A NON-PARAMETRIC TEST OF INDEPENDENCE!

By WassiLy HoOEFFDING
Institute of Statistics, University of North Carolina

1. Summary. A testis proposed for the independence of two random variables
with continuous distribution function (d.f.). The test is consistent with respect
to the class Q” of d.f.’s with continuous joint and marginal probability densities
(p.d.). The test statistic D depends only on the rank order of the observations.
The mean and variance of D are given and \/n(D — ED) is shown to have a
normal limiting distribution for any parent distribution. In the case of inde-
pendence this limiting distribution is degenerate, and nD has a non-normal
limiting distribution whose characteristic function and cumulants are given.
The exact distribution of D in the case of independence for samples of size
n = 5, 6, 7 is tabulated. In the Appendix it is shown that there do not exist
tests of independence based on ranks which are unbiased on any significance
level with respect to the class @”. It is also shown that if the parent distribution
belongs to 2 and for some n > 5 the probabilities of the n! rank permutations
are equal, the random variables are independent.

2. Introduction. In a non-parametric test of a statistical hypothesis we do
not make any assumptions about the functional form of the population distribu-
tion. A general theory of non-parametric tests is not yet developed, and a
satisfactory definition of “best’’ non-parametric tests does not seem to be avail-
able. Desirable properties of a ‘““good’’ non-parametric test are unbiasedness and
consistency. A test of a hypothesis H, is said to be consistent with respect to a
specified class of admissible hypotheses if the probability of accepting H, tends
to zero with increasing sample size whenever a hypothesis = H, of this class
is true.

In this paper we consider the problem of testing the independence of two
random variables X, ¥ on the basis of a random sample of size n. In all that
follows the d.f. F(z, y) of (X, Y) is assumed to be continuous. We will denote
by @' the class of continuous d.f.’s F(z, y) and by Q' the class of d.f.’s having
continuous joint and marginal p.d.’s,

ila, ) = OFG, 9)/ow oy, @) = [, ) dy, £w) = [1z, v) do.
The hypothesis Hy to be tested is that F(x, y) is of the form

F(x’ y) = F(x) °°)F(°°, y)

Several tests of this hypothesis have been proposed. Among them those
deserve particular attention which depend only on the rank order of the obser-
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vations. They will be referred to as rank tests. The critical region of a rank
test of independence with respect to the class @ is similar to the sample space;
the rank tests share this property with other tests obtained by the method of
randomization (cf. Scheffé [1]). A characteristic feature of a rank test is that it
remains invariant under order preserving transformations of X or Y.

Rank tests of independence have been studied by Hotelling and Pabst [2],
Kendall [3] and Wolfowitz [4]. While nothing is yet known about the power of
the last test, the author [5] has shown that the two former tests are asymptotically
biased for certain alternatives belonging to @’. By a slight modification of the
examples given in [5] it can be shown that these tests are asymptotically biased
even with respect to the class Q”.

In the Appendix it is shown that there do not exist rank tests of independence
which are unbiased on any level of significance with respect to the classes @’
or Q”. It will appear from this paper that there do exist rank tests of independ-
ence which are consistent, and hence asymptotically unbiased, at least with
respect to Q”.

3. The Functional A(F). Given a random sample from a population with a
d.f. belonging to a class @, we want to test the hypothesis H, that F is in a sub-
class w of Q. It is easy to construct a consistent test of H, if there exist (a) a
functional 8(F) defined for every F in @ and such that 6(F) = 0 if and only if
F ¢ w; and (b) a consistent estimate of 8(F). There are many ways of devising
by this method consistent tests of independence. The particular test described
in the sequel has been chosen mainly for its relative simplicity.

If F(z, y) is a bivariate d.f., let

and

3.1) A = A(F) = [P, y) PG, 9).

Here and in the following, when no domain of integration is indicated, the
(Lebesgue-Stieltjes) integral is extended over the entire space (here R»).

The random variables X, ¥ with the d.f. F(z, y) are independent if and only
if D(z,y) = 0.

THEOREM 3.1. When F(x,y) belongs to @, A(F) = 04f and only of D(z,y) = 0.

Proor. Evidently D(z, y) = 0 implies A(F) = 0.

Now suppose that D(z, y) # 0. Since F(z, y) is in @, the function d(z, y) =
f(x, ¥) — fil@)fe(y) is continuous. We have

D(x, y) = f f d(u, v) du dv.
D(z, y) # 0 implies d(z, y) # 0, and since
f[ d(z, y)dz dy = 0,
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there exists a rectangle @ in R, such that d(z, y) > 0if (z, y) is in Q. Hence
D(z, y) # 0 almost everywhere in @, and f(z, y) > 0in Q. Thus

A(F) > ffq D(z, y) f(z, y) dz dy > 0.

This completes the proof.
If F(z, y) is discontinuous, we can have A(F) = 0 and D(z, y) # 0. This is,
for instance, the case for the distribution

PIX=0,Y=1=P{X=1Y =0} =4}
The question remains open whether A = 0 implies D(z, y) = 0 if F(z, y) is

continuous or absolutely continuous.
In Section 7 it will be shown that

0< AL A

The upper bound +% is attained when F(x, y) is the (continuous) d.f. of a
random variable (X, Y) such that X has any continuous d.f. and ¥ = X (or,
more generally, Y is a monotone function of X).
Let
ifu=0,
C(u) =
ifu <0,
(3.2) Y(@1, 22, 25) = Cloy — 1) — C(y — 23),
¢(xl y Y15 000 5 Ts, y5)= %Ip(.ll y T2, 1?3)50(.’!?1 y T4y 1‘5)'/’(?/1 y Y2, y3)‘ll(yl » Y4 y5)

Then we can write
B83) A= f f¢(x1, Yis 05 s, Ys) dF (@, y1) -+ - dF (s, ys).

4. The Statistic D. Let (X1, Y1), --+, (X., Y,) be a random sample from
a population with the d.f. F(z, y), n > 5, and let

1
nn —1)--- (n — 1)

where 2’ denotes summation over all a such that

E”¢‘(Xﬂx ’ Y“l 5T X% ’ Yas)f

41) D=D,=

a;=1,---,n; a; # a;if 1 # j, (¢j=1,---,5)

Since the number of terms in 2" isn(n — 1) --- (n — 4), we have by (3.3),
(4.2) ED = A.

Since in the case of independence ED = 0, D can assume both positive and
‘negative values. It will be seen in Section 7 that —¢s < D, < 4%, the upper
bound 4%y being attained for every n, while the minimum of D, apparently in-
creases with n.
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The random variable D as defined by (4.1) belongs to the class of U-statistics
considered by the author [5]. The following properties of D follow immediately
from the results of that paper:

I . Let

| —

. . P _ —_ ’ . .
‘1’(21,?/1, 5 T, ?/5) = D; = E,¢(zﬂ” Yay 5 - 7xasyyﬂs)r

!

=i

B, Yrs e T, Ya) = f"'f‘l’(fvl,?h; <o Tk, Yk Tasly Y1t Tsy Ys)
dF(mk-%—l:yk—H) M dF(ZD:,, y-’l)) (]" = 1) M) 5),
fo= [ [l s oo, w0 — A dFG v - AP, ).

Then the variance of D, s

(4.3) var D, = <g>_ ; (Z)(g B ;Z)ﬁ.

We have
250 <nvarD, < 5.

n var D, is a decreasing function of n, and

(4.4) lim » var D, = 25 {1

II. By Theorem 7.1, [5], the random variable Vn(D, — A) has a normal limit-
ing distribution with mean zero and variance 25 {1 .

It will be seen in section 6 that in the case of independence {3 = 0, so that
the normal limiting distribution of v/nD, is a degenerate one. In this case
nD, has a non-normal limiting distribution. (See section 8).

5. Computation of D. From (4.1) and (3.2) we get after reduction
A —-2n—2B+ (n — 2)(n — 3)C

6.1) D= -Da-20-a -9
where

A= f;laa(a,, — 1) balbe — 1),
(5.2) B = i‘l (Ga — D(ba — 1) ¢,

n

¢ = Z cﬂ(cﬂ - l))

a=1

and
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e = 2,C0(Xa — Xp) — 1, be = 2. C(Ye — Yy — 1,
B=1 p=1

ta = 2, C0(Xa — Xg)C(Yo — Y5) — 1.
p=1

aq + 1 and b, + 1 are the ranks of X, and Y., respectively. c,is the number
of sample members (X, Y;) for which both X < X, and Y5 < Y.. (Since
F(z, y) is continuous we may assume that X, » Xgand Y, = Ysif a # 8.)

Thus, to compute D for a given sample we have to determine the numbers
Gq, ba, o for each sample member, calculate A, B, C from (5.2) and insert
them in (5.1).

6. The variance of D in the case of independence. Since F(z, y) is assumed
to be continuous, so are F(x, «) and F(«, y). The inequalities z; < 2 and
F(z,, ©) < F(x:, ©) are then equivalent unless F(z,, ©) = F(z;, »). The
same is true of y; < y2and F(e,y;) < F(,y,). Thisshows that the function ¢,
(3.2), does not change its value if z; , y; is replaced by F(z; , «), F(=, y;), except
perhaps on a set of zero probability. Hence A and D are invariant under the
transformation

u="F@ ©), v=F(»,y); U=FX »), V=F=7Y).

In the case of independence we have F(z, y) = uy, and
1 1
&x = fo / {(Br(ur, o1 o 5 wr, 00} dwy doy -+ dug dor
0

where & is defined as &, , with z;, y; and F(z:, y:) replaced by u;, v; and wu;
respectively. On evaluation of these definite integrals we get
& =0, 200-30°%: = 2, 600-30°¢; = 4,
600-30°, = 1§,  120-30°; = 12.
On inserting these values in (4.3) we obtain
L2’ 450 —32)
Imn — D — 3)(n — 4)°
Another way to determine the coefficients ¢ in the case of independence is to

compute var D, for n = 5, 6, 7 from the exact distributions given in section 7,
and lim n* var D, from the asymptotic distribution of nD, (section 8).

N —> 00

(6.1) var (30D) =

7. The exact distribution of D in the case of independence for n = 5, 6, 7.

Let S = {(z1, %), -+, (Tn, Ya)} be a sample from a population with a continu-
ous d.f. We may confine ourselves to samples with z; # z; and y; # y; if
i Let (x1,9s), -, (zn , ys,) be a rearrangement of (x1, ¥1),-** , (T, Yn)

such that 21 < a3 < --- < xn and y; < yé < --+ < yw. The permutation
L= (8, - ,8.0f (1, - - -, n) will be referred to as the ranking of the sample S.
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D, depends only on the ranking of the sample. We shall express this by

writing D, = D,(IT) = D.(Bi, -+, Ba). If (Bay, ", Buyn) iS a permuta-
tion of m(< n) of the integers 1, ---, n such that 81 < B3 < +++ < Bm,
Dn(Bey, + -+, Bey) is defined to be equal to Dp(ay, -+, am). Replacing in
(4.1) (X., Y.) by (e, 8.) we find

(7.1) Dn(ﬂl )"t Bn) = (g’).—1 E/D5(13a1 R B%);

where Z’ stands for summation over all esuchthat l < ey <z < - -+ < a5 < 7.

Denoting by II'” the permutation obtained from II = (81, - - - , 8) by omit-
ting B8; , we have the recursion formula

2 wDA(ID) = (n — 8) 3= Dpra().
From (4.1) and (3.2) we obtain
60Ds(B1, -++ , Bs) = ¥(Ba, Br, B)Y(Bs, B2, Bs) + ¥(Bs, Br, Bs)¥(Bs, Bz, B4)
or
0 if B3 # 3;
(7.3) 60Ds(Br, -+ ,Bs) =42 iffs=3andf,B <3 orfi, B > 3;
—1 ifB;=3 andB:i <3,8:>3o0rp > 3,6 <3.
We have
(74) Da(Bi, -+ 5, 84) = Du(B2, B1, B, -+, Bn)
= Da(Br, -+, Bns2, Bn, Ba-1) = Da(Bn, Ba-r, --+, Br)

For n = 5 this follows from (7.3) and for general n from (7.1).

Also, by the symmetry of D, with respect to z and y, D, does not change its
value if in the permutation (8 , - - - , 8.) the numbers 1, 2 or n — 1, n are inter-
changed or the permutation is replaced by its inverse.

In the case of independence all n! rankings have the same probability 1/xn!.
To find the distribution of D, we have to determine the number of rankings
giving rise to particular values of D, .

If n = 5 there are 5! = 120 rankings. Owing to (7.4) we need consider only
those with 81 < B2, 81 < Bs, f1 < B+. Their number is 12 = 15. Among
them those with 8; # 3 yield D5 = 0; this leaves only the three permutations

1,2, 3,4,5), (1, 4, 3, 2, 5), (1, 5, 3, 2, 4).
By (7.3) the respective values of 60D; are 2, —1, —1. Thus we have
P{60Ds = 2} = &, P{60D; = —1} = &,
P{60D; = 0} = %
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The distribution of Dg, Dy, --- can be obtained in a similar way using the
relations (7.1) to (7.4). The distribution of D, for n = 5, 6, 7 is given in
Table 1.

From (7.3) and (7.1) it follows that —gy < D, < &% forn = 5,6, --- .
The upper bound 4% is attained for I = (1, 2, - -+ , n) and every n. To judge
by the casesn = 5, 6, 7, the minimum of D, apparently increases with n. From
ED, = Aitalso follows that A < #%.

8. The Asymptotic Distribution of nD, in the Case of Independence.

TaroreM 8.1. If F(z,y) = F(x, ©)F(x, y) and F(z, ©) and F(»,y) are con-
tinuous, the random variable nD, 4 3% has a limiting distribution whose charac-
teristic function (cf.) ¢s

8.1) ot = fI(l - ,%;%)-M

k=1

where 7(k) is the number of divisors of k.

Note that 7(k) is the number of divisors of k£ including 1 and k. Thus 7(1) = 1,
7(2) =2,73) =2,74) =3, ---.

The author has not been able to bring the d.f. corresponding to the c.f. g(t)
into a form suitable for numerical computation. Thus Theorem 8.1 may be
considered as a preliminary result. For this reason only a brief indication of
the proof is given here.

If (X;,Y),- -, X., Y, is a random sample from a population with d.f.
F(x, ©)F(,y), let nS.(x, y) be the number of sample members (X;, Y;) such
that X; < 2, YV; < y. S.(z, y) is a d.f. depending on the random sample. If
we put F(z, y) = S.(z, y) in A(F) as defined by (3.3), we get

A(Sn) = ;}g Zl tet Zl ¢(Xal ) Yal; Tty Xag; Xa5)-
ay= ap=

It is easy to prove that if n{A(S,) — EA(S,)} has a limiting distribution, it is

the same as that of nD,, .

Now it can be shown that nA(S,) has a limiting distribution with the c.f. (8.1).
This can be done either analogously to Smirnoff’s |6] derivation of the limiting
distribution of the goodness of fit statistic ws , or applying von Mises’ [7] general
results on the asymptotic distribution of a differentiable statistical function.
Though the latter paper deals only with univariate distributions, its results can

be extended to the multivariate case.
By expanding log ¢g(¢) in powers of i we obtain for the j-th curnulant «;

227G - !
' (21

where B;;_; are Bernoulli’s numbers,

2
B2j—1 )

— 1 — 1 — — 1
B, = %, B; = 4, Bs =45  Bi=4g""".
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In particular, ; = 3%, and since ED,, = 0, the limiting distribution of nA(S,)
is that of nD, + o%.

9. The D-test of Independence. Given a random sample from a bivariate
population with continuous d.f., a test for independence can now be carried out

as follows:
If a(0 < & < 1) is the desired level of significance, let p, be the smallest number

satisfying the inequality
P{D, > pu|F e} < a
where w is the class of d.f.’s of the form F(z, © )F(«, y).

Compute D, as shown in section 5. Reject the hypothesis H, of independence

if and only if D, > p..
For n = 5, 6, 7 the numbers p, can be obtained from Table I.

From Tchebychef’s inequality and (6.1) we have

2(n? 4 5n — 32)
P{ 30D, > "/Qn(n — 1)(n — 3)(n — 4)0!} S e

2(n* + 5n — 32)
800 = 1/9n(n “Dn —3)m — Ha”

Hence

It follows that p, = O(n™").
If A > 0, we have A — p, > O for sufficiently large n. Then

P{D, > ps} > P{|Dn— A| < A — p,} >1— (var D)/(A — pa)".

By (4.4) the right hand side tends to 1.

This, together with Theorem 3.1, shows that the D-test is consistent with
respect to the class Q. ;

Since P{D, < 0} tends to 0 if A > 0, it is safe not to reject Hy whenever
D, < 0. An inspection of Table I shows that at least for small n this will
happen in more than one-half of the cases if Hy is true.

10. Concluding Remarks. It would be interesting to compare the power of
the D-test with that of other tests with respect to particular alternatives, for
instance with the product moment correlation test when the population is normal
with correlation p. A preliminary investigation seems to indicate that for small
values of | p | and n — « the power efficiency of the D-test as compared with the
product moment correlation testis ratherlow. Thisresult may not be conclusive
for values of » which are of practical interest. On the other hand, it may be
expected that a test which is consistent with respect to a large class of alternatives
will have a lower power with regard to a sub-class of alternatives than a test
which has optimum properties with respect to this particular sub-class. These
considerations suggest the problem of selecting from a given class of non-para-
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metric tests (such as those consistent with respect to Q') a test which is most
powerful with respect to certain parametric alternatives (such as normal dis-
tributions).

TABLE 1
The distribution of D, in the case of independence forn = 5,6, 7.
n =3 n="7

z | 15P{60Ds = z} P{60D;s > z} z  |630P{1260D; = z} P{1260D; > =}
-1 2 1.0000 —11 8 1.0000
0 12 0.8667 -8 32 0.9873
2 1 0.0667 -7 32 0.9365
—6 8 0.8857
-5 28 0.8730
—4 88 0.8286
-3 64 0.6889
—2 56 0.5873
n =16 -1 8 0.4984
z | 90P{180Ds = 2} P{180Ds > =} 0 88 0.4857
2 77 0.3460
3 24 0.2238
-9 4 1.0000 4 4 0.1857
-1 28 0.9556 6 56 0.1794
0 36 0.6444 8 8 0.0905
1 16 0.2444 9 4 0.0778
2 1 0.0667 12 24 0.0714
3 4 0.0556 14 2 0.0333
6 1 0.0111 18 12 0.0302
24 | 2 0.0111
30 4 0.0079
42 1 0.0016

APPENDIX
A. Equiprobable rankings and independence. Let Il,,, (» = 1,2, -, nl)

be the n! possible rankings of samples of size n from a bivariate population with
continuous d.f. F(z, y) (cf. section 7).
If F(z,y) = F(z, ©)F{x,y) we have

(A1) P{1,,} = 1/n! (r=1---,nl

for every n.

Does (A1) for some particular » imply independence? This is not true for
n = 2. In this case (A1) is equivalent to P{(1, 2)} = %. If the distribution
has a p.d. f(z, y), we have
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P{1,2)} = j:j_.:[f_:[:f(u, v) du dv + f:f:f(u,v)dudv]f(x,y)dxdy,

which equals 7 whenever f(z, y) = f(—=z, y). However, we have the following

theorem:
TaeoreM. If F(z,y) isin Q" and (A1) holds for some n > 5, then

(A2) F(z,y) = F(z, ©)F(=,y).

Proor. (4.2) can be written in the form

(A3) nE!Dn(anP){HM} = A.

y=1

If (A1) holds, the left hand side of (A3) has the same value as when (A2) is true.
But in the latter case we have A = 0. Hence (A1) implies A = 0. By Theorem
3.1 this is sufficient for (A2). The proof is complete.

B. Non-existence of unbiased rank tests of independence.

THEOREM. There do not exist rank tests of independence which are unbiased on
any significance level with respect to the classes Q' or Q.

Proor: Let II,, have the meaning of Appendix A. Any critical region of a
rank test of independence is a set S, = {Il.,, -+, I, } of m rankings. In
the case of independence P(S,) = P{Il,, ¢ Sn} = m/n! We may confine
ourselves to significance levels m/n!, m = 1, 2, ---, n! — 1. To prove the
theorem it is sufficient to show that for every n = 2, 3,---, for some
m(l < m < n! — 1) and every S,, there exists a d.f. F in Q" such that

P(8a|F) < m/nl
We shall prove the slightly more general proposition that this holds for
m = 1,2 3.
Let the bivariate distribution A, be such that the probability mass is dis-
tributed uniformly on the n — 1 segments
E—1 k n — 2k

v < —p =
(B1) w1 TS T L
k=12 ,n—1),

and is zero in any region not containing a part of these segments.
Let B, be the distribution which is uniform on the n — 1 segments
E—1 << k ,
(B2) n—1 n—1

and zero elsewhere.
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The d.f.’s of both A, and B, are continuous, with
F(g, ®) = F(o,2) =2 (0 <z<1).

Since the probability of (X, ¥) lying on any one of the segments (B1) or (B2)
is 1/(n — 1), the probabilities P(I/4,) and P(II/B,) are easily obtained in
terms of the multinominal distribution with » — 1 equal probabilities. In
particular, we have

(B3) P(1,2,---,nld) =1; Pln,n—1,+--,1|B) =

PA,2,---,nl4) = Pla,n —1,---,1|B.) = (n — 1)<n—_i 1)

1 n—1
()

Pn,n—1,---,1|4,) = P(1,2,---,n|B.) = 0.

In general, if 1T, is any permutation of 1, - - - , n, we have either P(II, | 4,) = 0
or P(Il, | B,) = 0. For any II, with P(II, | A,) # O contains at least one
“run up” of 2 or more numbers (a sequence of consecutive numbers
Z,7+ 1, --+, 7+ k) which is not preceded by smaller numbers or followed by
larger numbers. On the other hand, if a II, with P(II,, | B,) # 0 contains a
“run up”, it is either preceded by smaller numbers or followed by larger numbers.
Hence if P(II, | A,) # 0, then P(Il, | B,) = 0. Similarly, P(I, | B,) # 0
implies P(Il, | 4.) = 0.

From (B3) it follows that for any set S,, of m rankings which does not include
a, 2, +--,n)or (n,n — 1,---, 1) we have either P(Sn|A4:) = 0 or
P(Sm|B:) = 0. Hence we need only consider critical regions containing both
1,2, .-+ ,n)and (n,n — ,1). Form = 1 there arenosuchregions. For
m = 2 there is just one. But from (B4) it follows that for n > 2,

P(1,2, ---,n|4s) + Pln,n — 1, -+, 1] 4,)

1 n—1 2 1 n—2 2
—<n— 1) <77,(n— 1) <l

Finally, if II, is any permutation other than (1,2, -+- ,n) or (n,n — 1, -+, 1),
we have, by the preceding arguments, either for 4, or for B, ,

n—1
P(1)27”'7")+P(n’n_1’...’1)+P(Hn)=(n“]:‘1) <—3_

n!’

(B4)

This completes the proof for d.f.’s in @'. To prove the theorem for d.f.’s in
Q" we can replace the distributions 4, and B, by distributipns A’ and B, havmg
continuous ]omt and marginal densities and such that the probabilities P(II | Ar)
and P(IL | B,) differ as little as we please from P(IT | 4,) and P(II | B.), respec-
tively. For instance, 4; can be defined by the continuous density
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f@,y) = K(e —y + %) f0< y—2z<e¢ aZ1—¢y2e¢
=K(e —z+y) f—e<y—2<0, x> y<1—y¢g

=K@x+y—e¢ if z+y>e z < ¢ y <€
=KQ2—-—e—z—1y)if s+ yY<L2—x>21—¢y>1—c¢
=0 elsewhere,

where K = 3/(3€¢ — 4¢®) and 0 < ¢ < 4. If eis taken sufficiently small, the
distribution satisfies the requirements. The details are left to the reader.

The proof also shows the non-existence of an unbiased rank test of inde-
pendence for n = 2 and any level of significance (for we need consider only one
level, 1). It also can be shown that for n = 3,anym = 1,2, --- , 5 and any
S the inequality P(S») < m/3! holds for at least one of the distributions
A, , A3, B;, B;. The question remains open whether there exist rank tests of
independence which are unbiased for some sample sizes n and some significance
levels m/n! .
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