OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO
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1. Summary. Let S, be any sequential probability ratio test for deciding
between two simple alternatives H, and H;, and S; another test for the same
purpose. We define (¢, j = 0, 1):

a:(8;) = probability, under S;, of rejecting H; when it is true;

E! (n) = expected number of observations to reach a decision under test S i
when the hypothesis H; is true. (It is assumed that E} (n) exists.)

In this paper it is proved that, if

a:(81) < @:(So) (¢ =01,
it follows that

E; (n) < B (n) @ =0,1).

This means that of all tests with the same power the sequential probability ratio
test requires on the average fewest observations. This result had been con-

jectured earlier ([1], [2]).

2. Introduction. Let p:(x), 7 = 0, 1, denote two different probability density
functions or (discrete) probability functions. (Throughout this paper the index
7 will always take the values 0, 1). Let X be a chance variable whose distribu-
tion can only be either po(x) or pi(z), but is otherwise unknown. It is required
to decide between the hypotheses H, , H, , where H; states that p:(x) is the dis-
tribution of X, on the basis of n independent observations z;, -+, , on X,
where 7 is a chance variable defined (finite) on almost every infinite sequence

W =21,T2,"""

i.e., n is finite with probability one according to both po(x) and pi(x). The
definition of n(w) together with the rule for deciding on H, or H; constitute a

sequential test.
A sequential probability ratio test is defined with the aid of two positive

numbers, A* > 1, B* < 1, as follows: Write for brevity
P = kI:Il pi(ws).
Then n = jif
Py > A* or < B*
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SEQUENTIAL PROBABILITY RATIO TEST 327

and
B <Pl opx k<
Dox
If
% > A%, the hypothesis H; is accepted,
On
if

% < B¥* the hypothesis H, is accepted.
0n

In this paper we limit consideration to sequential tests for which E;(n) exists,
where E;(n) is the expected value of » when H is true (i.e., when p;(z) is the dis-
tribution of X). It has been proved in [3] that all sequential probability ratio
tests belong to this class. The purpose of the paper is to prove the result stated
in the first section. Throughout the proof we shall find it convenient to
assume that there is an a priori probability g; that H; is true (g0 + g1 = 1; we
shall write ¢ = (g0, g1)). We are aware of the fact that many statisticians
believe that in most problems of practical importance either no a priori pro-
bability distribution exists, or that even where it exists the statistical decision
must be made in ignorance of it; in fact we share this view. Our introduction
of the a priori probability distribution is a purely technical device for achieving
the proof which has no bearing on statistical methodology, and the reader will
verify that this is so. We shall always assume below that go 5 0, 1.

Let Wy, W1, ¢ be given positive numbers. We define

R = go(Woao + cEo(n)) + gi(Wion + cEr(n)),

and call R the average risk associated with a test S and a given g (obviously R
is a function of both). We shall say that H; is accepted when the decision is
made that p;(x) is the distribution of X. We shall say that H, is rejected when
H, is accepted, and vice versa. The reader may find it helpful to regard W,
as a weight which measures the loss caused by rejecting H; when it is true, ¢ as
the cost of a single observation, and R as the average loss associated with a given
g and a test S. For mathematical purposes these are simply quantities which
we manipulate in the course of the proof.

3. Role of the probability ratio. Let g, W = (W,, W1), and ¢ be fixed. Let
S be a given sequential test, with R(S) the associated risk and n(w, S) the as-
sociated ‘“‘sample size”’ function. Let ¢(x1, --- , z,) be the “decision’ function;
this is a function which takes only the values 0 and 1, and such that,
when 2, , - - - , . is the sample point, the hypothesis with index (1, - - - , x,) is
rejected. Define the following decision function ¢(z1, - -+ , @): ¢ = 0 when

A = Wi J1D1n
WO go pOn
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is greater than 1, and ¢ = 1 when A < 1. When A\ = 1, ¢ may be 0
or 1 at pleasure.

It must be remembered that an actual decision function is a single-valued func-
tion of (x1, ---, x.). We note, however, that

a) the relevant properties of a test are not affected by changing the test on a
set T of points w whose probability is zero according to both H, and H,, i..,
changing the definition on .7’ of n and/or of the decision function, leaves ay,
a1, Ey(n) and Ei(n) unaltered. In particular, the average risk E remains un-
changed.

b) the set of points for which py, = p1. = 0 and ) is indeterminate, has prob-
ability zero according to both H, and H, .

In view of the above we decide arbitrarily, in all sequential tests which we
shall henceforth consider, to define n = j, and ¢ = 0, whenever po; = p1; = 0,
andn # 1,---, (j — 1). By this arbitrary action B(S) will not be changed.

Let now

— _Wigipin
goPon + G1P1n
L, = cn + min (Lon , Lm).

in

We have
EL,Im = Eg,-W,-ai

where the operator E denotes the expected value with respect to the joint dis-
tribution of H; and (21, - - , Z.), i.e., E is the operator goEy + ¢:E:. If now
the event {Y(S) #£ ¢ and X # 1} has positive probability according to either
H, or H,, we would have, for n = n(w, S),

ELpw < ELyn. .

Hence, if the decision function ¥ connected with the test S were replaced by the
decision function ¢, B would be decreased. Since our object throughout this
proof will be to make R as small as possible, we shall confine ourselves henceforth,
except when the contrary is explicitly stated, to tests for which ¢ is the decision
function. This will be assumed even if not explicitly stated.

The function ¢ has not yet been uniquely defined when A = 1. A definition
convenient for later purposes will be given in the next section. R is the same
for all definitions. ;

We thus have that ¢ is a function only of A, or, what comes to the same thing
when W is fixed, of r, = Pin " Define

Don

7‘,=§1—: j=1’2,o.o.
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We shall now prove

Lemma 1. Let g, W, and c be fixed. There exisis a sequential test S* for which
the average risk vs a minimum. Its sample size funciton n(w, S*) can be defined
by means of a properly chosen subset K of the non-negative half-line as follows:
For any w consider the associated sequence

T1,Ta, "

and let j be the smallest integer for which r; e K. Then n = j. The function n
may be undefined on a set of points w whose probability according to Hy and H, vs zero.

Let a = (a1, -+, @as) be any point in some finite d-dimensional Euclidean
space, provided only that pos(a) and pis(a) are not both zero. Let b = ﬁ__—l"gzg and
od

let I(a) = ¢d + min (Loa, L1s). Let D be any sequential test whatever for
which n(w, D) > d for any w whose first d codérdinates are the same as those of
a, and for which E(n | @, D) < «, where E(n | a, D) is the conditional expected
value of n according to the test D under the condition that the first d coérdinates
of w are the same as those of a. For brevity let G represent the set of points w
which fulfill this last condition, i.e., that the first d codrdinates of w are the same
as those of a. Finally, let E(L.|a, D) be the conditional expected value of
L, according to D under the condition that w is in the set G. We know that
min(Loa , L1a) depends only on 74(a) = b.
Write

v(a) = sup (la) — E(Ln | a, D)].

Let ap = (@o1, * - - , aox) be any point such that

pld(a) — plk(ao)

pu(a)  po(ao)
Let Dy be any sequential test whatever for which n(w, Dy) > k for any « whose
first k coordinates are the same as those of ay, and for which E(n | ay, Do) < ®
Let

v(ao) = sup (iao) — E(Ln | a0 , Do)].

We shall prove that »(a) = v(as). Thus we shall be justified in writing
v(0) = v(a) = v(a).
Suppose, therefore that »(a) > »(a). Let D; be a test of the type D such
that

@) — B(L. | a, D1) > ”(igl(i’@.

We now partially define another sequential test Dy of the type D, as follows: Let

Q=Qu, ", 8a,Y1y ", Ye,
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be any sequence such that n(a, D;) = d + . Then for the sequence
Gy = Qo1 """ 5 Qok, Y1, ", Ye

let n(@ , Dw) = k 4+ ¢. The decision function ¥, associated with Dy, will be
partially defined as follows:

Yo(do) = ¢(a).

(The reader will observe that it may happen that ¥o(d@) # ¢(d)). Sinceri(a) =
re(ao) it follows that

(@) + v(e)
A) £ 20 > o,

l(a) - E(Ln l a, Dl) = l(ao) - E(Ln l 2] ,DIO) >

in violation of the definition of »(@y). A similar contradiction is obtained if
v(a) < v(ap). Hence »(a) = v»(ao) as was stated above.

We define K to consist of all numbers b which are such that there exist points
a with r4(a) = b, and for which y(b) < 0. We shall now prove that the test S*
defined in the statement of the lemma is such that B(S*) is a minimum. Recall
that the average risk is the expected value of L,. Let S be any other test.
Let a* = (a1 , az+) be any sequence such that either n(a*, S*) = d*, or
n(a*, 8) = d*, but n(a*, S*) = n(a*, S). We exclude the trivial case that the
probability of the occurrence of such a sequence, under both Hy and H, , is zero.
Let r4+(a*) = b*. The sequence a* may be one of three types:

1) v(b*) < 0. Hence b* ¢ K, n(a*, S) > d*. It is more advantageous, from
the point of view of diminishing the average risk, to terminate the sequential
process at once, since E(L, | a*, 8) > Il(a*).

2) y(b*) = 0. Hence b* ¢ K, n(a*, S) > d*. If l(a*) — E(L.|a* S) = 0,
i.e., the supremum is actually attained by S, then, as far as the average risk is
concerned, it makes no difference whether the sequential process is terminated
with a* or continued according to S. If, however, l(a*) — E(L.|a*, S) < 0,
it is clearly disadvantageous to proceed accordirig to S. It is impossible that
l(a*) — E(Lx | a*, S) > 0, since y(b*) = 0.

3) v(b*) > 0. Hence b* ¢ K, n(a*, S) = d*. Clearly it is more advantageous
from the point of view of diminishing the average risk not to terminate the
sequential process, but to continue with at least one more observation. After
one more observation we are either in case 1 or 2, where it is advantageous to
terminate the sequential process, or again in case 3, where it is advantageous to
take yet another observation.

We conclude that R(S*) is a minimum, as was to be proved.

4. A fundamental lemma. Consider the complement of K with respect to
the non-negative half-line, and from it delete all points b’ for which there exists
no point @ in some d-dimensional Euclidean space such that ra(a) = b'. The
point 1 is never to be considered as of the type of b/, i.e., 1 is never to be deleted.
Designate the resulting set by K.
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Our proof of the theorem to which this paper is devoted hinges on the follow-
ing lemma: _
LemMa 2. Let W, g, c be fixed, and K be as defined above. There exist two posi-

tive numbers A and B, with B < W go < A, such that
141

a) if b e K, then either b > Aorb < B

b) ifbeK,B<b < A.

Two remarks may be made before proceeding with the proof:

1) We may now complete the definition of ¢ for tests of the type of S*. The

reader will recall that ¢ wasnot uniquely defined when X = 1,i.e., whenr, = go Zo .
191
Lemma 2 shows that it is necessary to define ¢(\) only when A = II;V,_ogo e K and
11

\is therefore either A or B. We will define ¢ (WO go Wogo

W, g1 W g1
isA or B, and 4 % B. This is simply a convenient definition which will give
W Jo
W, J1

> as0or 1, according as

e K, the situation is completely trivial, and

uniqueness. When 4 = B =

we may take ¢ = 0 arbitrarily.

2) If 1 ¢ K the above lemma shows that the average risk is minimized (for
fixed W, g, ¢, of course) by taking no observations at all. We have ¢ = 0 or 1
accordingas 1 > A or1 < B.

ProOF OF THE LEMMA: Let A > g" go be apoint in K.  We will prove that any
161

point A’ such that ?Vfo go < k' < h, and such that there exists a point a’ in some
11 _
d’-dimensional Euclidean space for which r4-(a’) = A/, is also in K. In a similar

way it can be shown that, if Ay < 3:0 Z" isany point in K, any point hq such that
141 -

Wogo
ho < ho <
0 < ho S Wige

Euclidean space for which rs+(a0) = ho, is also in K. This will prove the
lemma.

Let therefore h and A’ be as above. Let S* be the sequential test based on
K, with the decision function ¢. Let a be a point in d-space such that rs(a) = h.
Since h € K we have y(h) > 0.

We now wish to define partially another sequential test S, with a decision
function which may be different from ¢, as follows: Let a’ be defined as above.

‘Write

. . ’ . . .
, and such that there exists a point g, in some d’’-dimensional

a=(m, -, a)
a = (a{, ,a;,).
Let
G=01,""",8,Y, ", Y
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be any sequence such that n(d, S*) = d + ¢. Then for the sequence

ot ’
a =01, ", Y1, ", Y

let n(@’, S) = d’ + t. The decision function ¥ associated with S will be partially
defined as follows:

¥(@') = o(a).
Clearly
({.1) En|a,S*) —d =Ein|a,S) — d (Zz=0,1)
and
(.2) Ee|a, 8% = Ey | a, 8) (@ =0, 1).
Furthermore, we have
l(a) — E(L, | a,S*)
43) = P (Wt ad = cFo(n |0, 8) = Will = Ealp|a,89))
B tod — cBn | 6, 8%) — Wi Exlp | o, S%)}.
go+ g1h
Since y(h) > 0, and since
(4.4) cd — cEi(n | a, 8¥) — WiEi(e | a, 8¥) < 0,
we must have
(4.5) Wo + cd — cEo(n | a, §*) — Wil — Eo(e ! a, 8%)] > 0.
From A’ < h it follows that
9o 9o gb gh

46 ; , d = .
(4.6) go + g1h >go+g1h an g+ gh g+ gk

Relations (4.1), (4.2), (4.4), (4.5) and (4.6) imply that the value of the right hand
member of (4.3) is increased by replacing ¢, &, a, S* and d by ¢, &, o/, S, and
d’, respectively. This proves our lemma.

If there are values which r; cannot assume the pair B, A might not be unique.
For convenience we shall define A and B uniquely in the manner described below.
We will always adhere to this definition thereafter.

We shall first define y(h) for all positive A in a manner consistent with the
previous definition, which defined (k) only for those values of 4 which could be
assumed by r;. Let h be any positive number and D(h) be any sequential test
with the following properties:

there exists a set Q(h) of positive numbers such that n = j
if and only if the j-th member of the sequence

hry, hre , hrs, - -

4.7)
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is the first element of the sequence to be in Q(k)

(4.8) Ein|D®) < » G =0,1).
We define, for h > g‘: z,
@9) A DW) = o (WaEule | D)) — cFoln | D ()}
0L (—WiEi(e | DOY) — cExln | D),
(4.10) v(h) = sup v(h | D(R))

with a corresponding definition for A < gffo Z ® . Thus v(h) is defined for all posi-
141

tive h. This definition coincides with the previous definition whenever the latter
is applicable. It is true that the supremum operation in (4.10) is limited to
tests which depend only on the probability ratio, as (4.7) implies, but the argu-
ment of Lemma 1 shows that this limitation does not diminish the supremum.
gozo, v(h) is not uniquely defined. We shall

1§
shortly see that this is not the case.)

The quantity v (k) depends, of course, on go and g; . To put this in evidence,
we shall also write y(h, go, g1). One can easily verify that

_ go gih )
h, go, = 1, , .
v(h, go , g1) 7( iy sy

More generally, for any positive values h and h’, we have v(h, go , g1) =
y(W, Go , 1), where J, and §; are suitable functions of go , g1 , k, and &’. Thus, if h
is not an admissible value of the probability ratio and 4’ is any admissible value,
we can interpret the value of v(h, go , g1) as the value of v corresponding to A’ and
some properly chosen a priori probabilities g, and gi .

(It might appear that, for A =

We now define A as the greatest lower bound of all points s > %0 go for which
191

v(h) < 0. Wedefine B as the least upper bound of all points 2 < go Zo for which
191

v(h) <0. Ify(h) < Ofor all hthe above definition implies A = B = ;/IVIO Zo .
' 191

The argument of Lemma 2 shows that (k) is monotonically increasing in the

. W go
interval (B ,
erva, o

val <W°9° ,A) )

) , and that y(h) is monotonically decreasing in the inter-

Wi g1
We shall now define a sequential test S*(h) for every ;')ositive h. The decision
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function of S*(h) will be ¢, and » = j if and only if the j-th member
of the sequence

'Y(h’rl)) 'Y(hr2)7 7(}"'3)7 M
is the first element to be < 0., We see that
(4.11) v(h) = v(h | 8*(h))

for all h. Incidentally, this proves that (k) was uniquely defined at
b= Wogo
Wigi
We shall now prove
LemMma 3.  The function v (h) has the following properties:

a) It is continuous for all h.
b) y(4) =v(B) =0
c) y(h) < 0forh > A or < B.

Only a) and ¢) require proof, since b) is a trivial consequence of a) and the
definition of A and B.
Let & be any point except go Zo
191
Within a neighborhood of & both Ey(n | S*(2)) and Ei(n | S*(2)) are bounded.
Let A be an arbitrarily given, positive number. Let A’ and A’ be any two points
in a sufficiently small neighborhood of A, to be described shortly. We proceed
as in the argument of Lemma 2, with the present A’ corresponding to A of Lemma,
2, the present k'’ corresponding to A’ of Lemma 2, and with S*(h’) corresponding
Jo g12
and
go + g12 go+ 912
and since Eo(n | S*(2)) and Ei(n | S*(z)) are bounded functions of z, we con-
clude that, when the neighborhood of % is sufficiently small,

y(B") = (W) — A.
Reversing the roles of A’ and A" we obtain that in this neighborhood
v(') = y(B"’) — 4,

, and let 2 be any point in a neighborhood of A.

are continuous functions of z,

to S* of Lemma 2. Since

and conclude that
[v() —y®") | < A
Since A was arbitrary, this implies the continuity of v(h) everywhere, except

Wo Jo
erhaps at h = .
p D! Wige
To deal with the point h = Wogo , proceed as follows: Using the above argu-

Wi g1
ment and the definition (4.9), (4.10), we prove that (k) is continuous on the right
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at h = 9% Uging at the point b = 2% the definition of v (k | D(h)) for
W191 ngl
Wo do .
<
h < Wege le.,
1 | DB) = —L— (= Wo Bl — ¢ | D) — cEaln | D))}
(4.12) JoT 1

+ gﬁi%l_h {W1Er(1 — ¢ | D(h)) — cEx(n | D(R))},

(4.10) and (4.11), we prove that y(h) is continuous on the left at h = Wo o

W, 91'

This proves a).
To prove ¢), we proceed as follows: Suppose for hy > A we had y(h) = 0.
Since

{ =WiEi(e | S*(ho)) — cEi(n | S*(ho))} < O,
we would have that
{WoE(e | 8*(ho)) — cEo(n | S*(ho))} > 0.
Wogo
ngl
h < hy. This, however, is impossible, because it is a violation of the definition
of A.

In a similar way we prove that if » < B, v(h) < 0. This proves ¢) and with
it the lemma.

An argument like that of Lemma 2 would then show that y(h) > 0 for <

5. The behavior of A and B. LremMma 4. Let g and c be fixed. Then A and
B are continuous functions of Wo and W1 .

Proor: It will be sufficient to prove that A is continuous, the proof for B
being similar. Suppose A > B. Let h; and ks be such that

b) he — k1 < A for an arbitrary positive A.

We write v(h) temporarily as y(h, Wy, W1) in order to exhibit the dependence
on Wyand Wy. Then

y(hy, Wo, W1) > 0;
y(he, Wy, W1) < 0.
It follows from (4.9) that (k| D(h)) is continuous in W,, W1, uniformly in
D(h). Hence y(h, Wy, W1) = il(l}g v(h | D(R)) is also continuous in W,, W;.
Hence, for AW, and AW, sufficiently small,
y(hy, Wo + AWy, W1+ AWy) > 0;
vy(he , Wo + AW, , W1 + AW,) < 0.
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Therefore
hh L AW, + AW, , W1+ AWL) < he,
which proves continuity, since A was arbitrary.

If g‘l’g‘: = A = B, we take iy < g‘:g‘: < h2, hs — by < A, and by a similar

argument show that
y(hyy Wo + AW, , W1+ AWY) < 0;
(ke y Wo + AW, , W1 + AW1) < 0.

Thus
hi K BWo+ AWy, Wi+ AW,) < A(Wo + AWy, W1+ AWy) < e,

This proves the lemma.
Lemma 5. Let g, c, and Wy be fized. A is stricily monotonic in Wo. As W,
approaches 0, A approaches 0; as W, approaches 4+ «, A also approaches + .
Proor: Since A > 377030, A — +4+was Wy — +o. If Wy <c no reduc-
141
tion in average risk could compensate for taking even a single observation, no
matter what the value of A. Hence y(h) < 0 for all » when W, < ¢, so that
A = B. Since B < zogo,B—»Oas Wy —0. Hence A — 0 as Wy — 0.
191
It is evident from (4.9) that v(h | D(h)) is non-decreasing with increasing W,
(everything else fixed). Hence also

v(h) = sup v(k | D(R)),

Wogo and fixed W,. For a
Wi 01

positive A sufficiently small and for any h such that A < h < A + A, we have
that

is non-decreasing with increasing W, , for fixed h >

Ey (¢ ] 8*(h)) > 0.

Hence, for such &, y(h, W, , W) is strictly monotonically increasing with increas-
ing W, . Therefore A is (strictly) monotonically increasing with increasing W, .
We now define the function Wo(Wi, 8) of the two positive arguments Wi,
§ so that
AWy,(Wy, 8), Wi) = 6.

By Lemma 5 such a function exists and is single-valued.

6. Properties of the function Wo(Wy, §). LemMa 6. Wo(W1, 8) is con-
tinuous tn Wi .
Proor: Let

llm WlN = Wl,

N—w
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and suppose that the sequence {Wo(Wyy, 8)} did not converge. Suppose W,
and Wy were two distinet limit points of this sequence. From the continuity
of A (Lemma 4) it would follow that
A(Ws, Wi) = A(Wq , W)
This, however, violates Lemma 5. The only remaining possibility to be con-
sidered is that
lim Wo(W;N N 5) = oo,

N
If that were the case, then, since 4 > 3;0 9 it would follow that A — ©,
1 1
in violation of the fact that A = 4.
Lemma 7. We have, for fixed 8,
lim Wyo(W,) = 0;
Wi1-0
lim Wy(W)) = .
Wi—s00

Proor: If, for small Wy, Wo(W1) were bounded below by a positive number,

then, since 4 > @_M,_&)
Wi g1

sufficiently small, in violation of the fact that A = 8. To prove the second half
of the lemma, assume that Wo(W;) is bounded above as W; — . Then

B ( Wogo> will approach zero as W1 — «. Let h be fixed so that B < h < 8.

, we could make A arbitrarily large by taking W,

Wl 1
Consider the totality of points w for which there exists an integer n*(w) such that:
hr,,. S B ;
B < hr; < 3,, Jj < n*

The conditional expected value of n* in this totality, when H, is true, may be
made arbitrarily large by making B sufficiently small. Hence, when W is
sufficiently large, for fixed but arbitrary h < 8§, the optimum procedure from the
point of minimizing the average risk is to reject Hy at once without taking any
more observations. This, however, contradicts the fact that A < §, and proves
the lemma.
Lemma 8. We have, for fixed 6 > 1,
hm B(Wo(W1, 5), W1) = 5

Wi—0

lim B(Wy(Wy,8), W1) = 0.

Wi—o0
Proor: By Lemma 7,
lim Wo(W1)

Wi—0
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When, for fixed ¢, both W, and W; are small enough, then, no matter what the
value of &, y(h) < 0. Hence A = B, which proves the first half of the lemma.

Let now { Wi~} be a sequence such that lim Wiy = . Let s > 1. For the
sake of brevity we write B(Wyx) instead of

B(Wo(W1xb), Wix).

Suppose that, for sufficiently large N, B(W) is bounded below by a positive
number. Hence, for sufficiently large N, the probability of rejecting H; when
it it is true is bounded below by a positive number. Moreover, since
B < Wago < A, it follows that, for N sufficiently large, —— Wongo ;
Wigs Wing
and below by positive constants. Thus, for large N the average risk of the test
defined by B(Wix), 8, is greater than ug,Wix, where u is a positive constant
which does not depend on N. Moreover, from the definition of B(Wix), this
risk is a minimum.

1s bounded above

Wongo
Wing:
large. Let V1, V., with0 < V: <1< V,, be two constants such that, for the
sequential probability ratio test determined by them, both a; and a1 are < e.
Of course Eyn and Ein are finite and determined by the test. For this test the
average risk is less than

e(go Won + g1 Win) =+ cgo Eon + cgr Exn

Let € be a positive number such that e( + 1) < g for all N sufficiently

< gglwm + cgoEon + cqi Ean

34 1)1 WIN )

for Wiy large enough. This however contradicts the fact that the minimum
risk is > ug; Wi~ , and proves the lemma.

7. Proof of the theorem. Let a given sequential probability ratio test So be
defined by B*, A*; B* < 1 < A*. Let ai(S,) be the probability, according to
So , of rejecting H; when it is true. Let ¢ be fixed.

By Lemma 4, B is a continuous function of Wy and W;. Let § = A* in
Lemma 8. Then there exists a pair W, , W1, with Wy = Wo(W1, A*), such that

A(Wo ’ Wl) = A%
B(Wo Py W1) = B*.
Hence the average risk

; 9: [W: ai(So) + cEi(n)),

corresponding to the sequential test Sy is a minimum.
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Now let S: be any other test for deciding between H, and H; and such that
ai(81) < ai(So), and Ei(n) exists (7 = 1, 2).
Then
20 0:[WsalSo) + eBim)] < 2 s [Wiei(Sy) + Bim)].

Since ;(81) < ai(8Sy), we have
22 g:Eiln) < X g: Ei(n).

Now g0, g1 were arbitrarily chosen (subject, of course, to the obvious restric-
tions). Hence it must be that

Ei(n) < Ei(n).

This, however, is the desired result.
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