ON THE THEORY OF MARKOFF CHAINS

By Eiviorr W. MoONTROLL
University of Pittsburgh

1. Summary. Although there exists voluminous literature on the theory of
probability of independent events, and powerful techniques have been developed
for the analysis of most of the interesting problems in this field, the theory of
probability of dependent events has been rather neglected. The first detailed
investigations in this subject were published by A. Markoff [1]. S. Bernstein [2]
has extended the fundamental limit theorems to chains of dependent events.
The most extensive exposition of this field has been made by M. Fréchet [3].

In the present paper we shall develop methods of averaging functions over
chains of dependent variables and find the probability distribution of these
functions. It will be shown that for certain types of chains these averages and
distribution functions can be expressed in terms of the characteristic values and
vectors of a certain operator equation. Many of the methods discussed here
have been applied to problems in statistical mechanics [4, 5,6,7,8]. The most
important application has been made by L. Onsager [8] who proved rigorously
(on the basis of a simplified model) that Boltzmann’s energy distribution in a
solid with cooperative elements leads to a phase transition. The first explicit
application of linear operator theory (through matrices and integral equations) to
probability chains has apparently been made by Hostinsky [9].

2. Introductory Remarks. Suppose there exists a chain of events each of
which might lead to one of » possible results, and which are correlated in such a
manner that the probability of n successive events leading to a chain of results

Q1,0
is proportional to
Py, e, ,am).

The probability of a given function F(a; , ez, - - - , a,) having a value correspond-
ing to the sequence of a’s would be proportional to :

F(alaa2,”',aﬂ) Pn(al,”' ,aﬂ)

and its average value over all configurations of the chain would be

(1) F= Fy/F, =(§:l Floy,ap, +++ ,08)Palcr, az, ++- ,aﬂ)/‘E,Pn(al’ cee,am)
aj aj

where

(13:) Fy, = ‘Z [F(al,az,aa, e 7aﬂ)]mPn(a17 cee ’aﬂ)

aj}
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and the summation extends over all values of
{0‘:’} = (alraZ: ’an)'

The probability of a result «; of the first event leading to a result a, of the
nth event is

(2) Pu(al,an) = (I/FO) Z Pn(a17a27 o 7“")'
ag, ran—1

In order to find the probability of a given function F(a;, - -+, @s) having a
value between £ and £ + h it is useful to know the moments and Thiele semi-
invariants of F(ay, -+, a,). Both of these functions of F can be calculated
from
(3) Zﬂ(x) = lz:’ Pn(al y " ,Ol,.) exp {xF(al’ah ] aﬂ)}°
Obviously
4) F, = hn% " Zn(x)/0x™.

It is known [10] that the mth Thiele semi-invariant is given by
(5) Am = lim 0™ log Z,(z)/dz™.
z—0
In the notation of Cramér Z,(iw)/Z,(0) = f(w), the characteristic function of F.
If G(z) is defined so that G(¢ + k) — G(£) is the probability that the function

F(ai, -+, a,) has a value between £ < F(ay, -+, an) < & + h, then it is well
known that [5] if G(z) is continuous at x = ¢and x = ¢ + A

T —jwky —iwf
® 6&+m - 6@ = 5o lm [ ETET epliog )] do

Tl T—e
where
(62) log f(w) = f;_:l A"'f”;‘f)m = ,,.21 An(G)™/m! + o(w").

When the derivative of G(£) with respect to £ exists, the probability of
F(ali 7an)

having a value between £ and & + d¢is
T 0
@) o d& = @6/30) &t = % 1im [ exp {35 autie)"/mt}e o
T T T me=1
From (4)

) ilA,,.(iw)'”/m! = —log Z.(0) + lmg e~ \og 7,.(2).
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Since, for a constant ¢ independent. of z,

e f(z) = f(z + o)

we have
@®) 2 An(iw)"/m! = log {Za(iw)/Za(0)},
and from (6)
_ 1 [T — 7N Z, () do
9) - GE+h) -G = i ll_rﬂ,f_T wZ4(0) )

Equations (3), (4), (5) and (9) indicate that much information concerning a
chain of correlated events can be obtained from a knowledge of Z,(x). Weshall
now introduce procedures for the determination of Z,(x) for several general forms
OfP(al, e ,Olﬂ).

When « is a continuous variable, the results of this section and those to follow
are easily generalized by replacing the summations operations over all values
of the a’s by integrals, and by replacing the matrix equations of the next section
by integral equations.

n—1

3. Simple Chains, P,(ai, -+, @) = ] ple;, aj)-
i=1

a. General theory. By a simple chain we shall mean a sequence of events,
each of which leads to one of » possible results and which occur in such a manner
that if the result of the kth event is a; , the probability of the (k + 1)st one
yielding a result ox41 to proportional to p(ex, ary1). This implies that the
probability of the occurrence of the sequence of results

Q1 ,02, " ,0,
is
n—1
(10) II p(at ) al+1) Z II] p(ai ’ ai+1)
{aj} i=

and the probability of a first result «; , leading to an nth result a, is

(11) P01, ay) = Z H p(a;, aj1) Z H p(a;, ajs1).

“@p—1 j=1 {aj} i=1
The summations are to be extended over all » possible values of each «; indicated
on the summation indices. Chains of this type are sometimes called simple
Markoff chains after the first author who studied them systematically.
From (1), the average value of a function F(as, -+ , a,) is

n—1

Z Z F(aly . an) II p(a:: a1+1)
Z Z H p(a;, @)

ap =1

(12) F\/Fy =
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Many chain functions F(ai, - - - , a,) of interest are either additive or multiplica-
tive and of one of the forms
(132) a) Filaa, -++, @n) = h(oa, as) + hez, @) + -++ + hlons, o)
(13b) b) Falar, -+, an) = glon, @) gloa, @5) -+ glant , am).
In case (b) it is convenient to define a new function hA(e; , a;) by
(14) gl , a;) = explzh(es, aj)]

and in both cases to consider a function of the form

n—1

(15) Zn(zx) = “Z;, g plaj, ajp1) exp [zh(e;, e,

for then the values of F; and F, averaged over the entire chain are given by
(16a) <F1>q. = E}; d log Z.(x)/0x

and

(16b) <Fy>a. = Za(1)/Z4(0).

When 7 is large, the direct evaluation of (15) may become quite difficult
because of the large number of variables involved. As an alternative we shall
now introduce a procedure that is based on the observation that Z,(z) is the
sum of the elements of the nth power of the matrix

p:(1,1) p.(1,2) -+ p1, )
an P, = 2:(2,1) p2,2) -+ pa(2, V)

.....................

pz(”; 1) pz("; 2) e pz(”, V)

where the elements p.(«, 8) are defined as

(18) Pa(e, B) = p(e, B) explzh(a, B)].

a and B range over the same set of values as one of the “result” parameters
a; ; and each of the » possible results is represented by a unique integer of the set
1,2, .-+, ». Thus Z,(z) = sum of elements of P;™'. To employ this observa-
tion to advantage, let us consider the characteristic values and vectors of the
matrix P,. It is well known that if the characteristic values are simple the
characteristic vectors form a biorthogonal set; that is, if

(198.) Cbi'z = {¢i,z(1)y ¢i.1(2)y Y ﬂafrz(”)}’ (Z = 1) 2) Tty V)'

and

[wi,z(n]
(19b) Vi, = | ¥i2(2)
¢i.z(V) .
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satisfy the operator equations
(203') ¢i,z ° Pz = )\i,z(pi,z
(20b) Pz * \I’i,z = x1',2 1,z

where \; . is the 7th characteristic value of (17), then
‘I’,’,z"I’j_z = Egoi,z(a)\[/f_,(a) =0 when ¢ £ j.
a=l

We shall for convenience always assume that the ¢’s and ¢’s are normalized:
q)i.z N \I’i,x =1
so that in general:
0 when 7z #j
(21) DoV = 0i5 = L
1 when ¢ =j.

It is well known from matrix theory that one can expand a matrix element as

(22) p=(a, B) = ; Mo 0is(B)Wi ()
and that
(23) )\i,z = ‘ii,z * Pz . \I’i,z .

By substituting (22) into the expression for Z,(x) in terms of P> one can
show that

v

Zu@) = 22 Dal™ {g_: «a::(ﬁ)} {g xo;.,(a)}

i=1

(24) ,
= Z; AT @i 0o 1) (17, ).

Therefore Z,(x) can be determined from a knowledge of the characteristic vectors
and values of the matrix P, .
If there exists a largest characteristic root i, such that

(25) Az > | Nz | if £ # L,

one can obtain some interesting results. Before deriving these, we shall give a
sufficient condition (which is satisfied in many chains) for the existance of this
inequality. Frobenius [11] has shown that if all the elements of a finite matrix
are > 0, then the characteristic value of largest absolute value of the matrix is
real, positive, and simple (nondegenerate). Thus, as long as » is finite and
pz(a, 8) > 0 for all « and 8, (25) is valid.

We shall now prove that

(25a) lim { Z+(2) 1} =0

n—oo )\Z;l (®r21)A-V.2) -
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that is,
(25b) Zn(x) ~ AR @0 - DL - Wp0).

First let us consider the case in which P, is a symmetrical matrix. Then
¢is(a) = ¥jz(a), all the characteristic values are real, and

Za(x) = N7 (Bre-1)" + ; Az (@1’
t94 L
From Cauchy’s inequality and (21)

S el <[ 2 @ [[51] =

|¢i,z'1 |2 =

Therefore,
< — 1) NF

2N (Gie 1)2| <
AL

)P Vom
1%L

where XA, is the characteristic value of P, second largest in absolute value.
Z () v(iv — 1)

This inequality yields
Aoz \* !
A (®r,0-1) (®r.-1)° <>7,,>

and (25a) (since N\;,./AL,. < 1) follows. When P, is not symmetrical, one can

eagsily derive the analogous expression
Zn(x)

Na (@0 1)1 ¥2,)

(25¢) -1 l <

Al — D Noa/Arz |
ll S T e DA Y1)

where
4 = fmax {| @q - D) [}imax {| @ - %))

For brevity, when x = 0, we write \i, as \;, ¥;,, as ¥; and &;, as ;. By
summing (10) over all a’s except a; , a; and a, we obtain the probability of an
intermediate event leading to a result oz if the results of the first and last events
are known to have been o; and o, . With the aid of (21) and (22) it is easy to
show that this probability is exactly:

2 M TN (e ei(en)i(on)ei(an)

(26) LT T .
gx:‘“ 2 vila)pi(an)

ajag

When = is very large, and when we have simultaneously n > > k£ >> 1, we can
rewrite this equation to include A, , and neglect all terms containing other ¢’s and
J’s. Thisleads to the results
a) If the number of events, n, in a simple chain is very large, the probability
P.(ax) of a kth event far removed from the first and the last, yielding a
result oy, when «; , and a, are unspecified is

(27) Pr(aw) ~ Yulow) er(ow) / (@ - 1(1 - W),
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b) When k = n, the probability of the result a; - of the first event leading to
the result a, of the nth event is

E N ACHPACH

(282) Po(on, @) = 5
Zl )\:‘—1 az; 'l/l(al)¢i(an)

So,asn — «

(2b) P, aa) ~ Pr0)

(@0 1)(1-9,)

¢) When there exists no knowledge concerning the result of the first event, the
probability of the nth event yielding the result «, is

(29) Pu(a,) = az Pa(ay, a,) ~ &r(an)/1-&y).

In chains of sufficient length for (25) to be valid, the probability of
Flay, -, an)
having a value between £ and ¢ + h has an especially simple asymptotic form.

From (6) this probability is (if for a given nwelet T = an})

G+ 1) — G = = (dw> -4

T a—co --an”2

©0) ; iAse’
(1 — e ™" exp {—%sza S L AR TN }

3!
a,'nd from (25) and (5)

(31) Am ~ nlim 9" log \p,»/92™ = nL,
z—0
if
(32) L, = lim 9" log A.,./0x™.
z—0

Letting y = wn}, (30) becomes

6e + 1) — 6@ ~ 5 lim [ X

(33) 2m a—+0

(e—iwq _ e—iw&z)e—}u’h {1 _ Léz:i + .- }
where
(34a) m = (£ — A)/ n?

we = (E+h — A)/n}
(34b) A; = average value of Fay, -+, an) = F.
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Integrating (33)

(35) G(E+h) — GE) ~ f " e 4 0(1/n)] du.

1
(2xL) )y,

Asn — o and h — 0

(35a) GE+h) — GE) ~ exp (=3¢ — Fl/nLy),

h
(2mnLe)}
and the probability that ¢ < F < £ + h becomes Gaussian.

b. Examples of a stimple chain. As an example of a simple Markoff chain let
us consider an event which can lead to either of two possible results, say “—1”
or “1”. Further, let us suppose that the probability of a given result being
followed by an identical one is p and by one of another type is (1 — p); that is,

This chain would be encountered in an analysis of a sequence of tosses of a
coin with a “memory’’ so that the probability of two successive tosses showing
the same face of the coin would be p and that of showing opposite faces (1 — p).

A question one might ask concerning such a chain is—What is the probability
of the occurrence of a given number of transitions from one kind of result to
another? In the chain of results

-1,-1,-1,1,1,-1,1, -1, =1, —1

there would be four transitions, one corresponding to each —1 followed by a 1
and to each 1 followed by a —1. The function giving the number of transitions
in a sequence of n events is

n—1

(36) F(al, ] aﬂ) = ; h(al') at'+l)
where
h(—1,—-1) =h(1, 1) =0
h(—1, 1) =hn(l, —1) = 1.

Even though the o’s are dependent, in this special case, h(a;, ;1) and
h(ati+1, aipe) are independent so that (40) could have been obtained on this basis.

To apply the methods described in the beginning of this section we must find
the characteristic values and vectors of the matrix

- b - < P (1 - p)e’)
: 1 — p)e P

(the configuration index « has the value either —1 or 1 in this case instead of
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“1” and “2” as given in (17)). The characteristic values are the roots of the
equation

.p—k (1 — pyé°
1—=pe p-—2

that is,
(38) Mz = p+ (1 — p)
[No|=]p— (1 —=p)| <M.

and the characteristic vectors are

Yro =27 (}) and ya., = 2’*( _11)

The ¢ and ¢ vectors have the same components in this case because of the sym
metry of the P, matrix. Clearly
A =M= Mo =15 =N =2p—1
Yi(e) = 27 and ya(a) = —a - 270
From (26) we see that if the result of the first event in the chain is «;, and

that of the nth event is a, , the probability of the kth event yielding the result
O is

[(2p — D aqar + 11 + 2p — 1)" e
21 4+ (2p — 1)" oy an) -

As k,n, and (n — k) simultaneously get very large, P,(ox) ~ %, independently
of o .
The probability of an initial result oy leading to a final result o, is (from 28a)

Py, ) = D {1+ ©2p — 1" o}

go that
Pu( 1,1) = Pu(=1,-1) =3 {1+ 2p — )"}
Pu(—1,1) =P, 1,-1) =@ {1 = (©2p - 1"}

Now, to answer our original question regarding the probability distribution
of the transition function (36)

n—1

(39) Flog, + -, an) = ;lh(a,-,a.-.,.l),

we use the expression for Z,(x) determined from (24)

(39) Zu(x) = 2[p + 1 —p)e]"™
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From (9) the probability of there being between ¢ and £ -+ h transitions in a
sequence of n + 1 events is

GE+ 1) =GO = o [ 1= &(p + (1 = P} dofo
()

_ 1 fw —iof __ —io(t—h) Snl(l — p)p™
=aml.C ¢ ) & (n — k)Ikl °

Letting ¢ = wh/2 and rearranging

n _ k , n—k
6 +0 -6 = LML= P (14 26 4 ),

where D(}\) is the Dirichlet integral

0 if |a]>1

D()\)=l smxcosxxdx=% N =1
T -0 X

1 IN] < 1.

We therefore have, when [¢ + k] < n

[fihl n|(1 _ p)kpn—k

(1) CE+h —60 = o G —hiE

Here [x] denotes the greatest integer not exceeding x. The sum is zero if
E+h <[+ 1]. When[t+h]>n

ni(l — p)'p"™*

(42) GE+h) —GE) = wfrt) k= BT

When n is large it is difficult to get a clear picture of the function G(¢) from
(41) and (42), so we shall develop asymptotic results for large n by using (6)
instead of (9).

By employing (5), we see that (this section will be developed on the basis of
n + 1 trials instead of n)

Ay = np(l — p)
Az = np(1 — p)(2p — 1) ete.

Therefore, from (6)
1 © 6—iw(£'—Al) (1 _ e-—iwh)

AG = GE+ h) —GE) = 5=

21!’1; © w

exp [—3np(l — p)o’ — inp(1 — P)(2p — 1)&’/6 — -+ -] dw.
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Letting u = wn’, we have

1 ® du —iult~Ap/n} —iu(g+h—A)/n}
AG = — — e —¢ ]

211 -0 U
[1 ip(l — p)(2p — 1’ n 0( )] (Auis0-p)

6nt

L] g N X — —
_1™a f_“e—ma [1 _ip(l péff’ 1w’ +O(%)] e g,

= (4 h—A)/n
pe = (& — Ay)/nk.

Since

f we“““’e““" du = (r/a)t exp (—\*/4a)

— 00

- ® 3 —au? —-z)\u 3\ >\2 —\2/4q
z[wue du 4a5/2(1—65)e )

we have for large n

1 B2 22p(1—p)
s L[ i
[2mp(1 — p)I} Lw

{ - st =) +o (e

"Asn — o and h — 0, this becomes

hexp {—[t — F/2p(1 — p)n}
GE + h) — GE) ~ —
43b) [2rnp(1 — p)It

_@-DE-F 1
{1 o0 —pn T ° (ﬁ)}

A similar problem which occurs in statistics of high polymers can be stated
abstractly as follows. Suppose there exists a sequence of events each of which
leads to a translation of length a of a point either to the right or to the left, and
that the probability of a translation continuing in the same direction as its
predecessor is p while that of changing its direction is (1 — p). After n trans-
lations what is the probability of a point being displaced a distance £ from its
origin.

If “—1” represents a translation to the left and “+41” a translation to the
right,

(43a)

p(—=1,-1) =p1, 1)=p
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The function giving the distance of the point from its origin after n displacements
is (when a = +1)

Flag, -+, an) = aZ;aj = lao; + hlar, a3) + <+ + h(ap1, an) + Lac,
P

where
h1, 1) =a, h(—1,—1) = —a
h(1, —1) = h(—-1,1) = 0.

Neglecting the terms aa1/2 and aa,/2in F(ay , - - - , @), One can answer questions
concerning this problem by evaluating Z.(x) as defined by (15). In this case
P, has the form

Its characteristic roots are
Mz = pcoshaz + [p’cosh’az 4+ (1 — 2p)]' = Ape
| A2 | = | p cosh ax — [p* cosh’az + (1 — 2p)]' | < Mz
and its characteristic vectors:

-1
Ve = llp — 1) + (p&** — m—*( ’ )
pe — )\1

af Pp—-1
Yoo = [0 — 1 + (pe™ — M) ’( . )
pe - — )\2 4
Since
F = A, = lim 8 log Z,.(x)/dz,
z—0 .

one can show in the present problem that F = 0. Therefore, the probability
of the translated point being a distance between £ and ¢ + h from the origin
after (n + 1) translations, is, asn — « and h — 0

F(t + h) — F(£) ~ h(2rnLy) te t2nEs
where L, is by (32): '
L, = lim 8° log A\../0z = a’p/(1 — p).

z—0

Thus,
F(¢ + k) — F() ~ hla®2mp/(1 — p)] e 0PI,
When p = 2/3 this problem is equivalent to the determination of the proba-
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bility distribution of the components in an arbitrary direction of the distance
between the ends of a linear polymer. In this case

F(t + ) — F(¥) ~ h(4a’mn) exp (—£/4na’)

a result obtained by Tobolsky [12] after a lengthy and complicated combinatory
calculation.

Another type of simple chain is encountered in the determination of the
“life span” of a particle which is displaced a unit distance to the right or left
per unit time along a straight line until it collides with an absorbing boundary
either —(q + 1) or (p + 1) units from the starting point. This problem has
been analyzed by M. Kac using the methods discussed in the present paper.
We shall generalize his results to include the effect of an attraction of the particle
toward one end of the line so that displacements toward that end are more
probable than those in the other direction.

Following the notation of Kac [13] we let X ; represent the jth displacement,
m; its length, and 8(m) the probability of a given displacement having the
length m. Then,

s ifm=1
d(m) =1—s fm=—1
0 otherwise.

If N represents the life span of a particle, the probability of its exceeding n is
Prob {N >n} =Prob{—¢<Xi<p, q¢q<Xi+X.<p, -,
—<Xi+Xo+ - + X, < p} = Zo(m)d(my) - -+ 8(mn)
where the summation extends over all integers m;, mg, - -+, m, such that
—g<m<p—9gS<m+m<p-,—¢gSm+tm+ -+ m <p.
Defining the new set of variables
aj=g+m+m+ - +m; G=12"-"n)

we see that
p+aq
Prob (N >n} = 3, doa— )olen — a) -+ dlan = o).
ar =

As before, if we introduce the P matrix (of p + ¢ + 1 rows and columns)

(0 1-s 0 0
1 —s 0
P = (§(a — B) =
s 0 1 —s
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we obtain after applying the equivalent of (22)
patl

p+q
Prob {N > n} = 2 Aoi() aZEZO Yi(on).

7

Where \; is the jth characteristic value of P, and ¢; and ¢; are its associated
characteristic vectors as defined by (19) and (20) (here the range of « starts
from 0 instead of 1 as in (17) and (19)).

It is easy to show that the characteristic values of P are

A= 2[s(1 — 9)Peost; G =1,2,--- ,p+q¢+1)
where

¢i=m/(p+q+2)
and that the components of the characteristic vectors are
Vi@ =12/ + ¢+ 2Ps/(1 — ) sin (@ + g5 (@=0,1,+--,p+9)
and

oi@) = [2/(p + g + DA — 8)/s] sin (« + 1)¢;.

Since
pta . _ \/5 (1 _ s) {1 — 1(_ l)j[s/l — s]“p+“+2)} sing'j
2':'0 Yilan) = Vp+qg+2 1 — 2[s(r — s)]} cos §;

we finally have
a- s))(n+q+2)2n+18}(n—q)

p+qg+2
”Ji”'l {1 — (=1)(s/1 — &)*™™™} cos” ¢;sin §; sin (¢ + 1)§;
i=1 1 — 24/5(1 — s) cos ¢
When s = 1 this reduces tc the result of Kac: (* means summation is only over
even j’s

Prob {N > n} =

2 ptatl n .
Prob {N > n} = P FqF2 ; * cos” ¢; sin (¢ + 1)§; cot 3¢5

4. Simple Chains with Restrictions. Often when studying chains of dependent
events, certain functions averaged over the entire chains are known to be
restricted between definite limits. That is, there might exist % functions
gilon, s, -+ ,as) such that

(44) _AGJ'<Gi_g;f(al;"',an)<AG.7" (j=172""k))

where the G /s and AG /s are preassigned constants. To calculate averages of
other functions (1) is no longer valid, for it is an unrestricted sum over all sets
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of o’s, including those incompatible with (44). All unrestricted sums in this
formula (and other similar ones) must be replaced by sums over only those
sets of a’s compatible with (44). Since it is sometimes more difficult to evaluate
restricted sums than unrestricted ones, we shall apply an idea of Markoff [1]
to the reduction of the former to the latter type.

Let us seek an explicit expression for a function Ph(ay,a, - -+ , a,) which
has the property:

Pi( , o ,0an) = Puylon, -+, a,) when o’s are chosen
so that (44) is satis-
fied of all j.
0 otherwise.

Since the Dirichlet integrals
o = ;l-r j; : Sm.——~(l:_AGj) exp (ip; ;) dp;
have the property
d; = 1 when —AG; < v; < AG;
0 otherwise,
Paon, -+ ,an) = 810 -+ 8uPalon, -+ , o)
has the required character provided
vi=Gj— gsloa, -+, am).

The average value of a function F(a;, - -+ , @,) can be written in terms of the
unrestricted sum

F = {E F(al) e :aﬂ)P:(aly e 7“")/{2 P:(aly tr yan)r
ae)

a,}
where the summation extends over the complete set of {a,}’s
{ae} = (e, 0, ,an).
As in the case of chains without auxiliary restrictions, a useful function is
Zn(z) = Z P:(au e+, an) exp {zF(ay, -+, an)}

{ae}

® ” a i m A m 3
= ;1'].; e f Sﬂ(x) Pr,y ° 7Pk) H {s‘m"‘-—“-“—“(p G ) e mGm dpm}
—~ 00 e 00 me=l Pm

(45)

where

Sn(x,Ply"';Pk) = [Z} Pn(al: "')aﬂ)

k
exp{xF(als cee, ) — izlpigi(ah ) aﬂ)}‘
g
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When F(ay, -+, @) and {gj(a, - -+, as)} are all additive or multiplicative
functions of the form (13a) and (13b), say

n—1

F(al7 MY an) = Z h(aka ak+1)

k=1
n—1
gilar, =+, an) = k_Zl gi(ox, Qi)

and the probability chain is a simple one, Z,(z) reduces to a simple form.
Suppose

n—1

Pn(“ly St an) = Z; p(ai, ai+1)
=

then following the derivation of (24), we have

v

(46) Su(@, o1y vy o) = 20 M) " @1 DA Vi)

=1

where \; 2,5 , $1,2,, and ¥, . , are characteristic values and vectors of the matrix

Peo(1, 1) -+« pzp(1, ¥)

Pep(v, 1) = = - Do, v)

and
Dep(a, B) = pla, B) exp {zh(a, B) — i 4]‘: pigila, B}.

Substitution of (46) into (45) allows one to calculate Z,(x).

6. More Complicated Chains. In a chain of N events in which the result of
each event depends on those of its n predecessors (n < < N), the calculation of
Z .(x) proceeds in essentially the same manner as in the case of a simple chain.
Let the N events be divided into N /n sets of ‘“‘grand events” of n simple events
each (for simplicity we assume N is divisible by n, this can easily be avoided).
Thus, if each simple event could lead to any one of » possible results, a grand
event could lead to any one of »" possible results and a complicated chain becomes
a simple chain of grand events with the result of each grand event depending on
the preceeding grand event. Quantitative calculations thus proceed formally in
the same manner as in a simple chain.

6. Continuous Case. In this section we generalize, by studying an example,
to the case in which each event in a simple chain may lead to any one of a con-
tinuum of results. The example is a problem arising in statistical mechanics of
molecular chains.

Consider a linear chain of n identical molecules whose centers of mass remain
at a set of fixed regularly spaced positions, but which may rotate about their
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centers of mass in a plane. Suppose, that the potential energy of interaction
between neighboring pairs of molecules is a function of the angles a specified
axis of the molecules makes with the line connection the centers of mass of the
molecules; that is, the potential energy of interaction between pairs of adjacent
molecules can be written as V(0;, 8;+1). Assuming that forces are sufficiently
short ranged for interaction between more distant neighbors can be neglected,
Boltzmann’s theorem states that the probability of the axis of the first molecule
making an angle between 6, and 6; 4 a6 with the line of centers of the chain,
the second between 6, and 6, 4+ af. and the nth between 6, and 6, + db, is
proportional to

exp [""]CT {V(01 y 02) + V(Oz, 03) + cee V(0"_1 , 0,;)}] d01 e d0,.

where k is Boltzmann’s constant and 7 is the absolute temperature. The
contribution of the interaction to the thermodynamic properties of the chain
can be derived from the partition function

2r p2% 2T
=[]
0 0 0

(47) .
exp {"" _](;T [V(oly 02) + -+ V(on—h On)]}dol <o dby.

For example, the internal energy is
E = 9log Z,/3(—1/kT)

and the specific heat is ¢ = 4E/9T'.
It is to be noted that Z, is exactly the integral of the iterated kernel of the
integral equation

48) M (B) = fo " 4(6:) exp {— %TV(al, 02)} 6.

If V(6 , 6,) is symmetrical in 6; and 6,, thislinear homogeneous integral equation
has a set of orthonormal characteristic functions {¢;(6)} such that

(49) fo 'nﬁj(o)wk(o) do = 8.

To each of these characteristic functions there corresponds a characteristic value
N;. Now it is well known that the kernel of (48) can be expanded as a series in
its characteristic functions

exp {" k_lT V6, 02)} = ; Ni ¥i(60)¢i(62).

Introduction of this expression into (47) and applying the orthogonality condi=
tions (49) one obtains

(@7a) 7= = [0 o}



MARKOFF CHAINS 35

Probably the most interesting example of a molecular chain of the type
described above is a chain of magnetic dipoles which are restricted to rotate only
in a plane. In that case

2
V(6;i,0i+1) = %[OOS (6; — 6;41) — 3 cos 8; cos 041].

Where g is the magnetic moment of each dipole and r is the distance between a
pair of adjacent centers of mass. This potential function leads to the integral
equation _

P

A(6y) = L ¥(6;) exp { SkT[cos 6, — 6;) — 3 cos 6, cos 02]} dby .

Since this equation is rather complicated to solve, we shall devote the rest of the
section to a potential function of less physical interest, but which leads to a less
formidable integral equation.

In studying hindered rotation of molecules, one sometimes uses potential
functions of the form:

V(8;j,0541) = —Bcos (6; — 0;41)

where 8 is a constant. With this potential function (48) becomes
2x

(50) NG = [ (@) exp (7 cos (6~ o} oy
where
J = B/kT.

The characteristic functions and characteristic values of (50) are easily found
with the aid of the Fourier Series for exp (J cos 6):

(51) exp (J cos 8) = I(J) + 2>, I.(J) cos m 6
m=1
where I,(J) is the mth Bessel function of imaginary argument:

(1 J)2k+m
In(7) = ;o( + k! -

From (51)
exp [J cos (6; — 6;)] = L,(J) + 23" I.(J)(cos m; cos mby + sin mf; sin mé,).

m=1

Substituting this expression into (50) we have

2r ©
N(6) = fo Y(6s) {1 o) + 2 Z=1 I.(J)(cos mé; cos mfy + sin mé; sin moz)} de, .



36 ELLIOTT W. MONTROLL

Because of the orthogonality of the trigonometric functions, one can verify by
direct substitution that the characteristic functions are

%(6) = 1/(2m)}
¥s)(8) = = sin mo; @ = 7 Hcos mh, (m = 1,2, ---)

and the corresponding characteristic values are

)\0 = 27rIo(J>
MY = AP = 2xl . (J) m > 0.

Introduction of these characteristic functions and values into (47a) we obtain
the simple formula for the partition function:

Zn = 2r{2nlo(J)} "N
The internal energy of the molecular chain is therefore
E = 9log Z./d(—1/kT)
= —B(n — 1) Li(J)/I(J),
and the specific heat is:

C = 8B/3T = 3k(n — 1)J2{1 + %‘Z% - 2[2_8%] } '
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