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1. On Distribution-free Confidence Intervals (Preliminary Report). WassiLy
Hogrrping, University of North Carolina, Chapel Hill.

Let 6(F) be a functional of a distribution function (d.f.) F(z) (where z is a real number
or a vector), defined over a class <D of d.f.’s; O, a random sample from a population with
d.f. F(z);0, < 0, two functions of O,; and a, = Pr{8, < 6(F) < 6,}. Conditions are studied
under which, given «,0 < a < 1, we have either a, = a or a, > aor a, — a, for all F(z)
in &, where 9 is defined independently of the functional form of F(x). Under fairly gen-

eral conditions we can obtain by ‘‘studentization’ confidencec limits 8., 6, such that lim
n-—rx0

an = a, and y = lim E+/7n(8, — §.) cxists;y is minimized by using a least variance cstimate
n—ro00

of 8(F). If there exists a function «(8) such that var T, < «2(8)n~1if 6(F) = 6, for all F
in 9), we can define confidence limits with a positive lower bound for @,. This applies to a
number of population characteristics estimated by rank order statistics, such as the co-
efficients p’ and = (estimated by Spearman’s and Lindeberg-Kendall’s rank correlation
cocfficients, respectively). In certain cases (including p’ and 7), 6(F) admits a binomially
distributed estimate; then cxact confidence limits can easily be obtained. This research
was done under an Office of Naval Research contract.

2. On Certain Statistics for Samples of 3 from a Normal Population. JuLius
LiesLEIN, National Bureau of Standards, Washington.

In analytical chemistry threc determinations are frequently made. Sometimes the
average of only the two closest results is reported, the remaining observation being rejected
as anomalous. In preparing a critique of this procedure, Dr. W. J. Youden encountered
a need for information on certain propertics of the distributions of the statistics
& — 2")/(xs — z1), (' 4+ 2'")/2, and (' — z’')/2, where &’ and &'’ (¢’ > z’') are the two
closest of the three determinations. This paper shows how these statistics differ from the
oncs heretofore treated involving ““fixed’’ order statistics; gives the distribution of these
statistics in random samples of 3 from a normal universe; and lists valucs of certain of the
moments of their distributions.

3. On Multinomial Distributions with Limited Freedom: A Stochastic Genesis
of Pareto’s and Pearson’s Curves. MARIA CasTeLLAIN, University of
Kansas City.

The purpose of this paper is to investigate the most probable configuration of N random
clements to be distributed in K(K < N) class intervals, where known forces are acting.
We shall call these intervals of energy, using the terminology of statistical mechanies.

We will prove that the most probable configuration is a configuration of statistical equi-
librium since its probability of occurring converges to 1 as N becomes infinitely large.

The main purpose of this paper is to discover which forces of attraction, operating in
the intervals of encrgy, give Parcto’s and Pearson’s curves when statistical equilibrium
is reached.

We will consider a random variable Y (t), ¢ being an independent variable, obeying a
multinomial distribution law with limited freedom, and we will exploit the familiar process
of statistical mechaniecs. The equation of the frequency curves corresponding to the equi-
librium stage of the statistical experiment will be shown.
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4. Fitting Generalized Truncated Normal Distributions. Harorp HoTELLING,
University of North Carolina, Chapel Hill.

In a sample from a p-dimensional normal distribution only those individuals are supposed
to be observed which fall in a specified but arbitrary set A of positive measure. For esti-
mating the parameters the method of moments is proved equivalent to that of maximum
likelihood and therefore efficient. The problem is thus reduced to that of expressing the
parameters of the normal distribution in terms of the moments of the truncated distribu-
tion. This however is not generally possible in simple explicit form. Methods are pre-
sented for dealing numerically with several special cases, including those in which 4 is a
linear interval or a parallelogram.

5. On the Distribution of the Two Closest Observations Among a Set of Three

Independent Observations. G. R. Seta, Iowa State College.

Let z1 , 22 , 23 (1 < 22 < 35) be three independent ordered observations from a population
having a probability density function f(z). Letz’,z'’ (' < z’’) be the two closest, then the
probability density function of z’, z’’ is given by

6 - f) - f(x'N1 + F2z" — z') — F(2z' — z'")]

where
F(x) =f f(x) dz.

In the case f(z) is a normal distribution with unit variance, the joint distribution
1 ot
is obtained as

ofy=2"—2z"andz =
T3 — 21

P 2(] — 2
2V o [ v —z+ ]
722

322

‘This problem is of interest in cases where the conclusions are to be based on a set of
three observations and one of the observations is to be rejected in the analysis of the data.

6. The Derivation of Certain Recurrence Formulae and their Application to the
Extension of Existing Published Incomplete ‘Beta Function Tables. T. A.
BancroFT, Alabama Polytechnic Institute, Auburn (presented by title).

The objects of the paper are: (1) to give a number of new recurrence formulae in the in-
complete beta function derived by a new method, and (2) to indicate how these new formulae
have been used to obtain new tables of the incomplete beta function that are outside the
range of the p and ¢ values given in the existing published tables.

The recurrence formulae have been derived by considering the incomplete beta function
as 8 special case of the hypergeometric series, thus

x?
Bi(p, @ = by Fip,1—¢q,p + 1,2,

where the usual form of the hypergeometric series is

a-bzx ala + 1) - b(b + 1) z?

F(a,b,¢,0) =14 77 1 clc+ 1 21
ala 4+ D@+ 2) - b + Db + 2) 2*
clc + (e +2) 3!

+
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This series converges for|x| <1,andz =1, if and onlyifa 4 b < ¢. Certain recurrence
formulae for F (a, b, ¢, z) are then directly converted for use with B.(p, ¢), or in the so-called
normalized form I(p, q), provided ¢ = a + 1. All conditions have been satisfied by setting
a=p,b=1—¢q,c=p+1,andg>0.

For example, using the above mentioned methods we may obtain, among many others, the
recurrence formulae:

(i) 2L(p,¢) —L(»+1,0+ QA —-2).(p+1,¢g—1) =0,
(i) (+q— p2)L(p,q) — ¢L.(p,¢+1) —p(l —2)L(p+1,¢—1) =0,
(i) ¢l:(p,¢+1) +pL(p+1,9) — (p+ 9L(p,9) =0.

Formula (i) is essentially the basic recurrence formula used to obtain Karl Pearson’s
tables. Anindication of formula (iii) in another form was given by the author in the paper
“On Biases in Estimation Due to the Use of Preliminary Tests of Significance,”” Annals of
Math. Stat., Vol. 15 (1944), p.194, and a direct proof was later given by the author in ‘‘Note
on an Identity in the Incomplete Beta Function,’”” Annals of Math. Stat. Vol. 16 (1945), pp.
98-99. All of the material in the present paper, however, is new, including recurrence form-
ulae and tables and the mathematical method of derivation.

7. Asymptotic Studentization in Testing of Hypotheses. HErMAN CHERNOFF,
Cowles Commission for Research in Economics.

If H is a hypothesis for which ¢ < ¢1(8) would be a good test if the value of the nuisance
parameter 8 were known and 8 is an estimate of 6, then the following method of asymptotic
studentization (obtaining critical regions of almost constant size) was suggested by Wald.
Consider ¢ < ¢(8) where ¢(8) = ¢1(6) + -+ + c+(8) and Pr{t < c1(0)} = «, Prit — ci(d) <
c2(8)} = a, -+ Prit —ci(f) — -+ — ¢:(8) < ¢r41(0)} = a. It is shown that under reason-
able conditions this test, and various modifications, designed for those cases where the ¢,(6)
are difficult to obtain exactly have the asymptotic property that Pr{t < ¢(f)} =
a + O(N"/ %) where N is the size of the sample involved or an analogous variable. This
property can be extended to the case where 0 is a k-dimensional variable.

8. Completeness, Similar Regions, and Unbiased Estimation. (Preliminary
Report.) Erice L. LErMANN AND HENRY ScHEFFE, University of California
at Los Angeles.

A family I of measures M on a space X of points z is defined to be complete
if f f(x) dM = 0for every M in I implies f(z) = 0 except on a set A for which M (4) = 0 for
x

every M in It. For a given family of measures the question of completeness may be re-
garded as the question of unicity of a related functional transform. Classical unicity re-
sults are applicable to many families of probability distributions that have been studied by
statisticians. The notion of completeness throws light on the problem of similar regions
and the problem of unbiased estimation. The concept of a mazimal sufficient statistic—
roughly, a sufficient statistic that is a function of all other sufficient statistics—is developed.
A constructive method of finding such is given, which seems to apply to all examples or-
dinarily considered in statistical theory. A relation between completeness and maximality
is found.

9. On a Proposed Method for Estimating Populations. CgciL C. Craig, Uni-
versity of Michigan, Ann Arbor.

It was proposed to the author by a biologist that a method be deviced for estimating the
total population in an arca which shall utilize the minimum distances between randomly
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chosen individuals and their neighbors in dircctions lying in each of the four quadrants.
Assuming that the area is a square and that the distribution law over it is rectangular, it
turns out that the complete distribution of the lengths of sides of minimum squares which
contain a sccond individual is simpler than that of minimum distances. In both cases a
simple estimate is found which uses most but not all of the information in a sample and
whose cfliciency is comparable to that based on a complete enumeration of a sample area,
though such an enumecration is not always possible.

10. Some Results on the Asymptotic Distribution of Maximum- and Quasi-
Maximum-likelihood Estimates. Herman Rusin, Institute for Advanced
Study.

The author investigates the asymptotic normality of maximum- and quasi-maximum-
likclihood cstimates of paramecters of systems of linear stochastic difference equations.
The principal tool is the extension of the Central Limit Theorem to dependent variables pre-
viously obtained by the author (presented to the American Mathematical Society in April,
1948). The results obtained are analogous to those in the case in which no differences are
present. Some extensions are also made to systems of stochastic difference equations linear
in the coeflicients but not necessarily in the variables. If the complete system of stochastic
difference equations is linear in the jointly dependent variables, asymptotic efficiency is
demonstrated for maximum-likelihood estimates.

11. The Probability Points of the Distribution of the Median in Random Samples
from Any Continuous Population. CuHurcHiLL EISENHART, LoLa 8. DEMING,
and CrLia S. MArTIN, National Bureau of Standards, Washington.

The abscissa of the (one-tail) e-probability point of the distribution of the median in
random samples of size n = 2m 4 1 (m > 0) from any continuous population is identical
with the abscissa of the corresponding P, ,-probability point of the parent distribution,
where P, is determined by

1 S O agrPta-r, ) = O<e<1).
k=}(n+1) ' ’

From (1) it follows that
(2) Pl—z.n =1- Pt.n
and that

1 1

(3) P:,n = x;(n + 17 n+ 1_) - 14 F,,(n + 1’ n+ 1) - 1 + eZZ‘(n-i-l,n-!-l) ;

where ze(v1, v2), F(»1 , v2), and Z.(v1 , v2) denote the e-probability points of the incomplete-
beta-function distribution, Snedecor’s F-distribution and Fisher’s z-distribution, for
vi(= 2¢) and »:(= 2p) ‘degrees of freedom’, respectively. The foregoing results are cer-
tainly not “new’’: Harry S. Pollard implicitly utilized the first equality on the extreme left
of (3) in his doctoral disscrtation at the University of Wisconsin in 1933 (see Annals of
Math. Stat., Vol. 5 (1934), p. 250), and John H. Curtiss has given the generalization of (1)
appropriate to the case of the ‘rth. position’ in random samples from any continuous popu-
lation (sce Amer. Math. Monthly, Vol. 50 (1943), p. 103) and utilized (3) explicitly to obtain
the 5% point of the distribution of the median in random samples of size n = 23. The aim
of the present paper is to give these results somewhat greater publicity—they are hardly
“well known”. To this end a table (Table 1) is given of the values of P,,, to 5 significant
figures for ¢ = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, 0.20, 0.25 and n = 3(2)15(10)95, together
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with expressions from which P.,, can be evaluated accurately and conveniently for values
of n (and €) not included in the table. Numerical examples illustrate the use of the table
and formulas. Concise derivations of the fundamental relations and formulas are given
in an appendix.

12. On the Arithmetic Mean and the Median in Small Samples from the Normal
and Certain Non-Normal Populations. CrUrcHILL Eisennarr, Lora S.
DEming, and CeLia S. MARTIN, National Bureau of Standards, Washington.

Let Z.,» and Z.., denote the abscissac of the one-tail e-probability points of the arith-
metic mean and the median, more specifically, the abscissae exceeded with probability e
by the mcan and the median, respectively, in random samples of size n (= 2m + 1) from
any specified population, and let oz, and ¢z, denote the standard deviations of the mean and
the median in such samples, respectively. The following symmetrical populations with
zero location parameters and unit scale parameters are considered in this paper:

Type
. 1 4
normal (Gaussian) \/2_6 L —w <z =< w
T
double-exponential (Laplace) %e~!°l, —w0 < < ©
rectangular (uniform) 1, —i<z=<}i
1 1
Cauchy ;mz, —w0 <z <
1
sech —sech z, —w0 <2 <
m
sech? (derivative of ““logistic’’) } sech? z, —0 <z < w

Using the basic table, relating probability points of the distribution of the median to prob-
ability points of the parent distribution, given in Churchill Eisenhart, Lola S. Deming and
Celia S. Martin, ‘‘ The probability points of the distribution of the median in random sam-
ples from any continuous population,” values of Z.,,» for random samples from each of the
above distributions have been evaluated, and are tabulated to 5 decimal places in the pres-
ent paper, for n = 3(2)15(10)95 and ¢ = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, 0.20, 0.25.

‘In the case of the normal distribution, values of Z.,, to 5 decimal places are given also for
the aforementioned combinations of € and n. Comparison of the values of %,,, and Z,.,
gives precise numerical meaning to the well-known lesser accuracy of the median as an
estimator of the center of a normal population, for samples of any odd size (n = 2m + 1).
Values of the ratio R..» = %..»/Z..» are given also for this case (normal population), to 4
decimal places for the above combinations of e and n, together with the best available valucs
of 6z,/03, forn = 3(2)15(10)55. WhenO < e < 0.025, the ratio R., excecds the ratio ¢ z,/03, ,
showing that the ‘tails’ of the exact distribution of the median are ‘longer’ than the tails of
the normal distribution with the same mean and standard deviation; and, when 0.05 < ¢ <
0.25, the ratio R.., is less than oz,/0z, . (A theoretical argument shows that the point
of equality is close to the 0.042-probability point.) A method for computing oz, , based on
the foregoing, is given that is believed to be accurate to .001/4/7, or better for n > 3.

In the case of the double-exponential distribution, values of Z..» are given to 4 decimal
places for n = 3(2)11, and € = 0.005, 0.01, 0.025,0.05, 0.10, 0.25, for comparison with the cor-
responding values of &... . It is found that when n = 3, &..; < &3 for ¢ = 0.005, 0.001,
and 0.025, indicating that in random samples of 3 from a double-exponential distribution
the arithmetic mean furnishes narrower confidence limits for the center of the distribution
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at 0.95,0.98, and 0.99 levels of confidence. When n = 5, the mean is ‘better’ at the .98 and
.99 levels of confidence; and, when n = 7, at the 0.99 level. For all other combinations of
eand n (> 3), the median is ‘better.’

In the case of the rectangular distribution, values of Z.., are tabulated to 4 decimals for
n = 3(2)9, and values of Z,,, , the e-probability point of the mid-range in samples of =,
for n = 3(2)15(10)95, in each instance for e = 0.005,0.01,0.025,0.05,0.10,0.25, and in the case
of Z..» for ¢ = 0.001 also. The superiority of the midrange over the mean and the median,
well-known but here exhibited numerically for the first time, is truly amazing.

It is planned to provide values of &.,, for samples from the sech and sech? distributiongin
the final paper.

13. The Relative Frequencies with which Certain Estimators of the Standard
Deviation of a Normal Population Tend to Underestimate its Value.
CHURCHILL E1sENHART and CELia S. MARTIN, National Bureau of Standards,
Washington.

Let &1 ,22, -+ , x» denote a random sample of 7 independent observations from a normal
population with mean u and standard deviation ¢. Common estimators of o are

81 = /‘/él (z: — 2)2/n, S2= sivn/(n = 1), s =si/es,
my = g '§1 |z — %|/n, my = mn/m,

and B, = (x;, — xg)/d», where & = 21 z:i/n, x5 is the largest and xg the smallest of the

2's, c2 = E(s1),and d» = E(z, — %g), the symbol E( ) denoting ‘“mathematical expectation
(or mean value) of.”” A table is given that shows to 3 decimals the relative frequencies
(probabilities) with which these estimators tend to underestimate ¢ when n = 2(1)10, 12,
15, 20, 24, 30, 40, 60. The results show among other things that, for very small samples
(n < 10) such as chemists and physicists commonly use, Bessel’s formula for the probable
error, which is based on s, , has a marked downward bias in the probability sense (in addi-
tion to its known slight downward bias in the mean value sense), whereas Peter’s formula,
which is based on m; , has only a slight downward bias in the probability sense and no bias
in the mean value sense. A table of divisors is given by-means of which ‘‘median estima-

n n
tors’’ of o can be computed readily from the basic quantities '2-:1 (z; — %), z)l |z; — % |, and

(zr. — zg), that is, estimators that will over- and underestimate o equally often in repeated
use. An application to control charts is noted. Median estimators, like maximum likeli-
hood estimators (‘““modal estimators’’) have the useful property that if T4 is a median esti-
mator of 4, then f(T'}) is a median estimator of f(8), a property unfortunately not possessed
by the customary ‘‘unbiased’’ (‘““mean”’) estimators.

14. Some Non-Parametric Tests of Whether the Largest Observations of a Set
are too Large. (Preliminary Report.) Joun E. Waisz, Douglas Aircraft
Company, Santa Monica, California.

Let (1), - -+ , z(n) represent the values of n observations arranged in increasing order of
magnitude. By hypothesis these observations have the properties: (1) They are independ-
ent and from continuous symmetrical populations (2) For large n the variances of the tail
order statistics are either very large or very small compared with the variances of the cen-
tral order statistics (3) For large n the tail order statistics are approximately independent
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of the central order statistics (4) Each observation is from a population whose median is
either 6 or ¢, where £(n — r + 1), --+ , z(n) are from populations with median 8 while the
central and smaller order statistics are from populations with median ¢. The test is:
Accept e < 0if min [z(n — 4x) + 2(ju); 1 < k < 5 < 7] > 22(ta), where tu < tuy1 , jo < Jogr,
is =71 — 1,and {,is defined by Pr [z(t.) < ¢ | 8 = ¢] = «. Here

a=Pr{min[z(n — ) + 2(1); 1 <k <s<7]> 2|0 =4

For large n the significance level of the test is approximately « while the significance level
does not exceed 2 « for any value of n. Suitable values of & can be obtained for r > 4. As
6 — ¢ — — = the power function tends to zero, while the power function tends to unity as
6 —¢— ». For § — ¢ < 0 the power function is monotonically increasing.

15. On the Bounded Significance Level Properties of the Equal-tail Sign Test
for the Mean. Joun E. WaLsH, Douglas Aircraft Company, Santa Monica,
California, (Presented by Title).

The equal-tail sign test for deciding whether the population mean u is equal to a given

a ..n+1
hypothetical value uois defined by : Accept u # poif either z; < uo0r Tny1-i > po, | ¢ > %
Here z;, (j = 1, -+, n), is the j** largest of n independent observations drawn from n

populations which satisfy the conditions: (i) The mean of each population has the value u.
(ii) Each population is continuous at its mean. (iii) The mean is at a 50% point for each
population. This paper investigates how the significance level of the equal-tail sign test
varies when (i)-(iii) are not satisfied. It is found that the significance level does not differ
noticeably from its hypothetical value under conditions much more general than (i)-(iii).
This significance level stability, combined with the properties of being easily applied and
reasonably efficient for small samples from a normal population, suggests that the equal-
tail sign test be considered for application whenever the population mean is to be tested on
the basis of a small number of observations.

16. Infinitely Divisible Distributions. WiLLiam FrrLer, Cornell University,
~ Ithaca, New York.

A simple derivation of P. Lévy’s formula is given starting from the following definition:
a distribution function F(z) is infinitely divisible if for every n it is possible to find finitely
many distributions F, .(x) such that F(z) = F1, 4(2)* - -+ * Fi,,x(z) and that Fi.(z) tends
to the unitary distribution uniformly inn. This definition is more general than the one
used by P. Lévy and Khintchine. The equivalence of the two definitions was proved by
Khintchine by deep methods. The new approach renders the equivalence obvious. Fur-
thermore, a new characterization of infinitely divisible distributions is given; it is equiva-
lent to Gnedenko’s characterization but requires no special analytical tools.

17. Fluctuation Theory of Recurrent Events. WirLiam FeLLER, Cornell Uni-
versity, Ithaca, New York.

Consider a sequence of independent or dependent trials but suppose that each has a dis-
crete sample space. The paper studies recurrent patterns & which can be roughly charac-
terized by the property that after every occurrence of & the process starts from seratch,
the conditional probabilities coinciding with the original absolute probabilities. Typical
examples are success runs, returns to equilibrium, zeros of sums of independent variables,
passages through a state in a Markov chain. New methods are developed unifying and
simplifying previous theories and applying to larger classes of recurrent events. It isshown
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in an elementary way the probability that & occurs at the n-th trial either has a limit or is
asymptotically periodie. This theorem has many consequences. For example, the ergodic
properties of discrete Markov chains follow in a few lines, and the difference between finite
and infinite chains disappears. Several theorems of the renewal type are proved. Weak
and strong limit theorems for the number N, of occurrences of & in n trials are derived
shedding new light on stable distributions.

18. Formulas for the Percentage Points of the Distributions of the Arithmetic
Mean in Random Samples from Certain Symmetrical Universes. Urram
Cuanp, University of North Carolina and National Bureau of Standards,

Using the method of Fisher and Cornish, the 100¢%, point of the distribution of the arith-
metic mean in random samples of size N from any universe having finite cumulants of the
first four orders, &, , k2 , &3 , &4 , is expressed to order 1/N? as a function of N, the 100¢% point
of a standardized normal deviate and the quantities «; , &z , ks/x23/2, k4/x3 . The numerical
coefficients are evaluated for the cases of sampling from rectangular, double-exponential,
sech and sech? distributions. The application of the resulting formulas is illustrated nu-
merically for ¢ = .001, .005, .010, .025, .050, .100, and .250. In the case of the rectangular
and double-exponential distributions, the results obtained for N = 10 are compared with
accurate values, indicating the accuracy of the formulas.



