ON HOTELLING’S WEIGHING PROBLEM!

By ALExanpEr M. Moop
Towa State College

1. Summary. The paper contains some solutions of the weighing problems
proposed by Hotelling [1]. The experimental designs are applicable to a broad
class of problems of measurement of similar objects. The chemical balance
problem (in which objects may be placed in either of the two pans of the bal-
ance) is almost completely solved by means of designs constructed from Hadamard
matrices. Designs are provided both for a balance which has a bias and for
one which has no bias.

The spring balance problem (in which objects may be placed in only one pan)
is completely solved when the balance is biased. For an unbiased spring
balance, designs are given for small numbers of objects and weighing operations.
Also the most efficient designs are found for the unbiased spring balance, but
it is shown that in some cases these cannot be used unless the number of weigh-

ings is as large as the binomial coefﬁcient( 1p> or (1 P ) where p is the num-
2D, ip+1)
ber of objects.

It is found that when p objects are weighed in N > p weighings, the variances
of the estimates of the weights are of the order of ¢*/N in the chemical balance
case (o° is the variance of a single weighing), and of the order of 4¢°/N in the
spring balance case.

2. Introduction. The problem is fully discussed by Hotelling [1] and refers
to the design of a certain class of simple experiments. We may consider the
typical example of the class to be that of weighing several small objects on a
chemical balance or other weighing device. Hotelling and Yates [2] have shown
that the individual weights may be determined more accurately by weighing
the objects in combinations rather than weighing each one separately. The
designs are applicable to a great variety of problems of measurement, not only
of weights, but of lengths, voltages and resistances, concentrations of chemicals
in solutions, in fact any measurements such that the measure of a combination
is a known linear function of the separate measures with numerically equal
coefficients. The designs should be particularly useful in biological and chemical
laboratories engaged in routine chemical analyses. We shall, however, in the
interest of simplicity, discuss the problem in the language of weighing operations.

A particular design is denoted by a matrix. The three objects to be weighed
in four weighing operations may be weighed by the following design:
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where the rows refer to weighing operationg and the columns refer to the objects.
In the above design the first two objects are weighed together in the first weigh-
ing operation, the first and third objects are weighed together in the second
weighing operation, etc. From the four resulting weights the individual weights
are estimated by the method of least squares. The design problem consists of
finding matrices which will minimize the variances of these estimates.

There are two distinct though closely related problems here. One is to find
efficient designs for the case in which the measure of a combination can only
be the sum of the individual measures. This would be the case, for example,
in weighing objects with a spring balance and we shall refer to it as the spring
balance problem. The other problem is to find designs when an individual
measurement may be either added or subtracted in a combination. This would
be the case in weighting objects with a chemical balance (since an object may
be put in either pan of the balance) and will be called the chemical balance prob-
lem. In the latter problem the design matrix may contain 0’s, 1’s, and —1’s,
whereas in the spring balance problem the matrix may contain only 0’s and 1’s.

We shall use Hotelling’s notation. There are p objects with weights b;,

by, -+, by, to be weighed in N > p weighing operations. The design matrix
is denoted by

e)) X =||%ailla=1,--,N;ys=1,---,p.

Denoting the transpose of X by X', let

) X'X = |lai;|| = || a” |

3) gi = za: TaiYa

where y, is the observed result of the a-th weighing operation. The least squares
estimates of the b; are

() b = 2" a"y;
2

and the variances of these estimates are

5) ot ='ad"d

where o° is the error variance of a single weighing operation. The a** will be
called variance factors.

Hotelling’s main theorem states that or any design, a** > 1/N, hence the
best possible design is one such the inverse of the product of the design matrix
by its transpose has its main diagonal elements equal to 1/N. We shall call
such a design an optimum design. Examples show that optimum designs do
not exist for all values of N and p.
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When an optimum design does not exist, the question arises as to how a
best design shall be defined. In the present paper a design will be called best
if the determinant of the matrix || ¢*'|| is minimized. A best design in this
sense is, therefore, a design which gives the smallest confidence region in the
bi (1 = 1,2, - -, p) space for the estimates of the weights.

In certain situations, other definitions of best designs may conceivably be
preferred. Thus, problems may arise in which one might prefer:

(a) to minimize the variance factors subject to the restriction that they be
equal, (b) to minimize some function of the variance factors, or (¢) to minimize
only a certain subset of the a* on a minor of the matrix || a* || as might be the
case when one wanted only rough estimates of the weights of some of the objects,
but accurate estimates of the others.

‘When an optimum design exists, the confidence regions are not only minimized,
but, as Hotelling has shown, the variance factors are also minimized. It is not
true in general, however, that a best design as here defined (minimum confidence
regions) will also minimize the variance factors. Examples illustrating this
point are given in the last part of section 6 and the first part of section 7.

3. Hadamard Matrices. The problem of finding the best designs is closely
related to the Hadamard determinant problem. Hadamard {3] proved the fol-
lowing result: If the elements z,5 of a square matrix X are restricted to the range
—1 < zap < 1, the maximum possible value of the determinant of X is N*
and when this maximum is achieved all .5 = &1 and the matrix is orthogonal
in the sense that X’X is a diagonal matrix; the non-zero elements of X’X are
all equal to N. A matrix X which satisfies these conditions will be denoted by
Hy . Obviously if Hy exists for a given N, it is the solution of the design prob-
lem in the chemical balance case when N = p.

With regard to the existence of Hy, it is known that a necessary condition is

N = 0 (mod 4)

with the exception of N = 2. It is not known however whether the above
condition is sufficient, although it is known (Paley [4]) that Hu exists for the
range

0 < 4k <100

with the possible exception of 4k = 92. Paley and Williamson (5] give methods
of constructing Hy in the given range (excepting 92) based on the theory of
finite fields.

When N is a power of two, H v is easily constructed by taking direct products of

1
1

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 1 -1

1
H"'"l -

Thus

H4 = Hz 'Hz =
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Sylvester [6] first studied this elass of matrices and Kishen [7] has described
weighing designs based on this subset of the Hy .

The following examples of Hadamard matrices may be found in the literature:
Paley [4] exhibits an Hg, Hy, and Hys : Kishen gives an Hiys. From these
examples Hy and Hj may be constructed at once from the direct products
H, -Hy; and H, -Hys. The following is an Hy :

e T
— +

|
I+

L+ 1 ++ 1+
I +++++ 1+ |

I+ |
|
|
|

I+

|
|

|
bt
|
+
L+ 1+ 1 +++ 1
|+ 4+ 4+ |
L+ 1+
L+ 4+ 1+ 4

+ 1

| ++++ |
L+ ++ 1+

L+ ++ 1 ++ |

b+ 441+

|

|+ +++4+4 1

I+ 4+ 1
I+ 1 ++ 1 +++ 141+ 1 4

I+ 1 +++4+4+4

| +++++
L+ L+ +4+ 0+

I
|

I+ 1

L4+ 1 +4++
L+ 14+ 1+

+

!

|

|

I

|

|

3 - - - == + - - - -+

where the signs represent #=1. This example was constructed by Williamson’s
method [5]. Thus examples of Hy, for the range 4 < 4k < 32 are immediately
available and methods of construction exist for the range 36 < 4k < 88.

|
|
|
|
|
|
+
I
|
|

|

+4 |

|

4. Chemical Balance Problem. When N = 0 (mod 4) an optimum design
exists if Hy exists and is obtained by using any p columns of Hy. When
N # 0 (mod 4) we may construct very efficient designs as follows: If N = 1
we may add a row of ones to Hy—; ; if N = 2 we may add two rows of ones or
a row of Hy’s to Hy» ; and if N = 3 we may delete one row from Hyi1. The
worst of these designs will be obtained when two rows of ones are added to an
Hy_2, and in this case the variance factors are

w_ 1 N4+2p—14 1
©) C TN-_2Ntw-2 N—%
Since it is known that these factors must be greater than 1/N for the best
possible design in this case, the above design will be quite near the best design
for large N.
For small values of N we shall consider only the case N = p, since if one
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wanted to make N > p weighings, he would normally choose N to be a multiple
of four because the gain in efficiency by using optimum designs is rather large
for small N. In general more than p weighings would be required because o
is not usually known. Thus several additional weighings may be made in
order to obtain several degrees of freedom for estimating o”.

When H y does not exist we have already defined the best design as one which
minimizes the confidence region for estimating the weights; that is equivalent
to maximizing | a;; | or minimizing | a”/|. There may be several designs with
the same minimum, but we shall not give all of them. Thus when p = 3 the
best designs are

I+ 4+ o [+ ++] |++
+ =+, |+ = + | and |+ -
-+ 4l -+ 4+ |-+

all of which have A = 16 (which is considerably smaller than the value 27
that A would have if an optimum design existed). Using the notation

(@) = (", d® ---, a™),
the first of the above designs for p = 3 gives
@) =G4%9
while the second and third give
@) =G4%d.

For N = p = 5, two best designs are

+ 4+ A+ + + - - = -
++ 4+ -+ ++ 4+ - -
X=|++ -+ +|and |+ — + — +
+ -+ ++ + -+ + -
— 4+ 4+ + 4+ + 4+ - 4+

both of which have
A = 32% and (¢¥) = (2/9, 2/9, 2/9, 2/9, 2/9)
For N = p = 6, a best design is

which has
A = 52" and all ™ = 1/5.
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For N = p = 7, a best design is

b
I
+++++++

|

I+ 1 ++ 1
+ 1+ 1+

|
++
F++

which has
A = 2"3% and all * = 1/6.

These designs were constructed by a method due to Williamson [8] which
will be described in sections 5 and 7. It is interesting to note that no minor
of an Hg is a best design for N = p = 7, for any minor of an Hjs gives
A =2% < 2%38" and all ¢" = L.

5. Spring Balance Problem. N = p =4k + 3. When N = pand N =3
(mod 4) the best possible design for the spring balance case is determined by
Hy ., if it exists. Let Ky,: denote a matrix formed from Hy,: by adding or
subtracting the elements of the first row of Hyy, from the corresponding ele-
ments of the other rows in such a way as to make the first element of each of
the remaining rows zero. Obviously

| Knva | = & | Hyaa |-

and excepting the first row, the elements of Ky, are 0 and 32 with the signs
of the non-zero elements the same for elements in the same row. Let Ly be
the matrix obtained by omitting the first row and column of Ky, , by changing
all non-zero elements to +1, and by permitting two rows if necessary to make
the determinant of Ly positive. Then

| Hyya | = 2" | Ly |

and it is clear that, given Ly, one could reverse the procedure and determine
an Hy,;. In the same manner, there is a correspondence in general between
square matrices with elements 4=1 and square matrices of one less order with
elements 0 and 1. The ratio of the values of corresponding determinants is
always 2" if their determinants do not vanish; hence the 0,1 determinant will
have its maximum value when its corresponding +1 determinant has a maxi-
mum value. Thus | Ly | is the maximum value possible for a determinant of
0’s and 1’s of order N, and the value is

(7 | Ly | = (N 4 1)} 98,
The variance factors are

a” = 4N/(N + 1)
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We knew in advance, of course, that the a** would be greater than 1/N since
an optimum design cannot exist unless the design matrix has its elements equal
to =1, and we must here restrict the design to have only 0 and 1 as its elements.
Since Ly is a best possible design for the spring balance case, it follows that
designs for the spring balance problem can be no more than about % as efficient
as designs for the chemical balance problem.

6. Spring Balance N > p. When N > p the device used in the chemical
balance case to get optimum designs cannot be used. For if we select p columns
from an Ly we may get rows of zeros which would waste weighing operations.
A different approach is necessary and a clue is given by the designs Ly. In
these designs p is odd and the objects are weighed 3(p + 1) at a time in each
weighing operation. We shall show in general that objects should be weighed
3(p + 1) at a time when p is odd, and we shall obtain a corresponding result
for p even.

Let P, be a matrix whose rows are all the arrangements of r ones and p — r
zeros (0 < r < p). (The symbol should also have a subscript p but that is
omitted because any specific value for p will always be clear from the context.)

The matrix will have p columns and <f rows. Let @ be a matrix made up of

matrices P, arranged in vertical order. Let n, be the number of times P, is
used in constructing Q. @ is a weighing design for p objects and

r-2e()
; r
weighing operations. The matrix @’Q will have diagonal elements
- p—1
© a=2n (r _ 1)
and non-diagonal elements

(10) b=2n,(f:2).

The determinant of Q'Q is
A=@-b""a+ (p—1b
and we may write 4 in the form
A=c"d
where

(11) c=a—>bandd =a+ (p — 1)b.
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We shall prove the following theorem:

If p = 2k — 1 where k is a positive integer, and if N contains the factor (i),

then A will be maximized when ny, = N / (Z) and all other n, = 0.

We shall demonstrate this statement by showing that if any n, (s # k) is
decreased and ny is increased in such a way that N remains unchanged, then A
will be increased. Let n, be reduced by an amount m so chosen that

w=n(®) /(@

is an integer; we may then increase n; by m' leaving N unchanged. It is readily
found that these changes in n, and n; produce the following changes in ¢ and d:

Ac=m(p> (k= 9k —s — 1)

8 p(p — 1)
_ P\ (k — s)(k + s)
() 2ot

both of which are positive on zero when s < k and A is necessarily increased.

When s > k, Ac is positive but Ad is negative and it must be shown that the
net effect of these changes is to increase A, we shall assume now that n, = 0
when r < k.

AA = (¢ + Ac)” Md+ Ad) — ¢ 'd < [¢® 4 (p — 1)c**Ac)(d + Ad)
— ¢ 'd < ™ *lead + (p — 1)dAc + (p — 1)AcAd)

where in the second line we have omitted terms in Ac of higher order than the
first. These terms are all positive since all their fctors are positive. The
bracket in the last expression on substituting from (9), (10), and (11), may
be reduced to

IR B RS )

+n (1;)(k — 9k + )k — s — 1)],

and then to
P p—1 rk—s8)+ (k+s+1—2r)
v PG

+n (I;)(k — &k + )k — s — 1)].

Each term of the sum in the bracket is greater than or equal to zero when k& > 1,
r > k, s > k since the fraction is readily seen to be negative or zero under these
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circumstances. The fraction vanishes only when &k = 2, r = k,s =k + 1.
The other term in the bracket is negative but it is dominated by the term in
the sum for which r = s, as may be shown as follows: The two terms in ques-
tion may be written

n(p—l)(k_s)s(k—-s)+lc-—s+l
\s —1

s p—1
+11z<p—l>(lc—s)2(lc+s)(k—s—l)
p\s—1 s

and since n, > m, this expression is less than or equal to
m(p 1)(k—s)|:s(k 8) + k s+1+(k Sk — s 1)]
s —1 p—1 DS

which is positive for s > k since the bracket is negative as may be seen by

factoring out 2(p and putting the result in the form

— 1)s
(k — s+ D"+ (p — DE) — pk(p — 8) + (25 + D)k — s).

Thus AA has been shown to be positive and the theorem is proved.

The above argument has shown that P; or repetitions of P; give more efficient
designs than any other combination of the designs P, P,, ---, P,. The ques-
tion now arises as to whether these are the best possible designs. We shall
show that they are by considering the matrices Ly of section 5 which are known
to give the greatest efficiency in the spring balance case. Let p = 4¢ + 3

and let N = (2t ?l_ 2), and suppose L, exists (i.e. H,,, exists). Using P.,
as the weighing design we find the a;; are
ai; = 2N(¢t + 1)/p

ai; = Nt + 1)/p AER
A single application of the design L, gives
a; = 2t + 1)
ai; =1 + 1 1#j

and N/p repetitions of L, gives an a; matrix with elements equal to N/p
times the given elements for one application of the design. The two designs
are therefore equivalent and Py, is a best design.

The variance factors for repetitions of the design P; are

w_ 4 p2 — (p)
(12) a —Nm2 N =0 Mod &
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and these are minimum variance factors’ as may be shown by an argument
entirely analogous to that used in proving the theorem. Thus P; is a design
which not only minimizes the confidence region for estimating the weights,
but also minimizes the individual variance factors.

Efficient sub-matrices of the P have not been studied except for small p,
but we may point out that square sub-matrices of order p which are as efficient
as Pj do not exist unless H,_; exists, for by the argument of section 4, it is pos-
sible to construct H,4; from such sub-matrices. Hence we cannot obtain vari-
ance factors as small as those given by equation (12) when N = p unless H .1
exists.

The situation here is analogous to that in the chemical balance case. By
a proper selection of N we can obtain a design with the maximum possible ef-
ficiency for any odd value of p. But here we are much more restricted in our
choice of N. In the chemical balance case N could be any multiple of 4 for
which an Hy existed; in the present case N must be a multiple of p even in the
most favorable instance (p = 4t + 3), and for some values of p it may be neces-

. P
sary that N be a multiple of <% w+1)

We now turn to the case in which p is even. The theorem corresponding
to the one given at the beginning of this section is:

If p = 2k where k 1s a positive integer, and if N contains the factor (Z::: }),

then A will be maximimized when
nk:nﬂl:N/(Zii)
and all other n, = 0.

We shall not prove this theorem in detail. By arguments analogous to those
used earlier, it may be shown that A is increased when either n, (s < k) is de-
creased and n; is increased, or n, (s > k + 1) is decreased and nx41 is increased
with N fixed. This done, we may put all n, = 0 except nx and nx.; and then
maximize A with respect to these two variables subject to the condition that

ny (Z) + N (k _ZI)_ 1) = N.

The values of 7, and nx41 which maximize 4 may be found by treating them as
continuous variables and using the calculus.
The variance factors for these designs are

w_4 D - ?+1

2 The author is indebted to a referee for suggesting this property of the design, and
for several other valuable suggestions and corrections to the paper.
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but these are not minimum variance factors. In fact one can obtain smaller
variance factors than these by using only P, in the design (omitting Py, en-
tirely). In this case

si_4(p—1)2+1 _ p
and
—-1"+1

p
< when > 2,
p’ p+2 P
We have not found explicitly the design which minimizes the variance factors
for p even, but it appears that the design would be made up largely from P,
with a small proportion of the design devoted to Piyy. Thus (14) is very
nearly the minimum possible variance factor.

7. Spring Balance Designs for Small p. When P = 2, each object may be
weighed r times by itself, and the two objects may be weighed together s times
to give

llaiill = || T s
s r+s
and if A is maximized subject to 2r 4+ s = N we find
r=s8=N/3
a’ = 2/N
provided N is a multiple of 3. The most efficient basic design is therefore
11
X=|10
01

in accordance with the previous section. When N is not a multiple of 3 the
best design is obtained by using the first row of X for the odd weighing when
N = 3t + 1, and the last two rows when N = 3¢ + 2.

The case p = 2 is notable in that there is almost nothing to be gained by
weighing the objects in combination. For the variance factors 2/N would
be obtained by simply weighing each object separately N/2 times. The ad-
vantage of weighing in combination is only that square confidence regions in
the b1, b space are replaced by ellipses with somewhat smaller area. If a* —
(r + )/ 4+ 2rs) is minimized subject to 2r + s = N, we find

r=N@ — /3)/3, ¢ = 1.866/N

so that the a* are reduced slightly from 2/N but at the expense of increasing
the area of the elliptical confidence regions.
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For p = 3 the most efficient design when N = 3 is

110
101
011

asgiven by Lzor P, . Itis easily shown that for N > 3, the most efficient design
is given by repeating X even when N # 0 (mod 3). Thus for N = 4 we would
repeat one row of X, for N = 5 we would repeat two rows of X, and so forth.
The variance factors are

X =

w9 =
a =iN N =3t
_ 9N + 1) _
- ey Mot
SN + 1) N =3t+2

T AN —2)(N + 1)

For p = 4 we may attempt to find by trial and error a sub-matrix of the
design given by using P, once and P; once, but this would be a tedious process
and the labor would soon become prohibitive for larger values of p. Hence
another method must be found for obtaining the best designs when N = p
except when L, exists. A method is provided by Williamson [8]. Let D,
be the best design for N = p. Williamson shows that when p < 7, D, is
a minor of D, , hence D, may be found by adding a row and column of variables
to D,_1 and expanding the determinant of the result by the bordered expansion.
For small values of p it is easy to determine by inspection what values the
variables should have in order to maximize the resulting expansion. William-
son determined D, and D; by this method.

There are two types of D, which give a maximum valueof 4 = 9

1110 1001
1101 1110
Di=|1911(2 o011
0111 0101

The variance factors are all 7/9 for the first of these, and for the second
(a'“) = (7/9, 7/9) 7/9, 4/9)'
When N = 5, p = 4, there are a number of designs which give a maximum

A of 19. None of these however has all a* equal, and we shall give only one
example:

]
—_ O O M
—_ - O = O
SO+ H~=O
QO == O
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which has
(a“) = <]_'_2 1_.2 ]é ..8_)
19°19°19°19/°

When N = 6, there appears to be no design superior to P,. It has variance
factors all equal to 5/12 and A = 48,—a very large gain in efficiency over
N = 5 at the expense of one additional observation.

When p = 5 there are three types of D which give A a maximum value of 25,
none of which has all variance factors equal. An example is

00011

D5=

-0 O
(= =)
—_ O = =
S = O =
o = O

with

@ = (12,1910 11 10)
2572525’ 25’25/ °
For p = 6, an example of a D with all a** equal which maximizes 4 is

O O =
—-_o O O -
- O O
O == OO
—_ O O
SO= O = O

010101

with A = 81 and @ = 17/27. This example was constructed by the bordered
expansion method from D and it turns out to be a sub-matrix of P;. It is not
as efficient as P;, however, since substitution of N = p = 6 in equation (14)
gives a** = 13/27. Hence we have shown that there does not exist a minor of
P, (for p = 6) of order 6 which is as efficient as P; itself.

For p = 7, there is a most efficient design given by Ly .

1010101
0110011
0001111
L;=1100110
0111100
1011010
1101001

with A = 2" and all ™ = 7/16.

D, for p = 8,9, and 10 could presumably be constructed from L; in the same
way and the designs for p = 4, 5, and 6 were constructed from L;, but the
computations become very tedious for these larger values of p.

The designs given in section 3 were constructed from the above designs by
the method described in section 4.
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8. Bias in Measuring Devices. In some kinds of experiments it may be
necessary to estimate a bias in the measuring scale in order to estimate the meas-
ures of the objects. Such a bias may simply be regarded as an additional
object to be measured except that it is an object which must be included in all
the measuring operations. In the chemical balance case the bias presents no
difficulty, for if an Hy exists, then there exists an Hy with a column whose ele-
ments are all +1. Such an Hy may be constructed from any given Hy by merely
changing the signs of all elements in rows which begin with a minus sign. The
result will be an Hy with +1’s in the first column and that column may be
assigned to the bias. We note that the gain in efficiency by measuring objects
in combinations is even greater in the case of a biased measuring scale than when
there is no bias. For if the objects were measured separately, their measures
would be estimated by the difference of two scale readings and would have vari-
ance 2¢°; hence the variance factors a** are to be compared with 2 (rather than
1) in the case of bias.

In the spring balance case, the additional restriction that all the elements of
one column be one necessarily reduces the efficiency of the designs in the sense
that the variance factors for p objects and a bias will be larger than the variance
factors for p + 1 objects without bias. When the measures of p objects and
a bias are to be estimated from N = p 4 1 measuring operations, a best design
may be obtained by adding a row of zeros and a column of ones (in that order)
to the best design for N = p without bias. This can be seen by recalling that
there are two determinantal exressions for the volume of a simplex with one vertex
at the origin in a Euclidean p space. (A simplex (Sommerville, [9)) is a polytope
with p + 1 vertices bounded by p + 1 (p — 1)-dimensional hyperplanes.) The
determinant of the best design for N = p (without bias) is proportional to the
volume of the largest simplex with one vertex at the origin and the other vertices
restricted to be selected from the vertices of the unit cube. A determinant of
order p 4+ 1 with a column of ones and the other elements zero or one also gives
the volume of a simplex with vertices selected from the vertices of the unit cube.
Hence the two determinants (one of order p and one of order p 4+ 1) must
have the same maximum value, and as one of the vertices may be selected ar-
bitrarily in the case of bias, we may select the origin.

In general, for N > p, similar geometrical reasoning will show that the best
designs for the spring balance problem in the case of bias are easily constructed
from Hadamard matrices as described in the following theorem:

If X is a best design for the chemical balance problem in the case of bias and if X
contains a row of +1’s, then a best design for the spring balance problem in the
case of bias s given by replacing the —1’s in X by zeros.

We have seen that the best design in the chemical balance case is obtained
from a Hadamard matrix with a column of +1’%. Obviously the matrix may
be also made to contain a row of +1’s by changing the signs of certain columns.
The design X consists of the column of ones together with any other p columns.
The determinant of X’X is 1/p!* times the sum of squares of the volumes of
_{]\—r 1) of these simplexes deter-

a set of simplexes in a p space. There are (p
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mined by the different combinations of the rows of X taken p + 1 at a time, and
the coordinates of their vertices are the last p elements of the rows of X. The
vertices are therefore selected from the vertices of a cube in the p space which
has its edges parallel to the coordinate axes, the origin at its center, and the
lengths of its edges equal to two. Since X is a best design, the vertices are
selected so as to maximize the sum of squares of the volumes of the simplexes.
Now in the spring balance case we must maximize the sum of squares of the
volumes of a set of simplexes which have their vertices selected from the vertices
of the unit cube. Obviously this may be done by selecting vertices correspond-
ing to the selection given by X. Thus it is necessary only to set up a cor-
respondence beteen the vertices of the two cubes. Since X contains the vertex
(1,1, 1,1, ---, 1) which is common to both cubes, the natural correspondence
which identifies a vertex such as (1, —1, —1, 1, —1, 1, ---) with (1, 0, 0, 1,
0, 1, ---) may be used.

The variance factors for these spring balance designs are 4/N (for any p < N)
when N is a multiple of four and Hy exists; when N is not a multiple of four
and modifications of Hy as described in section 3 are used, the variance factors
will differ from 4/N by terms of order 1/N>.

9. Addendum. After this paper was written, the paper of Plackett and
Burman on ‘“The Design of Multifactorial Experiments’’ appeared in Biometrika.
Volume 33 (1946), pages 305-325. A part of this paper discusses Hadamard
matrices much more completely than we have done in section 3. In particular
Plackett and Burman have constructed all Hadamard matrices of order less
than or equal to 100 (excepting 92).
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