denoted by 0, Ay, - - -,
An, Withn = N — 1. Then Q and S can be simultaneously diagonalized (by a
rotation of the N-dimensional space), so that

N n
Q=2 Ny, S=X24,

where the y, are again independently and normally distributed with zero mean
and unit variance.

We shall make the following assumptions

(@) |M] < 1forall r.

(b) There is a positive number ¢ independent of n such that

S — X! >cn, where X == \.

1
re=l N r=1

/‘/ 2 il ()\r - X)zx n _
z = m , 3m(x)=§()‘r_>‘_z)’

Xr= ()‘r—x—z)(yf_ 1)) G(x) =PT{TSX+Z}‘

Write

1The exact and the approximate distribution of such statistics were a recent subject of
study by a number of statisticians. See W.J. Dixon, ‘“Further contributions to the prob-
lem of serial correlation,” Annals of Math. Stat., Vol. 15 (1944), pp. 119-144. Further
references are listed in Dixon’s paper.
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Then it can easily be verified that

2 X,

=1

= y——d .

This expression of G(x) shows that the application of Cramér’s expansion isat
hand, since E(X,) = 0 and 2s;(x) is the variance of ZX,. Let pin and Tha
stand for the same quantities as defined in Cramér’s work (see [1], pp. 70-71).
Since moments of all order of X, exist, we may use 2k 4 21in place of k. We have

-1- my 82k+2(:v)
n____ _ vV
P2k+2,n = 9 k+1, Toram = T 3/2k42?
< 32(;,;)) 4p2kta,n
n
where m;, = E(y* — 1)*** and y is a normal variate with mean 0 and variance 1.

By virtue of assumption (a) | 7| < 1. Therefore we may confine ourselves
to the range of values for which |A + 2| < 1. Then |\, — X — z| < 2. Also,
by assumption (b), s:(z) > =(\, — N)* > cn. Hence paxis.., and in conse-
quence \/nTsiiz.n , are less than some constant independent of » and x. The
remainder of Cramer s expansion, if it is justifiable, will therefore be less than
Mn™* where M is independent of n and . The justification consists in verifying
that the following condition is satisfied: if f,(#) is the characteristic function of
X, and A is any positive number, then

T2k+2, n

l.u.b.illlfr(t)l for [t]> 2=

isless than M Ta4s. , where M, is independent of n and x (see [1], p. 85). Since
Torion < 2v/n? and s:(x) > ¢V/n, it is sufficient to show that, if @ and A are

any positive numbers and if
U=1lub. IT £ for |t| > g,
ra=l

then U < Man™, where M, is independent of n and z. Now

£ | = {1+ 480, — X = 27
whence

U=1I{1+4d, — % —2)}74

r=1
Let u be the number of A, for which (\, — A — 2)* < ic. Then cn < 8(z) <
ie(n — w) + 4p; hence ecn < (8 — ¢)p and
U< @A+ 2™ < (1 + 2d%)"Cr/*e

This shows that the desired condition on U is satisfied, and that therefore
Cramér’s procedure can be adopted.

2This follows from the fact that Pgyon > 1. Cf. Cramér, [1], p. 70.
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Wherever Cramér’s asymptotic expansion is valid, the terms in the expansion
are most conveniently obtained with the help of Cornish and Fisher’s symbolic
expression (see [2]):

e—(l/a!)7;(d'ldz')+.l/4!)‘u(d‘ldz‘)--~- Q(z),

where

®(z) = ;/1_'27 [: e gy

and v; is the jth semi-invariant of the random variable whose distribution is
under asymptotic expansion. In the present case we have

v Bi@)
3! = ,;W:ﬁ ’
where
1

A6~ 5 % ()
Bi(z) = 7 ln -
(ﬁ sz(:v))

Hence we may express our result as follows:
2%+1 ¢ 1 £ d J
M) 6) = oxp| 33 T (4Ya6) 1 mico)

where | Ri(z) | < Mn™, and M is independent of n and z. The symbolic ex-
ponential in (1) is to be expanded as far as and including the term in n¥®*2,

2. Let us apply the result (1) to the following three statistics: T, = Q./8S,
(a = 1, 2, 3), where

N
Ql = ; (z" - 1-?)(173'4-1 - 53) with Ty = 21,
N—-1
Q: = ¥(m — 2 + ¥~ — 5’ + g (x: — ) (@1 — 7),
N-—-1

Q= ‘El (x: — &) (xia — ).

T is simply related with T* = Q*/S, where
N~—-1

Q* = 21 @ — zin1)’;
for we have Q; = S — 3Q* whence T, = 1 — T.* We shall write A{* for the
N’s corresponding to Q., and

bae = 22 )", (@=1,23).

re=l
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(i) For @, we have A\’ = cos 2_1_7' (see [3]). Since
1 m
m = 54 -30 = E $(sj—m)0
CcO8 9= (C + e —2m’°() ’

we have

1 Z( )E where & = (" OmiIN

1-0

If m < n, then

bjéi-l

2F¥=-11i j=4m =n if j=

r=]
Hence, form < n, by = —1if misodd, b = E(’") — 1if mis even.
b} H t 2,,, %m
In particular

2 — —
O = _:_;, Z ()\(1) x(l))z = n___ag__g >04n if n>7T.

Hence assumptions (a) and (b) are true (for n > 7). The s;(x) are conveni-
ently computed with the help of b,.;. The 8;j(x) are then computed to yield
the terms in (1).

(ii) The \’s corresponding to Q* are 4 sin® — (see [4]). Hence

@ _ rm
€08 7 -
By a computation similar to that in (i) we easily obtain b, = —21;: <£;) — 1 for
2
even m and bme = 0 for odd m, provided m < 2n. In particular, A® = 0,
Z0P -39 = 2 1> anforn

true (forn > 5).
(iii) In the case of @3 the matrix A4 is

> 5. Hence assumptions (a) and (b) are

0 3% 0
104
1
2
4=
0 3
0 10

whose latent roots are cos wt/(N + 1), (¢ = 1, ---, N) (see [5]), all less than or
equal to unity in absolute value. It follows that the same is true for the A{®.
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Hence assumption (a) is true. Unlike the two previous cases, there is no sim-
ple expression for b.;. With the help of the formula
bms = tr {Al —¥'V)}"

we may compute bn.g for small values of m. Thus

n
ba = —2 13
. n 2n-—1 n’
bza_ﬁ_ n+1 +(n+1)2
_ 3n—1),3n@2n —1) n?
by = n+1 +2(n+1)2 (n + 1)3
b _3n -2 8n—11+4n(n l)+(2n—1) 2n2(2n—1)+ n'
©T 78 2 +1) (+1)? 204+17 (w+1PF (0 +p)?
) _5(n —17) n 5n(8n — 11) +5(2n —D@n—-1) 50'(n—1)
® 4n+1) ' 8+ 1) 2(n + 1) (n + 1)
_5n(2n — 1)2+'5fn8(2n -1 n°
4(n 4 1) 2n+1»¥ (m+1)
_ 2
A® = — +1.2()\(3)—)\T”)2=g-2n 1+(n_|_1)2>04nforn>10

Hence assumption (b) is true (for n > 10). Using these values of bn.s we may
compute B(z), Bu(x) and Bs(x). By (1) we have

6(@) = 2(0) — X BE@IE) + 1 EEIE) + P @)

- nl, Bs(2)2 (@) — B(x)Bu@)2” (2) + 463(2)27(2)) + R(2),
where | R(z) | < Mn™* and M is independent of n and z.
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