FOURTH DEGREE EXPONENTIAL 589

[4] J. W. TukEy, ‘“Non-parametric estimation III. Statistically equivalent blocks and
multivariate tolerance regions—the discontinuous case,”” Annals of Math. Stat.,
Vol. 19 (1948), pp. 30-39.

[5] K. PeEARsON, Tables of the Incomplete Beta-Function, Cambridge, 1934.

[6] C. M. THOMPSON, ‘“Tables of percentage points of the incomplete beta function,’’ Bro-
metrika, Vol. 32, Part IT (1941), pp. 151-181.

[7] H. GorpBERG AND H. LEVINE, ‘“‘Approximation formulas for the percentage points and
normalization of ¢ and x?’’, Annals of Math. Stat., Vol. 17 (1948), pp. 216-225.

[8] L. H. C. TippETT, Statistical Methods tn Industry, Iron and Steel Industrial Rescarch
Council, British Iron and Steel Federation, 1943.

i

THE FOURTH DEGREE EXPONENTIAL DISTRIBUTION
FUNCTION'

By LeEo A. Aroian
Hunter College

We shall derive a recursion formula for the moments of the fourth degree
exponential distribution function, state its more characteristic features, and show
how the graduation of observed distributions may be accomplished by the method
of moments and the method of maximum likelihood. The purpose of the note
is to make possible a wider use of this function.

R. A. Fisher [1] introduced the fourth degree exponential function

¢y ye = kexp {—(But* + Bst® + Bof’ + But)},
where n < t < 7, t = (x — m)/es, m indicates the population mean, ¢ the

population standard deviation, and where the 8’s are functions of

re
Oy = f t”yg dt.
1

A. L. O’Toole in two stimulating papers [2], [3], has studied (1); however his
methods and results are unnecessarily complicated. O’Toole requires eight
moments to determine parameters similar to the 8’s. Both Fisher and O’Toole
considered the restricted class of (1) with range (— 0, ).

Let
@) w = t"exp {—Bd* + Bot* + Baf’)}, dv = € dt
in
T2
(3) o = f "y, dt, obtaining
1

(4) 4ﬂ4an+3 -+ 3630(1;-{-2 + 262“15-{-1 + Bian = Mo s n = 17 2) 3) Tty

1 Presented to the American Mathematical Society and the Institute of Mathematical
Statistics, September 4, 1947.
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and for n = 0, the right side of (4) is defined as zero. The result (4) is valid under
the assumption

(5) w]? = 0.

Given the first six moments, By, 83, B2, 81 are readily determined. It will be
found thatif 84 > 0,8; % 0,thenr; = — o, r, = o ;whileif 8 <0, and 8 # 0,
ry and rp will be finite. If wesetn = 0, 1, 2, 3, in (4), the solutions are

64 = {0(3(0[5 - 40[3) — (a4 - 3)(0[4 - 1)} - 4D;

©) Bs = {—as(as — 3as — a3) + (a5 — a)(as — 3)} +.3D;
Br = {(az — as)(as — 4as) + (ou — V(s — a3 — 3y} + 2D;
By = {as(as — asas — Bas + 3ad) — (a5 — 3)(@s — aew)} + D,
where

(o5 — ai — ai)(a,; — a5 — 1) — (o5 — o3 — ogas)’ = 0.

D

To prove D = 0 we adopt the method of J. E. Wilkins Jr. [4]. In only a trivial
caseis D = 0. Let

I

Ga, b, ¢, d) = f (a + bt + off + di¥)y. dt = 0,

T1

where ¥, is any probability function with range r < ¢t < r.. Since G(a, b, ¢, d)
is a semi-definite quadratic form, its discriminant will be non-negative. But
its discriminant is easily seen to be equal to D, thus

:013 1 O 1 :

‘e a3 10 .

\

(7) 0.

lay oq a3 1 |
las a5 g a31

We summarize without proofs the essential features of the fourth degree
exponential. Near the normal point, ey = 3, oz = 0, the fourth degree expo-
nential function, the Pearson system, and the Gram-Charlier Type A are essen-
tially alike. Type C [5] while similar is not the same. Note that 8, may be
negative and in such a case r and r, are the two real zeros of the derivative of (1).
The exponential may be bimodal as well as unimodal and the normal curve is
the special case 84 = B3 = B1 = 0. Various special cases where a particular 8
is zero are readily handled by either (4) or (6). The graduation of both unimodal
and bimodal obscrved distributions will be published clsewhere.

Let

(8) Yo = Rk exXp — Z .31"5j; n<t< m,
izl
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where

o r )
9 1_ f exp — 2 B; ¢ dt.
k 1 i=1

The likelihood, L, in a sample of N is given by
N N N
(100 L=4k" exp{—{ﬂr LB LT t,-}}

where t; = (z; — m)/o. Then

dlog L _ N ok i
(11) Los, kB - 2., and
%.Zk =k{/72 t"exp{—zﬁgt’ dt} exp{— Zﬂ:’”?}
(12) ' h a
ar I_ \u
+ a—w. expl ; B; lef

If we assume either 7, and r; constant, or exp { Z Bj 7‘2} and exp {— Z B r{}

i=1

negligible, then (12) becomes

k / i exp {— > 6]"#‘} dt and dlog I 0  implies
" paxt L ag;

72 : L .
~/; t’ exp { . B tj} dt Z tZ

(13) . =
f exp {— )
r1 =

where a; is the sample estimate of «; .  For, if in D t/N we let 7 =1,2 wefind
by (13) that Z = m, and ¢ = > (z: — %)*/N. The solution of (13) provides esti-
mates of B4, B3, B2, and B, if we set r = 4. Naturally more time is required
for the solution of (13) as compared with the method of moments, but the maxi-
mum likelihood estimates are asymptotically efficient. The system (13) must
be solved by successive approximations. To determine the moments solution
all we do is to replace a; by a; in equations (6). This affords a point of departure
from which the maximum likelihood equations may be solved. The two methods
are not the same.

The fourth degree exponential is readily generalized to a fourth (or rth) degree
multivariate function including the normal multivariate function as a spe-

cial case.

=aj, j:l’z’...r’
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AN APPROXIMATION TO THE BINOMIAL SUMMATION
By G. F. CraMER
Washingion, D. C.

We consider the binomial expansion (¢ + p)”", where ¢ = 1 — pand nis a
positive integer. For given values of n, p, r, and s, where np < r < s < n,
we are often interested in the probability P(r < z < s) that the number of suc-
cesses x will satisfy r < z < s.

‘When 7 does not exceed 50, we can use tables of the Incomplete Beta Function,
or other convenient and accurate tables. For “large” values of n, we can use
normal tables. When p is “small”, we can use Poisson tables. However, it is
often true that p is fairly small, and yet not small enough to give really accurate
results when Poisson tables are employed in the usual way, while n is too large
for use of the tables of the Incomplete Beta Function and yet too small for ac-
cnrate use of normal tables.

It frequently happens that an upper bound for P(r < x < s) would serve our
purpose. We propose to show how to find this from Poisson tables with greater
accuracy than could be obtained by using these tables in the ordinary way.

We shall denote the general term of the binomial expansion by B; = (})p'q™™*
and the general term of the corresponding Poisson distribution with the same
value of p by P; = (pn)'e ?"/i!. We shall also consider a second Poisson dis-
triiution whosc general term is given by Pi = (p'n)'¢ ®'"/i!, where p’ % p
will be determined later.

We shall use the following notations:

(1) Ui = Biya/Bi = (n — 9)(p)/ (0 + 1)(1 — p);
(2) Vi= Pi./Pi = pn/( + 1);

3) Vi=Piu/P;=pn/G+ 1)

(4) Ui — Vi =plnp —9)/G@+ 1)1 — p).

From (4) we obtain at once the following:

LemMma L. 1> Vior U; < V,according ast < np or ¢ > np.

Thus, the .ze of the general term of the binomial expansion falls off more
steeply to the right of 7 = np than does that of the general Poisson term.



