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1. Summary. This paper discusses the extension of the discriminant func-
tion to the case where certain variates (called the covariance variates) are known
to have the same means in all populations. Although such variates have no
discriminating power by themselves, they may still be utilized in the discriminant
function.

The first step is to adjust the discriminators by means of their ‘within-sample’
regressions on the covariance variates. The discriminant function is then
calculated in the usual way from these adjusted variates. The standard tests of
significance for the discriminant function (e.g. Hotelling’s T” test) can be ex-
tended to this case without difficulty. A measure is suggested of the gain in
information due to covariance and the computations are illustrated by a numeri-
cal example. The discussion is confined to the case where only a single function
of the population means is being investigated.

2. Introduction. Discriminant function analysis is now fairly well advanced
for the case where there are only two populations. The data consist of a number
of measurements, called the discriminators, that have been made on each member
of a random sample from each population. The technique has various uses.
Fisher [1] used it in seeking a linear function of the measurements that could be
employed to classify new observations into one or other of the two populations.
He pointed out [2] that a test of significance of the difference between the two
samples, developed from his discriminant, was identical with Hotelling’s generali-
zation of Student’s ¢ test, discovered some years earlier [3]. Mahalanobis’ con-
cept of the generalized distance between two populations [4] was also found to
be closely related to the discriminant function. In any of these applications—
to classification, testing significance, or estimating distance—we may also be
interested in considering whether certain of the measurements really contribute
anything to the purpose at hand, and helpful tests of significance are available
for this purpose. .

Recently the authors encountered a problem in which it seemed advisable to
combine discriminant function analysis with the analysis of covariance. This
case occurs whenever, in addition to the discriminators, there is a measurement
whose mean is known to be the same in both populations. Suppose, for example,
that the I1.Q.’s of each of a sample of students are measured. The sample is
then divided at random into two groups, each of which subsequently receives a
different type of training. Measurements made at the end of the period of train-
ing would be potential discriminators, but in the case of the initial 1.Q.’s we can
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clearly assume that there is no difference in the means of the populations cor-
responding to the two groups.

The initial 1.Q. measurements are of course of no use in themselves in studying
differences introduced by the training. Nevertheless, if they are correlated with
the discriminators, they may serve in some way to ‘improve’ the discriminant:
e.g. to increase the power of Hotelling’s T? test, or to reduce the number of errors
in classification. This paper discusses the problem of utilizing such measure-
ments, which will be called covariance variates. The problem is analogous
to that which is solved by the analysis of covariance. In covariance, as applied
for instance in a controlled experiment, variates that are unaffected by the
experimental treatments can be used to provide more accurate estimates of the
effects of the treatments or to increase the power of the F test of the differences
among the treatment means.

The procedure suggested is as follows. First, the multiple regression is ob-
tained of each discriminator on all the covariance variates. These regressions
are calculated from the ‘within-sample’ sums of squares and products: that is,
from the sums of squares and products of deviations of the individual measure-
ments from their sample means. Each discriminator is then replaced by its
deviations from the multiple regression, and a new discriminant function is
calculated in the usual way from these deviations. The extensions of Hotelling’s
T? and Mahalanobis’ distance are both obtained from this discriminant, though a
further adjustment factor is needed for tests of significance.

This paper is arranged in three parts. Part I presents a numerical example.
The decision to place the example first was taken because most of the actual
applications of the discriminant function in the literature appear to have been
made by persons relatively unfamiliar with the theory of multivariate analysis.
It is hoped that with the aid of the example readers in this class may be able o
utilize covariance variates. For the same reason, the calculations have been
presented as far as possible in terms of the operations of ordinary multiple re-
gression, rather than in the form in which they first emerge from the theory.
Actually, various equivalent methods of calculation are available, and it is not
claimed that our method is necessarily the best. A mathematical statistician
may prefer to follow the computing methods which come directly from theory
(Part II, section 13). ,

The example is more complex in structure than the two-sample case. The
data constitute a two-way classification, in which the row means are nuisance
parameters, being of no interest, while only a single linear function of the column
means is of interest. It is well known that the ordinary ¢ test can be applied
not only to the difference between two sample means, but to any linear function
of a number of sample means in data that are quite complex. Discriminant
function technique can be extended in the same way, and readers familiar with
the analysis of variance should find no great difficulty in making the appropriate
extension to such data.

‘Part II presents the theory. The reader who is primarily interested in theory



DISCRIMINANT FUNCTIONS 153

should read Part II before Part I. Since the approaches used by Mahalanobis,
Hotelling and Fisher all converge, we have chosen that of Mahalanobis, mainly
because the extension of his techniques to include covariance variates seems
straightforward. Maximum likelihood estimation of the generalized distance
is presented in full for the two-population case. The frequency distribution of
the estimated distance and the extension of the 7° test are worked out. An
attempt is also made to obtain a quantity that will measure what has been gained
by the use of covariance.

In order to illustrate how the theory applies with other types of data, the
mathematical model is given for the row by column classification that occurs in
the example. The major results for this model are indicated, though without
proof.

In Part III it is shown that the computational methods used in the example
are equivalent to those developed by theory. While this can easily be verified
in a particular case, it is not intuitively obvious.

PART I NuMmERICAL EXAMPLE

3. Description. The data form part of an experiment on the assay of insulin
of which other parts have been published [5]. Twelve rabbits were used.
Each rabbit received in succession four doses of insulin, equally spaced on a log.
scale. An interval of eight days or more elapsed between successive doses, and
the order in which the doses were given to any rabbit was determined by random-
ization. Thus the experiment is of the ‘randomized blocks’ type, where each
rabbit constitutes a block and there are 12 blocks with 4 treatments each.

The effect of insulin is usually measured by some function of the blood sugar
of the rabbit in periodic bleedings after injection of the insulin. The blood sugar
was measured for each rabbit at 1, 2, 3, 4, and 5 hours after injection, and also
before injection. In order to simplify the arithmetic, only the initial blood sugar
and the blood sugars at 3 and 4 hours after injection will be considered here.
These data are shown for the first three rabbits (with totals for all 12 rabbits)
in Table I.

Let z:,. be a typical observation of blood sugar, where 2 = 3, 4 stands for the
hour after injection, w for the rabbit and d for the dose. The mathematical
model to be used is as follows.

(1) Tiwe = Wi + Piw -+ Yiz + ﬁt'o(x()ws - xﬁ--) + Ciwz -

The parameters u; , piw and ;. represent the true mean and the effects of rabbit
and log dose respectively. The quantity zo.. is the initial blood sugar for the
rabbit w before the test at dose z, while xy.. is the average initial blood sugar over
the whole experiment. The bloocd sugar at ¢ hours has been found experimentally
to be correlated with the corresponding initial blood sugar, and the relationship
is represented here as a linear regression, with Bi; as the regression coefficient.
The residuals e;.. are assumed to follow a multivariate (in this case bivariate)
normal distribution, with zero means. The covariance between e;,, and €;us
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is taken as o;;.0. The model is the standard one for the ordinary analysis of
covariance, except that we have fwo measures of the effect of insulin, z; and z; .

One additional assumption was made. For all post-injection readings, the
blood sugar seemed linearly related to the log dose ¢, . Since this result has been
found in other experiments, we assumed that

Yi: = dil.
where é; is the regression coefficient of blood sugar on log dose.
4. Object of the analysis. Our object was to find the linear combination of

the three blood sugar readings that would measure best the effect of the insulin.
Because of the linearity of the regression on log dose, the effect of insulin on each

TABLE 1
Sample of original data on blood sugar levels in insulin experiment

Log dose
Rg\bblt Initial blood sugar =, Three hours z; Four hours z4
32| 47| 62| .77 | 32| 47| 62| .77 32| 47| 62! .77
T — I I
1 75 94[ 107, 94, 95 76, 67| 56 96/ 95 115i 91
2 91| 86/ 83 93] 98 90 77 69 104! 87 90, 89
3 ; 97{ 99; 90I 91; 84! 76 59, 48| 93| 102! 85; 90
i i
Total*......... i1065!1074 1121|107OI 932| 872 731[ 591/1098/1026/ 970, 847

*12 rabbits.

z; is known completely if the slope §; is known. It seems reasonable to choose
the linear compound of the z;’s which will give the maximum ratio when its
estimated regression on log dose is divided by the estimated standard error of
this regression. We now consider how to obtain this maximum. The argument
given below is not intended to prove the validity of the method, for which refer-
ence should be made to Part II.

The true regression of the original blood sugar z, on log dose is known to be
zero. Hence, it is clear that the variate z, is useful only in so far as it enables
us to obtain more accurate estimates of 8; and ;. For this purpose we need to
estimate the effect of x, upon x; and z, , the blood sugar readings at 3 and 4 hours,
independently of dose of insulin or of differences between rabbits. From the
standard theory of covariance the best estimate is the regression coefficient
bio = Ei/Eow, where E denotes a sum of squares or products calculated from
the error line in the analysis of covariance; that is from the sums of squares and
products of deviations of the z; from the fitted regression on row and column

parameters.
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The regression of the blood sugar at each hour on the log dose of insulin is
calculated from totals adjusted for the regression on z,. Since the 4 successive
log doses (z = 1, 2, 3, 4) are spaced equally, they may be replaced in the com-
putation by the coded doses —3, —1, +1, and +3. If we let T, be the total
blood sugar, summed over 12 rabbits, at the sth hour with dose 2, the following
result is well known for the analysis of covariance. The best estimate of
5.‘(?: = 3, 4) is

(8T — Tia+ Tis+ 3Tis) — bio (—3T01 — Toa + Tos + 3T04)]/240.
The divisor, 240, is 12(3* + 1* + 1° 4 3%). The expression may be written
di _ (di — budo)

240 240
where
di = —3Tay — T+ T+ 3Tu.

A linear combination is formed from ds and ds , the numerators in the best
estimates of 8; and &, , by means of the coefficients L; and L, . L; and L, are
computed so as to maximize the ratio of

d! = Lsdé + L4d;

to its estimated standard error.
From the definition of d;, this requires a discriminant of the form

I = Ls(xswz - b30x0wz) + L4(x4wz - b-’.Owaz)y

where each 2y, is measured from its mean.
We require next the estimated standard error of d;. This depends, in turn
. ’ / . . . .
upon the variances of d; and dy and their covariance. As usual in the analysis,
of variance we have

: do
®) V(ds) = V(da) + do V(bso) = os0 (240 + E‘j—o)
The residual variance ¢33, is estimated from the sums of squares and products
in the error row of the analysis of covariance as

Sg3.0 = Esa.o/n = (Ess - Ego/Eoo)/n,

where n is the degrees of freedom in each E;; diminished by one. Similar methods
lead to the variance of d; and to the covariance of d; and d; . It follows that the
true variance of d; may be written

(6) V(dy) a Lj 3.0 + 2LsL4 0340 + Lj 0140,

2

where the factor (240 + g > in equation (5) is omitted since it does not involve

0
00,
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the L’s. Similarly, the estimated variance of d; , apart from constant factors,
may be written as

™ LiBy.o + 2LsLsBso + LiBus .
The quantity to be maximized is therefore
(Lsds + Lidi)
VLi Eiso + 2Ls Ly Byio + LiE.ao

Formally, this is the same type of quantity that is maximized in ordinary analysis
with the discriminant function. Differentiation with respect to the L’s leads
to the equations (after omission of another constant factor)

® EsoLs + Esi oLy = ds , Esi0Ls + EuoLs =d; .

The objective of the computation, therefore, is to obtain discriminant coefficients
having the same ratio to each other as L; and L, in equations (8). As will be
shown in the next section, this can be accomplished in practice more conveniently
by substituting an alternative set of three simultaneous equations for the two
in equations (8).

5. Calculations. The first step is to form the sums of squares and products
in the analysis of covariance. With 12 rabbits and 4 doses, the conventional
breakdown of each total sum is into components for rabbits (11 d.f.), doses
(3 d.f.) and rabbits X doses (33 d.f.). Because of the assumed linear regression
on log dose, the sum of squares for doses was further divided into two com-
ponents. The first (1 d.f.) is the contribution due to this regression. For z;,
the sum of squares due to regression is d%/240, or in the case of z; , (1164)%/240,
or 5645. The remaining component, (2 d.f.) is called the curvature, since it
measures the effect of deviations from the linear regression. The sum of squares
for curvature is found by subtraction.

The following points may be noted. (i) For both z; and z, , the F ratio of the
curvature mean square to the rabbits X doses mean square will be found to be
less than 1, so that the data do not suggest rejection of the hypothesis of a linear
regression on log dose. (ii) The F ratios of the regression mean squares to the
rabbits X doses mean squares are highly significant, being 57.8 for z; and 28.7
for z, . This indicates, incidentally, that the three-hour reading may be a more
responsive measure of the effect of insulin'than the four-hour reading. (iii) With
Zo , the F ratio does not approach significance for either the regression or the
curvature, as is to be expected.

A consequence of the assumption of linear regression on log dose is that the
curvature mean squares and products are estimates of the same quantities as
the rabbits X doses mean squares and products. Consequently, the lines for
curvature and rabbits X doses in Table 2 could be added to give 35 d.f. for the
‘error’ sums of squares or products, Es; , etc. We decided, however, to estimate
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the error only from the 33 d.f. for rabbits X doses. This was done because it
seemed to facilitate a test of the curvature of the final discriminant I. (This
test will not be reported here.)

The L's could now be obtained from equations (8). In this case the first
equation would contain the terms

Eyo = 3223 — (1259)2/2351; By = 1200 — (1259) (1340)/2351;

;o e (1259
d3 - d3 b30d0 - 1164 <ﬁ> 62,

leading to the simultaneous equations
25648.8 L; + 4824 L; = —1197.2
4824 L + 23732 L, = — 844.3,
which give Ls/L, = —.41848/— 27070 = 1.5459.

TABLE 2

Sums of squares and products
Component d. f.| =z} x5 x5 ZoTs ToT4 T3T4
Between rabbits............. 11 | 886 | 9376 (11165 | 1952 | 2477 | 9206
Between doses.............. 3| 168 | 5806 | 2810 |—247 | —98 | 3981
Reg. onlogdose......... 1 16 | 5645 | 2727 |—301 [ —209 | 3924
Curvature .............. 2| 152 | 161 83 54 | 111 57
Rabbits X doses............ 33 | 2351 | 3223 | 3137 | 1259 | 1340 | 1200
Total.................... 47 | 3405 (18405 !171 12 | 2964 | 3719 (14387

Instead of using these equations, we propose to solve alternatively the set of
three equations

SooLo + SosLs + SocLs = dy
(9) SsoLo + Sz3L3 + S(MLA = ds
S40Lo + S43L3 + S44L4 = d4 »

where each Si; (i = 0, 3, 4) is the sum of squares or products formed by adding
the error line in the analysis of variance to the line for regression on log dose.
Thus S;;has 34 d.f. The ratio of L; to L, , as found from equations (9), is exactly
the same as that found from the original equations (8), as is proved in section 18.
Further, the solution of the new equations seems to be more useful for performing
tests of significance, as will appear in following sections.

Accordingly, the first step after forming the analysis of variance is to set up
the three equations (9).
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The equations are solved by means of the inverse matrix. The values of d;
on the right side of the equations are replaced successively by 1,0, 0 by 0, 1, 0
and by 0, 0, 1 to obtain the three sets of values for Ly , Ls and L, . These results
are given in the first three columns of Table 4 and are designated as c;; .

The L’s follow from the c;; by the usual rule for regressions. For example,

L; = {(.003209)(62) + (.227781)(—1164) + (—.199655)(—809)}-107° =

—.103417
TABLE 3
Equations for determining Ls and L
2367Lo 4+ 958L; 4+ 1131L, = 62
958L, + 8868L; + 5124L, = —1164
1131Lo + 5124L; + 5864Ls = —809

The composite response or discriminant, adjusted for the covariance variate, is
now taken as

_ B _ By
I = L3 (1133 m xo) + L4 (.’IL; E—oo xo>
or

1259

125¢ 1340 )
2351

T3
= .093503z, — .103417x; — .066883z, .

Note that the value of Lo is not used at this stage and that L; /L, = 1.546 agrees
with the value found from equations (8).

TABLE 4
Inverse matriz (X 10%) and L’s

e ‘

(103 Ci ,') | di i L;
.465408 003200  —.002568 | 62 | .100008
.003209 | .227781 - —.199655 —1164 ' —.103417
—.092568 | —.199655 ; .362846 . —809 . —.066883

A similar method may be followed when there are more discriminators or more
covariance variates. With two covariance variates, z, and x5 , for instance, the
adjusted discriminant would be

La(xa — bao — béox(l)) + Li(ts — bagmo — biol‘é)

where bs , b3 are the partial regression coefficients of z; on zo , 5 respectively,
determined from the error line, and similarly for ;. Further, since any linear
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function of the column (dose) means may be represented as a regression on some
variate ¢, , this method may be applied to any linear function of the column means
in which we are interested, provided that the mathematical model is appropriate.

6. Test of the regression of the adjusted discriminant on log dose. The
numerator of the regression of I on the coded doses is

dr = Ly(ds — budo) + La(ds — baod).

Since the regressions of x; and x; on the coded doses were both significant, it
may be confidently expected that the regression of I will also be significant. The
test of significance will, however, be given in case it may be useful in other appli-
cations. For those who are familiar with multiple regression, the test is perhaps
most easily made by means of a device due to Fisher [2].

Construct a dummy variate y.. such that .. is always equal to ¢, , or in our
case to the coded doses. That is, v takes the value —3 for all observations at

TABLE 5
Analysis of y* and yz,

i d. f f y? i YXi

— !
Rabbits. .. ...... ... 11 | 0 ! 0
Doses. ............. e | 3 {240 | d;
Regressiononlogdose. ................... 1 ro240 d;
CUrVatUure. . . o vvooee e 5 2 . 0 0
Rabbits X doses = error.................... i 33 0 : 0

| 1
Sum = Error plus reg. on log dose. .. ...... ] 34 i240 d;

, i

i |
Total. ... 4T 240 ds

the lowest dose level, and —1, +1, and +3 respectively for all observations at
the successive higher dosage levels. We shall show that equations (9) solved
in finding the L’s are formally the same as a set of normal equations for the linear
regression of ¥ on 2y, 23, and x4 .

The following analysis for y* and yx; may easily be verified.

It will be noted that the sum of products of ¥ and z; in the sum line is d; .
Further, S;; is the sum of products of z; and z; for this line. It follows that the
normal equations for the regression of y on the z’s, as calculated from the “‘sum?”’
line, are

Siwlo + Sisls + Suls = d; @z =0,3,4).

These are just the equations solved in obtaining the L’s. Consequently, L,
and L, are the partial regression coefficients of y on 23 and 2, . A test of the null
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hypothesis that the true values of L; and L4 are both zero can be made by the
standard method for multiple regression, as will be shown later from theory.
This test is equivalent to a test of the hypothesis that the true value of d is zero.
- To apply the test, we require three items in the analysis of variance. of y.
First, the total sum of squares for the Sum line, already seen to be 240 (Table 5).
Second, the reduction due to a regression on all variates (covariance variates
plus discriminators). By the usual rules for regression, this is (from Table 4)

Lody + Lsd; + Lsds = (.100008)(62) 4 (—.103417)(—1164)
+ (—.066883)(—809) = 180.69.

Finally, we need the reduction due to a regression on the variates that are not
being tested, i.e. on the covariance variates alone. From Table 4, the reduction

TABLE 6
Analysts of vartance of dummy variate y
d. f. S. 8. M. S.

Reduction to regression on covariance variates. ’ 1 1.62
Additional reduction to regression on dis-| |

eriminators. . . .......... .. ‘ 2 1 179.07 | 89.54
Deviations..............c.oiii... ! 31 59.31 1.913

{
Total (from Sum line).................... | 34 240.00

in this case is simply d3/ S or (62)?/2367, or 1.62. The difference, 180.69 — 1.62,
represents the reduction due to the regression of y on L; and Ly , after fitting z, .
The resulting analysis is given below, the degrees of freedom being apportioned
by the usual rules.

The F ratio, 89.54/1.913, or 46.80, with 2 and 31 d.f., is used to test the null
hypothesis that the adjusted discriminant has no real regression on log dose.

7. Test of particular discriminators. Another useful test is that of the null
hypothesis that a particular discriminator, or group of discriminators, contribute
nothing to the adjusted discriminant. In other words, this is a test of the null
hypothesis that the true values of a subset of the L’s are all zero. The test is of
interest in the present investigation, since it would be useful to know whether
all five hourly readings of the blood sugar are really helpful. As might be
expected by analogy with the previous section, the test is made by calculating the
additional reduction due to the regression of y on the particular subset of the
-L’s in question.

The test will be illustrated with respect to Ly . One method of making the
test is to re-solve the normal equations with L, omitted. From this solution
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the reduction due to a regression of ¥ on z, and x5 alone is obtained. The addi-
tional reduction due to a regression on z, is found by subtraction from 180.69.

However, the additional reduction can be found directly from the well-known
regression theorem that it is equal to L3/cu . The ¢’s have already been found
in Table 4. The result is (.066883)%/(.000362846), or 12.33. This value is
tested against the residual error mean square of 1.913, F having 1 and 31 d.f.
The contribution is found to be significant.

In fact, by this process a kind of estimated standard error can be attached to
each of the L’s for the discriminators, using the formula sv/c;; , where s is the
residual root mean square. Thus for L;, (—.103417), the ‘standard error’ is
4/(1.913)(.000227781), or .0209. It should be stressed that at this point the
analogy with regression is rather thin. The L’s are not normally distributed,
nor do the estimated standard errors follow their usual distribution. It is,
however, correct that if the true value of L, is zero, Ly/s\/ ¢y follows the ¢ distri-
bution with 31 d.f. Thus, if omission of some discriminators seems warranted,

TABLE 7
Analysts of variance for regression of y on the discriminators

d. f. S. 8. M. S.
Regression............oooviiiiiiiit. 2 159.20 79.60
Deviations. . ......coovvviiiiiiiiiiii.., 32 80.80 2.525
Total......cooii 34 240.00

these ¢ ratios are relevant in deciding which variate to eliminate first. Strictly
speaking, the ¢’s should be re-calculated after each elimination before deciding
which other diseriminators might also be discarded.

8. Estimation of the gain due to covariance. The tests given above enable us
to state whether the discriminators contribute significantly, in the statistical
sense. It is also of interest to investigate what has been gained by the use of
the covariance variates. From the practical point of view, the question: ‘“What
is the gain from covariance?” might be re-phrased as: ‘“If x, is ignored, how
many rabbits must be tested in order to estimate the regression on log dose as
accurately as it was estimated with the adjusted discriminant for 12 rabbits?”’

The theoretical aspects of the question are discussed in section 16; the calcula-
tions are described here. The only new quantity needed is the F ratio for the
regression of y on the discriminators alone. This can be obtained by a new
solution of the normal equations, this time with the covariance variates omitted.
With just one covariance variate, it is quicker to use the fact that the additional
reduction to the regression of ¥ on z,, after fitting z; and z,, is Lg/co,
or (.100008)?/(.000465408) or 21.49. Consequently, the reduction due to a
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regression of y on z; and z, alone is 180.69 — 21.49, or 159.20. The F ratio,
79.60/2.525, is 31.52, whereas the F ratio with covariance is 46.80 (from
Table 6). The quantity suggested from theory for comparing the two techniques
is

(nz bl 2)F _
N2

1

where 7, is the number of d.f. in the denominator of #. These values are
{(30 X 31.52/32) — 1} or 28.55 with no covariance and {(29 X 46.80/31) — 1}
or 42.78 with covariance. The relative information is estimated as 42.78/28.55,
or 1.50, so that the use of covariance gives 50 per cent more information. In
other words about 18 rabbits would be needed if the initial blood sugars were
ignored. To a slight extent this estimate favors the covariance analysis, since
it ignores the increased accuracy that would accrue from the extra error d.f. if
18 rabbits were used without covariance.

PART II THEORY

9. Notation. The theory will be given first for the two-population case-
We suppose that a random sample of size N has been drawn from each popula-
tion. A typical discriminator is written z;,, and a typical covariance variate
Zaca , Where

2,j = 1,2, - - p denote discriminators,
£, n=1,2, - - - k denote covariance variates,
w = 1, 2 denotes the population, and

a = 1,2, - - N denotes the order within the sample.

The population mean of iy« IS i , and the corresponding sample mean is 2, .
The difference (uiz — wi1) is denoted by §; and the corresponding estimated
difference (ri. — xi.) by ds.

10. Discriminant functions and generalized distance. Since we propose to
approach the theory by means of the generalized distance, it may be well to
review briefly the relation between the discriminant and the generalized distance.
In the ordinary theory (with no covariance variates) it is assumed that the var-
iates Ziwo follow a multivariate normal.distribution, and that the covariance
matrix o;; between Zi,o and z;,, is the same in both populations. The gener-
alized distance of Mahalanobis is defined by

vl ‘s s
(10) pA? = > ¢80, where (@) = (o)™
i,j=1
In order to estimate this quantity from the sample, we first calculate the mean
within-sample covariance s;; , where

2 N

(11) Sij = Z 4 (xiwa - xiw)(xiwa - x:‘w-)/2(N - 1),

w=l a=
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The estimated distance is then taken as

D
(12) pD* = Zl s7 did; .
%, j=
Apart from a factor N/(N — 1), this is the maximum likelihood estimate.

In the discriminant function used by Fisher (1), the object is to find a linear
function I,, = ZM%;,« , where the M ; are chosen to maximize the ratio of the
sum of squares between samples to that within samples in the analysis of variance
of I. This is equivalent to maximizing the ratio of the difference between the
two sample means of I to the estimated standard error of this difference. As
Fisher showed (2), the M; (apart from an arbitrary multiplier) are given by

p o
I.M,; = Z SU dj
=i
Consequently, the difference between the two sample means of 7, the discriminant
function, is

D P ..
D Mid; = 2 s7did;.
=1 1, j=1
This is exactly the same as pD’ in equation (12). Thus the discriminant func-
tion leads to the estimated distance, and vice versa.

11. Extension to the present problem. In our case there are (p -+ k) variates
(p discriminators, k covariance variates) from which to estimate the distance.
All variates, Z;,q and Z;y,q , are assumed to follow a multivariate normal distribu-
tion. The covariance matrix, assumed the same in both populations, now has
(p + k) rows and columns, and may be denoted by

gij O
(13) A= < ’ ").
Ot Oy,

For each of the covariance variates, it is known that the population means
ke, M2 are equal, so that the difference 6; is zero. This is the fact that dis-
tinguishes the problem from ordinary discriminant function analysis.

Hence, the generalized distance, as defined from all (p + k) variates contains
no contribution from terms in é; and is given by

p

(14) (p+ kA" = 2 ) O (i 05 5.«

i j=

The matrix aifﬂ_k) is that formed by the first p rows and columns of the inverse
of A. Note that in general this will not be the same as the matrix ¢* , which is
the inverse of o;; .

In the next section we consider the estimation of this quantity from the sample
data. By analogy with the previous section, it might be guessed that the
estimate would be of the form Zs(}1s did; . The maximum likelihood estimate
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turns out to be of this form, except that instead of d; we have d: , the difference
between the two sample means of the deviations of z; from its ‘within-sample’
linear regression on the z; .

12. Estimation of the distance. It is known that the generalized distance
is invariant under non-singular linear transformations of the variates. For
convenience, we replace the z;,, by variates Tiwa , Where

k
x:wa = ZTiva — EZI 5i£(xiw¢ - “éW)'

Thus Ziwe is the deviation of z:,, from its population linear regression on the
Ziwa - The population mean of Tiva i8 clearly pi , and the difference between
the two population means is therefore é; .

The covariance matrix of the Ziva , Zzoe may be written

(15) A/= it 0 ’
0 Oty

where ¢;;.; denotes the covariance matrix of the deviations of the Ziva from their
regressions on the T . It follows that in terms of the transformed variates
the generalized distance is given by

p ..
(16) (p+ BA* = 2. o76i3;
%, j=
where ¢”'¢ is the inverse of the p X p matrix o;.¢ .
The joint distribution of the 2N observations on each of the Tiva 80d Tipa
is as follows:

(21r)—N(p+k) l ok l +N I a,in I +N degwa dZgwo -
1 2 N p ey ,
exp —§ [E Z Z g 4 (xiwa - I.l.iw)(xjwa - yiw) +

w=ml aml §,j=1
2 N K \
Z Z E Ueﬂ(xswa — pgw) (Tpwa — #nw)] ’
w=1 a=1 {3=1 : J

where ¢*" is the inverse of the k X k matrix o, .

We now proceed to estimate A’ in equation (16) by maximum likelihood.
For this, we obviously need the sample estimates of the ¢ ** and the &, and it
will appear presently that the sample estimates of the Bi; are also required.
However, it happens that the ¢*" and the pg are not needed. Hence the rele-
vant part of the likelihood function is

.. 1A & e ) o,
a7 L=Nlg|o"| - 3 I i 0 (Tiwa — piw) Tiwa — Liv)

w=l a=1 t,j=1
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where

k
Il::wa = Tiya — ; Bt’f(xfwd - I-‘Ew) .
Differentiating first with respect to u:, , we obtain
N
(18) Z:1 : O'U‘E(x:'wnr - ﬁm) = 0.
a=l )=

Except in the case (with probability zero) where our estimate of ¢** turns out
to be singular, these equations have no solution except

N
(19) Z} (Thoa = fijo) = 0
for every j, w. Consequently
ﬁiw = x;‘w-
so that

A

k
!’ ’
6,‘ = ﬁj? - ﬁil = Zp. — Tp. = di - GZI ﬁif df'

This shows that the B;; must also be estimated. Now

2 N / N P2 .
OL _ > 50 9L O 3 3 S o e — ) (Thon — ).

éﬁ;; ol a1 0Tiwa OB w=l a=1 j=1

Once again, unless the estimate of o' is singular, the only solutions of the equa-

tions formed by equating this quantity to zero are

(20) 2 2 @rva — b0) Tioa — fiin) = 0

w=l ==l

for every &, j.
Since fijw = 7, , the term in pg, vanishes. Substituting for z’ in terms of =
from (17), we obtain
2

N k
Z z: Ztwa {(xiwa - xiw) - g biv(xwa - xmn)} =0

w=1 a=1

where b;, stands for the maximum likelihood estimate of Bi» . These equations
may be written

k
(21) gl by By, = Ej

where E denotes a sum of squares or products of deviations from the sample
means, containing 2(N — 1) degrees of freedom. The equations are therefore
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the ordinary normal equations for the ‘within-sample’ multiple regression of
Zjve OD the Tga . .
Finally, differentiation of L with respect to the ¢ ¢ leads to

2 N
(22) 2Na'ii-£ = wz; “ (xzwa - xzw-)(x:'w« - x;'w-)-

This is just the ‘within-samples’ sum of squares or products of the variates z’.
On substituting for the 2’ in terms of the z and using equations (21), we obtain

k
2N6‘.','.g = E,',' - ez; bigEfg = E;,'.g (say).
To summarize, the estimated distance is given by means of the equation

2 cirA A P 2
(p + k)D* = 2 67%.8, = 2N 2 E"*dld},

1, j=ml 1, Jml

where E¥* is the inverse of E;;.; and
k
di = di — 2 b d.
=1

This estimate was obtained by assuming all variates jointly normally dis-
tributed. From the form of the likelihood function (17) it can be seen that the
M.L. estimate of the distance remains the same under the less restrictive assump-
tions that the 2, are fixed, while the deviations of the z;,, from their regressions
on the z;,. are jointly normal.

13. Computational procedure. An orderly procedure for calculating the
generalized distance will now be given. From this, the method for computing
the corresponding discriminant function will be shown. The computations also
lead to the generalization of Hotelling’s T°. The steps are as follows.

(i). First form the ‘within-sample’ sums of squares and products of all variates,
with 2(V — 1) degrees of freedom. These are the quantities denoted by
Eij, B¢, By .

(ii). Invert the matrix Ey, , giving E*.

(iii). The regression coefficients b;; , estimates of the 8 , are now obtainable by
means of the relations

ko,
big = 25 E, BV,
7=1
as is clear from the usual matrix solution of equations (21).
(iv). The sums of squares and products of the deviations of the z; from their

‘within-sample’ regressions on the 2; are now computed from equations (22)

k
2N&.-,-.5 = Eif'E = E‘i - ; b;gEjg.
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(v). The final step is to invert the matrix E;;., giving E¥*, and to form the
product

k
(p + kK)D* = 2N i E¥tdid;, where di=di— D bids.
=1 t=1
When there were no covariance variates, the discriminant function I had the
property that the difference between the two sample means of I was equal to the
estimated distance (Section 10). This relationship can be preserved when co-
variance variates are present by defining I so that

k
Iwa = i Ms’ (xiwa - biexéwa),
=1 =1
and calculating the weights M; from the equations,
Z 7
E E.‘;.QM,' = di.
j=1
For in that case,
p .
M; =D E"%d;.
=1
Consequently the difference between the two sample means of I is
S M.d= 3 B,
i=1 4, =1

which (apart from the constant 2N) is equal to (p + k)D”

14. Distribution of the estimated distance. In the ordinary case, with no
covariance variates, the frequency distribution of the estimated distance has
been given by several authors, e.g. Hsu [6). It will be found that in our prob-
lem the distribution is essentially the same, except that the quantity D? must be
multiplied by a new factor and that one set of degrees of freedom entering into
the result must be changed from (n — p + 1) to (» — p — k + 1).

Thus far we have assumed that all variates jointly follow a multivariate nor-
mal distribution. It is convenient at this stage to regard the covariance variates
Tpoe a8 fixed from sample to sample, and to use the conditional distribution of
the Ziyq , subffect to this restriction. It is well known (e.g. Cramér [7, section
24.6]) that this conditional distribution is the multivariate normal

@m)™ |7 [ 1 diva

2 N p 3 .
exp {—%[Z Z Z U‘J‘E(xiwa — Miw — 'Yiwa)(xiwa = Mjw — 'Yiwa)]}

wam=l a=1 $,j=1

(23)

where

k
Yiva = ; B:'E(xswa - I‘Ew)-
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Since the estimated distance is a function of the quantities Ej;.¢ , di, we now
find the joint distribution of these variates. The joint distribution of the
sums of squares and products E;;.; is obtained by quoting a slight extension of a
result due to Bartlett [8], which may be stated as follows.

Let the variates Zi,a follow the distribution (23) and let

(7') Eii = i ZN: (xiwa - x\'w)(xjwa - xiw-)

w=1 a=1

be a typical ‘within-samples’ sum of squares or products,

(%) m=gmw

be the ‘within-samples’ partial regression coefficient of z; on x¢ , and
(¢27) Ei;= E; — gbieEig

be the sum of squares or products of deviations from these regressions. Then
(a) the quantities E;;.; follow the Wishart distribution

p ..
cl Eij |}("—k_p—l) exp {—% Z G’J'EEM} H dE;;.¢

1, j=1
with (n — k) d.f., where n = 2(N — 1),
(b) this distribution is independent of that of the bs: , and
(c) both distributions are independent of that of the means z;,. and consequently
of that of the difference d; = (zi2. — Za.)-

The result was praved by Bartlett for a sample from a single population. The
extension to the case of two populations is straightforward and will not be given
in detail.

From (b) and (c) it follows that the distribution of the E;; is independent
of that of the quantities

k
di =d;i — > by dy.
£=1

Further, with the z; variates fixed, the d. are linear functions of the z;,« with con-

stant coefficients and hence follow a multivariate normal distripution, Wilks

[9]. We now find the means and the covariance matrix of this joint distribution.
From the joint distribution (23) of the Zi,« , it is easily seen that

k
(24) E(d) = & + ?:i Biz di.

Also, since by standard regression theory the b;; are unbiased estimates of the
ﬁ‘f )

k k
E {Z big ds} =2 B d;.
=1 =1
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Hence, by subtraction,
(25) E(d) = 6.
Now

k k
Cov (did}) = Cov (di — ?_‘1 bir di)(d; — Zl biy dy).
== I':-

By (c) the distributions of the d;, b;, are independent, so that there will be no
contribution from products of the form d;b;. Hence

k
(26) Cov (di d}) = Cov (d: d;) + £El d; dy Cov (bigbyy).
VNa=

Since d; is the difference between the means of two samples of size N, Cov
(dd;) is 2 055.¢/N. The covariance of b;; and b;, is more troublesome. Writing
the expressions for these regression coefficients in terms of the original data, we
have

k

Cov (bi:b;y) = k2} EME™ Cov (BoE;) =

=1

k 2 N
Z EME™ Z Z (Trwa = Trw-) @usr — Z42.) Cov (xiwaxit{)-
A=l w,z=1 a,f=1

Since successive observations are assumed independent, the covariance term van-
ishes unless w = 2 and a = ¢, in which case it equals ¢;;.; . Thus

k
Cov (big b,',,) = 0ij-¢ XZI E“EWEM = a',','.gEE".
Finally, from (26)
k
(21) Cov (@i b)) = ose (2 + 35 B de ) = v (say).

Having obtained the distributions of the E;;.; , d:, we may apply Hsu’s result
[6] for the general distribution of Hotelling’s 7°. In our notation, this may be
stated as follows.

If the variates di/\/v follow the multivariate normal distribution with means
8:/\/v and covariance matrix oi;.;, and if the variates E;;.; follow the Wishart
distribution with (n — k) d.f. and covariance matriz oi;.¢ , the two distributions
being independent, then

p .
y = “E E#4 d; difv,

follows the distribution
w h 1

(28) e T

Ap+h=1 3 (k1) —h
r . 1
woh!B{ip+ h i(n —k — p + 1)} Y 14y dy,
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where

p 3
T = -%— Z 0'“'5555,'/0,

1, jo=1
2 k
0=N+E;IE€"dgd.,, n = 2(N - 1).

This distribution is, of course, the distribution of the ratio of two independent
values of x°, withpand (n — k — p + 1) d.f. respectively, in the case where the
numerator is non-central.

16. Tests of significance. This result leads to the extension of Hotelling’s
T? test. Forifd; =0, (i = 1,2, --- p), then 7 is zero and

Ep E¥% 4 d)

$, j=1
is distributed as vpF/(n — k — p + 1), withpand (o — k — p + 1) df. The
distribution (28) above gives the power function of this test.

We may also wish to apply a test of this type to a subgroup z; of the dis-
criminators (¢ = 1,2, --- ¢ < p). Speaking popularly, this is a test of the null
hypothesis that the above variates z; contribute nothing to the discrimination
between the two populations, given that the remaining discriminators and the
covariance variates have already been included.! To see what is meant more
precisely, consider the following transformation:

:c: =x,~—26¢zx,—23¢5x5, 1= 1,2, et g
(1},1=x1—26153:g, l=q+1,---p;
x2=x5) £=1,2,---k

where the 8’s are population regression coefficients. Then it is not difficult to
see that the distance is now given by
g . D
@ +8a" = 2 %6+ 2 ™6
i, Jal lm=g+1

where ¢”'% is the inverse of the covariance matrix of the deviations of the z;
from their regressions on the z; plus the z; , and
8 = 8 — ZBudy.
Consequently if 8; = 0, (i = 1,2, - -- ¢) the distance is exactly the same as it
would be if the variates z; were omitted. The test in question is therefore a test
of the null hypothesis that 6; = 0, ({ = 1, 2, - - ¢).
If both the remaining discriminators «; and the covariance variates z; are re-
garded as fixed, the method of proof in the previous section provides an F test

1 The test is illustrated in section 7.
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for this hypothesis also. It is found that the sums of squares or products E¥"*
follow a Wishart distribution with (n — k& — p + ¢) d.f., while the quantities

D k

di=di— 2 baudi— 2 bedy
l=q+1 =1

are normally distributed, with zero means when the null hypothesis is true. This

leads to the result that

iEWww;

=1

is distributed as v'¢F/(n — k — p + 1), withqand (n — &k — p 4 1) d.f., and
r= 2 1
v N + z E dz dg y

the sum extending over both the covariance variates and the discriminators that
are not being tested.

16. Discussion of the gain due to covariance. In this section we attempt to
construct a measure of the amount that has been gained by the use of the co-
variance variates. Only a preliminary discussion will be given: a complete dis-
cussion would be rather lengthy, owing to the many different uses to whichthe
discriminant function can be put. Perhaps the problem can most easily be seen
by considering the effect on Hotelling’s generalized T” test of significance.

The power function of this test, as obtained from equation (28) section 14, de-
pends on four factors; the level of significance that is chosen, the degrees of free-
dom n; and 7, in the numerator and denominator of F, and the parameter r.
If the covariance variates were ignored, the usual T* test could be applied to the
discriminators alone. In this case we would have

ny = p, ne=n—p+1, = %Eaijéiaj/v', where v’ = 2/N.
With the covariance variates, we have .
m=p, ne=n—p-—k+ 1, T = %Eaij.saiai/vy

where

v ==+ 2 E"d; d,.

AR

The first point to note is that
2 o780, > 2 aV6id;

This is an instance of the general result that the addition of new variates cannot
decrease the value of pA®. To see this, replace the covariance variates by their
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deviations from their regressions on the discriminators. This transformation
gives
b

p .. 3 k .
(29) D s = D oV + 521 "5 6y,
=

ig=1 ij=1

where
i
5= 00— 32 b

Since the term on the right of equation (29) is a positive definite quadratic form,
the result follows.

Consequently, the first effect of the’covariance variates is to make the numer-
ator of 7 greater than that of /. As a partial compensation, the denominator
v is also greater than ¢/, but it may be shown that the difference in the denomi-
nators will usually be trivial if & is small relative to n. We therefore expect =
to be greater than 7’. Now for fixed n;, n; and significance level, it is well
known that the power function (28) is monotone increasing with . Hence,
other things being equal, the increase in = due to the covariance variates leads to
a more powerful test.

The two power functions, however, differ in another respect, in that with co-
variance the value of n, is reduced from (n — p + 1) to (n — p — k 4+ 1). This
decrease in the number of degrees of freedom in the denominator of F will to
some extent offset the gain from an increased 7. Examination of Tang’s tables
[10] indicates, however, that if the degrees of freedom are substantial, this effect
will not be important. Moreover, in most practical applications, k is likely to
be only 1 or 2. Hence, as a first approximation the effect will be ignored, though
to do so tends to overestimate the advantage of covariance.

Suppose now that + = r7’, where r > 1. Since 7/ is proportional to N, the
size of sample taken from each population, we could make # = r by increasing
the size of sample (when covariance is not used) from N to rN. This suggests
that the ratio /7’ can be used, as a first approximation, to measure the relative
accuracy obtained with and without the use of covariance. This measure carries
approximately the usual interpretation that the inferior method would become
as good as the superior method if the sample size for the inferior method were
increased by the factor r. A further refinement could be made to take account
of the difference in the n, values. By trial and error applied to Tang’s tables,
one could determine 7’ so that the two power functions would be as nearly coin-
cident as possible.

In practice, the ratio 7/’ must be estimated from the data. From the power
function in equation (28) it is found by integration that the mean value of y is

@7+ p)/(n2 — 2),

so that an unbiased estimate of 7 is

Hm — 2y — p) = m{@T‘”F- 1}.

2
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This suggests that the quantity

(]

should be calculated both with and without covariance. The ratio of the two
values will probably not be an unbiased estimate of /7, but may be used pend-
ing further information about its sampling distribution. This type of calcula-
tion is-made for the numerical example in section 8.

17. The case of a row by column classification. Thus far the discussion has
been confined to the case where there are only two populations. The technique
may also be used when there are more than two populations. The difference
8: between the two population means is replaced by some linear function of the
population means. As an illustration we consider a row by column classification,
the case that arises in the numerical example. No detailed proofs will be given,
though it is hoped that the theory can be fairly easily developed from the mathe-
matical model.

A typical variate is Z:,. , where ¢ = 1, 2, - - - p denotes the variate, w = 1,
2, -- - r denotes the row and z = 1, 2, - - - ¢ denotes the column, there being
one observation in each cell. The variates z:,. follow a multivariate normal dis-
tribution, with covariance matrix o:;; and means

3
E@iwe) = pi + piw + viz + 52:1 Bit(@pwe — T..),

where pi, denotes the effect of the row and ;. that of the column. Without loss
of generality we may assume that

Zpiw = Z'Yiz = 0.
In addition, there exists a known set of variates ¢, such that

Yie = dits, d.t.=0.
2

That is, the column constants have a linear regression on a set of known numbers.
The following are the maximum likelihood estimates of the relevant constants.

ko
b = 2 EqE™,
n==1

where

t. -z
Eiq = %:z Tiyz {xquvz - xqw- - tz “(‘_ZZ;:Lz}
" Z: tz(xiwz - Z bié x5~z

5, ¢

DY
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In the notation used for numerical calculation,

5 = (d: — Z_l;ii dy) _ _di_z, where d; = X & Xia,
r E t, r Z iz *
the quantity X,.. being the column fotal. Finally
7‘66',','.5 = Ez'j'f = E;; — Z b!’EEﬁ'
t

The distributional properties are similar to those in the two-population case.
The quantities E;;.; follow a Wishart distribution ith (re — r — 1 — k) d.f.
and covariance matrix o;;; . The variates d; follow a multivariate normal dis-
tribution with means 73;2£; and covariance

O';i.g(thZ 4+ EEE" dg d,) = V0g¢j.¢ (say).
Consequently,
y = 2B d} d;

is distributed as vpF/(rc — r — p — k) with pand (re — r — p — k) d.f. and
parameter

= 3(r22)'20"5:6;/v.

Thus in the numerical example, with r = 12,¢ = 4, p = 2, k = 1, this procedure
would have given an F test of the null hypothesis + = 0, where F has 2 and 33
d.f. However, the contribution from 2 degrees of freedom was deliberately
omitted from the quantities E;; , so that F actually had 2 and 31 d.f.

PART III

18. Justification of the ‘dummy variate’ approach. It remains to show that
the method of calculation used in the example (sections 5 and 6) is equivalent to
that derived from theory. There are two chief points to prove. First, that the
M’s found from the equations

(30) Z B M; = d;
7

are proportional to the corresponding L’s found from the equations
(31) E Siij = d,'
where the suffix a denotes summation over both z; and z; variates.
Now, since S;; = E,;; + d; d;/240, equations (31) are the same as
(32) > EyL; = d;(1 — X L; d;/240).
Hence the L’s in (31) are proportional to the values found from the equations
(33) > E;L; = d;.
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But it is well known that if the L; are eliminated one by one from equations (33),
we obtain

2 By L =di,
1

which is the same as (30). This proves the first point.
The second point to establish is that the F test in the example is the same as
that obtained from theory. In section 15, it was shown that

(34) SCETEGL

¥
is distributed as pF/(n — p — k + 1). In the analysis of variance of Table 6,
section 6, the quantity follo ring the same distribution was

(Sa — Se)

(35) 0= 8.

where
Se=28"d;d;, S¢=2,8"dd,.
a En
Since equations (31) and (32) have the same solution, we must have
87 = E9(1 — X L; d;/240) = EY(1 — S./240).
Multiplying both sides by d; d; and summing over all , j, we obtain
Ss = E.(1 — 8,/240) = E,(1 4+ E./240),
where E, is defined analogously to S,. Similarly

S; = E;/(1 4 E;/240).
Hence

Se— S _ E.— E; _E,— E;
240 — 8. 240 + E; v

Transform the variates z;, x; into variates x: , z; , where z; = 2; — Zbaa: .
It is easy to see that this transforms

2 EYdid; into X E"did, + 2 EV¥did;.
"« "i

(36)

(3

That is,
E.= B+ X B did),
(Y]

since the quantity on the left is invariant under non-singular linear transforma-
tions. Hence from (36),

S8 = 8) _ irg gt
10 —5) = E E74 didi/v.
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From (34) and (35), this establishes the equivalence of the F tests. While the
proof has been given only for the type of data encountered in the example, the
same method will apply to other types of data.

In conclusion, we wish to thank the referees for many helpful suggestions in
connection with the presentation of this paper.
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