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with
W, = %[(fbi - -’00)2(5.' - xo)fzzz(f: , 'II:) + (xe - 5130)2("75 - yo)fm(&'- ) ﬂ:)
+ 2(zi — 20) (s — yolfulEiy 1) + i — yo) FunlEs , )]

Corresponding formulas can be derived in this way for any value of »; in fact,
several alternatives may be obtained in each case. 1In all cases the error f(xo , ¥o)
is given in terms of the derivatives of g alone if a polynomial of a certain type is
used for the interpolating function. For equation (4), the suitable polynomial
would beh(z ,y) = a + bz + cy;for (5), h(z ,y) = a + bx + cy + da? + exy + fy?;
for (6), h(z,y) = @ + bx + cy + d2’. If the interpolating function h(z, y)
is not so chosen, the formulas remain valid, but derivatives of h will appear.

The same procedure is applicable to functions of any number of independent
variables.

i

ON A LEMMA BY KOLMOGOROFF

By Kai-Lar Caune

Princeton University

The following lemma was proved by Kolmogoroff [1]:

If ey, e, -+, e, are independent events and U an arbitrary event such that
(W(X) denoting the probability of X and W.(X) the conditional probability of X
under the hypothesis of e)

Weg(U) g u, W(el + b + en) g Ue
Then
W) z ',

This result seems of some interest in itself and may also have practical applica-
tions, for it is easily seen that [2] in general if e;, ez, - - - , e, are arbitrary no
information about W, 4..4.,(U) can be obtained from that about W, (U),
k=1,---,n. From this point of view the constant 1/9 is interesting, though
it is unimportant in Kolmogoroff’s proof of the law of large numbers. Using his
original method this constant can easily be improved to 1/8. However, the fol-
lowing method will give a better result. At the same time we shall put it into
a more general form.

Let

W) 2 a Zl W () = 6.
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Then we havefor1 < k < n,
(1) W) =z W(U(ey + -+ er)) = W(Uey + -+ + Uey).

Now a simple case of certain 1nequaht1es due to Bonferroni and Frechet [3]
states that for arbitray events E;, --- , E; we have

k
(2 W(EL+ - + E) 2 g W(E) — 2. W(EE,).

1S4<i<k

Applying this to (1), we obtain

W) z i W(Ue) — 25 W(Uee)

1si<j<k

> Z WWaU) = 5 W)Wy,

1<i<i<h

using the independence of e;, ---, ¢,. Hence

k k
W) 2 « W@ - 3 (E W) +13 wie.

l=l

By Cauchy’s inequality,

> Wie) 2 (= Wied).

=1

k
Writing D_x = 2 W(es), we have
i=1

3) W) 2 [a - (% 1 ) 2 ]Zk

Now let 0 < v < vy £ 1 where v and v are to be determined later. If there is
ane;, 1 < ¢ < nsuch that W(e;) = 48, then
(4) WU) =z W(Ue;) = W(e)W.,(U) = vaB.

If every W(e;) < v8, we determine k(> 1) such that

Zr < v = I

thus
2 < Zea + 8 < (vo + 7)B.

And (3) yields

) W) 2 [a - %(1 - %)(w + 7)6] o
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Now we choose v so that the last terms in (4) and (5) be equal. This gives

(=)

7= 1 Yo.
2a + (1 - z) Y08
.. dy
To maximize v, we put are = 0 and find
0
2(v2 = a
Yo = —————— .

A B8
If 2(v/2 — 1)a < B, this choice of v, is admissible, and we obtain

2—\/§+-,1;(\/§—1)2(\/§_1)a
y = .
V-1 (WE-1) ?

Thus we get (the first inequality being retained for small values of n)
1
2-vi+lvz-

1
vz--W2-1)

= 2(v2 — 1)’ > 24
'n case 2(\/§ — 1)a > B, we choose vo = 1, and we obtain

(6) w(U) 2z

2(v2 - 1)a*

Y 1

20 + (1 - E)ﬁ
Thus we get

20 — (1 - l)/3

W) 2 7; af
20 — B
2% F8*%
If we write 8 = na, we have

@) W) 2 227 g

2+19
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We summarize (6) and (7) in the following table:

B/a 222 -1) ‘ =97<2v2 -1
WO | 22(/2 - 1% >2-1n. 2
249

Thus for Kolmogoroff’s case (n = 1) we have W(U) = 1o’
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APPROXIMATE WEIGHTS

By Joun W. Tukey

Princeton University

1. Summary. The greatest fractional increase in variance when a weighted
mean is calculated with approximate weights is, quite closely, the square of the
largest fractional error in an individual weight. The average increase will be
about one-half this amount.

The use of weights accurate to two significant figures, or even to the nearest
number of the form: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95, that is
to say, of the form 10(1)20(2)50(5)100 X 10" can thus reduce efficiency by at
most % percent, which is negligible in almost all applications.

2. Proof. Let the optimum weights be W;,7 = 1,2, --- , n, with W; > 0,
where it is convenient to choose the normalization ZW; = 1. Let ¢ be the
variance of ZW.z; , then the variance of .each z; must be ¢°/W;, and since this
is a weighted mean, the means of the z; are the same.

Let the approximate weights be W.(1 + \6:), where 0 < A < 1 and | 6;| <
1,7 =1,2,---,n. Thus \is the largest fractional error which may be made
in the situation considered. We need the weak requirement N\ < 1! The ap-
proximately weighted mean is

> W1+ M)z 1+ »6;
=Y W27
Z Wil 4+ N\)
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