SOME APPLICATIONS OF THE MELLIN TRANSFORM IN STATISTICS
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}!1. Summary. It is well known that the Fourier transform is a powerful ana-
1yt1cal tool in studymg the distribution of sums of independent random variables.
In this paper it is pointed out that the Mellin transform is a natural analytical
tool to use in studying the distribution of products and quotients of independent
random variables. Formulae are given for determining the probability density

functions of the product and the quotient f, where ¢ and 7 are independent posi-

tive random variables with p.d.f.’s f(z) and g(y), in terms of the Mellin trans-

forms F(s) = f f(x) 2" dx and G(s) = f g()y" " dy. An extension of the
0

transform technique to random variables which are not everywhere positive is

given. A number of examples including Student’s {-distribution and Snedecor’s

F-distribution are worked out by the technique of this paper.

2. Introduction. It is well known [2], [3] that the Fourier transform is a
useful analytical tool for studying the distribution of the sums of independent
random variables. It is our purpose in this paper to study another transform
which is useful in studying the distribution of the product of independent random
variables. While it is perfectly true that one can reduce the study of the distribu-
tion of the random variable ¢ = &-& --- £,, the product of » independent
random variables & , &, -+ - , £, to the study of the distribution of the random
variable 7 = log £ = log & + log & + - -+ + log &, , the sum of n independent
random variables, it seems worth while to study the distribution problem directly.
There are advantages inherent in the direct attack on the distribution problem
which are lost to a considerable degree, if the problem is so transformed that the
Fourier transform becomes applicable. In this paper we shall show that the
direct application of the Mellin transform to the study of the distribution of
products of independent random variables yields results of interest.

3. Connection between Mellin transforms and products of independent
random variables. The key reason for the importance of Fourier transforms in
studying the distribution of sums of independent random variables depends on the
following result: if & and & are independent random variables with continuous'
probability density functions, (henceforth abbreviated as p.d.f.), fi(z) and fa(x),
respectively, then the p.d.f. f(z) of the random variable £ = & -+ & is expressible’
as

0 1@ = [ 56— opw dy = [ 6 - 0h) d.

1In this paper we shall assume throughout that we are dealing with random variables
with continuous p.d.f.’s. The argument can be extended with some changes to distribu-
tion functions which are perfectly general, but for simplicity this will not be done here.
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APPLICATION OF MELLIN TRANSFORM 371

But since these expressions are just the Fourier convolutions of fi(z) and fu(x),
it is small wonder that the Fourier transform plays such a basic role in studying
the distribution properties of sums of independent random variables.

Consider now the following result for products of independent random variables
(4), (5):if & is a random variable with continuous p.d.f. fi(z) and & , independent
of & , is a positive random variable with continuous p.d.f. fo(z), then the p.d.f.
f(x) of the random variable £ = £, is expressible? as

@ @ = [ 15(%) 56 an

But equation (2) is precisely in the form of a Mellin convolution of fi(x) and fa(x)
and therefore it may be expected that the Mellin transform should be useful in
studying the distribution of products of independent random variables.

It is useful to indicate briefly the properties of the Mellin transform. A de-
tailed treatment of this transform will be found in [6] and we shall, therefore,
stress only those portions of the theory of Mellin transforms which are of im-
portance in the field of statistics. By definition, the Mellin transform F(s),
corresponding to a function f(x) defined only*for z > 0, is

@) F(s) = fo " Ho)a™ da.

Under certain restrictions on f(z) [6, p. 471, F(s) considered as a function of the
complex variable s is a function of exponential type, analytic in a strip parallel
to the imaginary axis. The width of the strip is governed by the order of
magnitude of f(z) in the neighborhood of the origin and for large values of = and,
in particular, the strip of analyticity becomes a half-plane if f(x) decays expo-
nentially as z— . There is a reciprocal formula enabling one to go from the
transform F(s) to the function f(z). This transformation is:

c+1i,0

4 @) = ,}m f 2~ F(s) ds

—1,00

for all z where f(x) is continuous and where the path of integration is any line
parallel to the imaginary axis and lying within the strip of analyticity of F(s).

2 More generally [4, p. 411], if & and & are independent random variables with continuous
p.d.f.’s fi(x) and fa(x), then the p.d.f. of the random variable £ = £ is expressible as:

® 1 z ® 1 z
7). = —_ - A dy = e - .
@" f(x) .L,Iylfl <y>f(y) y [_w y!fz (y)fl(y) dy

In [4] analogous results are given for random variables with perfectly general distribution
functions.

3 The reason for this restriction is that there are technical difficulties in defining a Mellin
transform directly for a function defined over (—®, «). In [6], for instance, the Mellin
transform theory is given for functions defined only for positive values of the argument.
In statistical terminology this means that we are restricting ourselves for the moment to
positive random variables. This is, of course, an unnatural restriction and we shall indi-
cate later in the paper a simple device for treating such questions.
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If, in particular, we are interested in applying Mellin transforms to p.d.f.’s
of positive* random variables, the analysis can be carried out rigorously. Also,
as in the case of the Fourier transform, one has the desirable property that there
is a one-one correspondence between p.d.f.’s and their transforms.

A number of common p.d.f.’s of positive random variables have simple Mellin

transforms. For example see Table 1.
In terms familiar to the mathematical statistician, the Mellin transform of a

positive random variable £ with continuous p.d.f. f(z) is E(¢"), where
(5) FG&) = B¢ = [ 71 da.

The following three basic properties hold: (¢) The positive random variable
7 = a £ a > 0 has the Mellin transform G(s) = a** F(s). This is immediate
since
(6) @(s) = E(r'™") = E@™ £7) = " F(s).

(ii) The positive random variable 4 = ¢* has the Mellin transform G(s) =
F(as — a +1). To prove this we note that

@ Q) = E(r"™") = E(t*®) = F(as — a + 1).
In particular if « = —1,ie,9 = %_ , then

G(s) = F(—s + 2).

This is a result which we shall have occasion to use later in the paper.

(iii) If & and & are independent positive random variables with Mellin transforms
Fi(s) and Fa(s), respectively, then the Mellin transform of the product n =
&k, is G(s) = Fi(s) Fo(s). This is immediate since

@® G(s) = E(n'™) = El(a&)™) = B BE(&™)
= R(s) Fa(s).
More generally if & , &, + - - , £, are independent positive random variables with

Mellin transforms Fy(s), Fa(s), - -+, Fa(s), then the Mellin transform of the
random variable 1 = &i& - - - & is G(s) = Fi(s) Fa(s) + -+ Fn(s). This relation-
ship is fundamental and justifies the introduction of Mellin transforms in
studying products of independent random variables.

From (8) it is clear that we can find the p.df. g(y) of the random variable
n which is the product of two positive independent random variables £ and &
with continuous p.d.f.’s fi(z) and fao(x). In fact, by the Mellin inversion formula

1 c+1,0 e 1 c+i,00 .
@ a) =g [ s = oo [RGB

4 See footnote 3.
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where the path of integration is any line parallel to the imaginary axis and lying
within the strip of analyticity of G(s). As in the case of characteristic functions,
it can be shown that there is a one-one correspondence between p.d.f.’s and their
Mellin transforms. Therefore, it follows that the p.d.f. g(y) computed in this
way must be precisely equal to '

w =]t s

It is easy to verify this directly by showing that the Mellin transform of the
right-hand side of (10) is Fi(s) Fa(s) [6, p. 52], but this will not be done here.
The essential point is that Equation (9), (which is sometimes easier to evaluate
than Equation (10)), is a consequence of an algebraic formalism which is
capable of revealing relationships which would otherwise remain hidden.

The p.d.f. h(y) of 9 = -Es-: , the ratio of two positive random variables with
continuous p.d.f.’s, can be reduced to finding the p.d.f. of the product of inde-
gz . If F1(s) and Fy(s) are the Mellin transform
corresponding to & and & , respectively, then by (ii) Fo(—s + 2) is the Mellin
1 = s Fiy(s) Fa

& &
(—s 4+ 2). Therefore, the p.d.f. h(y) of 7 is

pendent random variables £ and

transform of - and, therefore, the Mellin transform H(s) of 7 =

1 c+%,00 s 1 c+4,0 —
(11) &) = 5mi fc_m y "H(s) ds = 2—m.fc_mo y 'Fi(s)Fo(—s + 2) ds.

This formula is useful in finding distributions such as Student’s ¢ and Fisher’s 2.

4. A modified Mellin transform procedure for finding the distribution of the
product of independent random variables which are not everywhere positive.
Up to this point we have limited ourselves to the application of the Mellin
transform to finding the distribution of the product or ratio of two positive
independent random variables. While it is true that a number of interesting
probability density functions are defined only for positive® values of the argument,
it is certainly desirable that we be able to treat situations involving random vari-
ables capable of taking on both positive and negative values. A simple device
for extending the Mellin transform treatment to the more general problem is to
decompose the p.d.f.’s fi(x) and fa(x) of the independent random variables
& and & into

filx) = fu(x) + fie(x),
fa(@) = fu(x) + falz),

5 For example, distributions of type 3, the x? distribution, the distribution of the sample
standard deviation and sample variance, the distribution of an even power of a random vari-
able, etc. are all defined only for positive values of the argument.
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where®
fu@) =0,z <0, fulx) =0,z >0,
faul@) = 0,2 <0, ful®)=0,z>0,

and then to operate on the pairs [fu(z), fa(x)], [fu(z), f2(2)], [fia(x), fa(x)], and
[fia(x), fax(x)] separately. More specifically, the frequency distribution A(y)
corresponding to the random variable n = #£ is made up of the sum of four
components ‘71 (y), ha(y), hs(y), and hy(y). To compute hi(y) one can apply
the Mellin transform directly to the evaluation of the expression

h(y) = ‘l i %fn (g) fa () dx,

since both fi1(x) and fu(x) are zero for negative values of z. The function h,(y)
is zero for y < 0. To compute he(y) we first evaluate

@) = [ La(Y) fa-0) i

Again fi;(z) and f(—2) are zero for negative values of = and, therefore, the con-
ventional Mellin transform can be applied in determining h*(y). It is clear that
he*(y) = O0fory < 0 and, therefore, h2(y) = he*(—y) = O fory > 0. Similarly,
one can find A3(y) and hs(y) where hs(y) = 0 fory > 0 and hu(y) = Ofory < 0,
and it is readily seen that”

k(y) = M(y) + ha(y) + hs(y) + Ra(y)
is the desired p.d.f. of 7 = & .
6. Examples of use of Mellin transforms in evaluating the product and
quotient of independent random variables. Example 1: The distribution of

n = &, where & and & are independent random variables with p.d.f.’s fi(x)
and f(x), respectively, where

fil®) = falx) = 71—2—1r e —0 <z < o,
In this case
fi(@) = ful@) + ful),
and

o) = fu(@) + felz),

@ [}
¢ Of course, f11 , fi2 , fa1 , and fz¢ are generally not p.d.f.’s since f fu(z) dz, f Siz(z) dz,
0 l— 0

® 0
f Sfa(z) dz, f fa2(z) dz are no longer necessarily equal to one.
0 —c0

? As in footnote 6, k1 , ks, hs , and hy are, in general, not p.d.f.’s.
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where
fu(x) = 0, r < O;fm(x) = 0, r > 0;
le(x) = 0, r < O,fzz(x) = 0, z>0.

The random variable n = &£ has a p.df. h(y) = h(y) + ha(y) + hs(y) + Rha(y)
where

hi(y) is associated with [fu(z), fa(z)],

ha(y) is associated with [fu(z), fe(z)],

hs(y) is associated with [fiz(z), fa(z)],
and ha(y) is associated with [fi(x), faa(z)].

It is sufficient to evaluate

hi(y) = fo i al;fn (g) fu(z) da.

- [ 100(Y) a0 e
o}e=3)

P = [ ds = [ e e = T 1),

analytic for Re(s) > 0
and

In this case

$(s—3)

Fau(s) = ‘[" 2 faz) dr = 2 — TI'(s/2).

Therefore,

Hi(s) = Ful®)Fuls) = 2 T%(s/2)

1 c+¢,00 — i
m@) = 5= [y H) ds

1 ¢_+"I‘,°° _ 28—3

= 2—;1 i Yy — P(8/2)d8 c>0
1
m

where Ko(y) is Bessel’s function of the second kind with a purely imaginary argu-
ment of zero order. Similarly

ha(y) = 5 Ko(y), y <0
hs(y) = — Ko(y), y<o0

ha(y) = 5= Ko(y), y > 0.
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Therefore, h(y) = h(y) + hay) + h(y) + ha(y)
= 1 k), —w <y < w,
and this is the desired p.d.f. This result has been found by other methods and
is given in [1, p. 1].
Example 2: The distribution of n = g—lwhere & and & are independent random
2
variables with p.d.f.’s fi(x) and fo(x), respectively, where

_1 —z2 /2

filx) = fulx) = v’ —w <y < .

As in Example 1, one splits the determination of h(y), the p.df. of %, into four
parts: hi(y), ha(y), hs(y), ha(y). In the notation of Example 1 it is easy to show
that Hy(s) the Mellin transform of %1 (y) is

24(e~) 24(e—3) 11
Fu(s)Fau(—s + 2) = = I'(s/2) s r(—s/24+1) = -
sm —
2
1 c+4,0
h(y) = 5 f_. y " H(s) ds, 0<c<2
_ 1 fm'” Ly~ ds
- 21!"& —1,00 4 .n .31_r
2
1 1
T amit y=20
Similarly
1 1
h2(y)_'2‘7"‘_1+y2’ ?/SO,
1 1
hs(y)—2—1r1_|_y2; ySO;
1 1
h4(y)—§7r1+y2, y2>0
Therefore, h(y) = h(y) + ha(¥) + haw) + k()
1 1
=;r1+yz’ —® <y< .

This result has been found by other methods and given in [4, p. 411].
Example 3: F-Distribution. Let &1, -+« ,&m,m, *** , 7a be (m 4 n) independ-
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ent random variables, each normally distributed with mean zero and standard
deviation . Let

=1
We want to find the p.d.f. k(z) of { where ¢ = £/9. The p.df.’s f(z) and g(y)
of £ and 1%, respectively, are:

m 2 n
$=Z£iy ’7=;77§"

m[2—1 e—z/ 202

x
f®) = m , z >0,
and
n/2—1 —yl202
Y €
g(y)‘_ 2"/2 e I-‘(n/z) ) y > Oo
In this case
21T (s +5 - 1) "
F(s) = NCYP) , analytic for Re (s) > 1 — 5
and
27T (s +g - 1) .
G(s) = Tn/2) , analytic for Re (s) > 1 — 3

The p.d.f. i(z) has Mellin transform
H(s) = F(s) G(—s + 2)

r(s+’21‘— 1)I‘<—s+g+l>
T(n/2)(n/2) '

Therefore,
c+t,%

1 s m n

m +
_ P( 2 n) zmlz—l
© T(m/2)T(n/2) (z + Limim’

A convenient. way of carrying out the inversion is to use formula (d) in Table 1.
In a similar way one can find Student’s distribution, i.e., the distribution of

¢ = &/, where 9 = /‘/Z £/n , and where & , &1, - -« , £ are n 4 1 independ-
1

ent random variables each having the distribution:

z2>0,

1
flx) = m ¢, —n <z < ™.
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It should be mentioned in conclusion that the Mellin transform is a natural
tool to use in situations involving the products and quotients of independent
uniformly distributed random variables, or in finding products and/or quotients
and/or Beta-distribution. In such cases formulae (b), (¢) and (d) in Table 1
are useful.
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