444 BROCKWAY MCMILLAN

be zero for every a > 0 and 8 < 0, and thus we infer from Theorem 2 that the
fundamental identity holds for all real ¢ (if the limits ax and by are chosen in
accordance with the conditions of this theorem). This proposition is somewhat
more general than that proved in [3] by a similar method.

It also follows from the last remark and Theorem 3 that, when P(z = 0) < 1,
(9) can be differentiated any number of times for any real ¢. This proposition
contains the results in [2] and [3] as special cases.

7. A generalization. We finally remark that the assumption made in Theorem
8 that the expressions containing derivatives of ¢,(f) are uniformly bounded is
unnecessarily restrictive. For example, it seems possible to prove that the first
derivative of (2) may be obtained by differentiation under the expectation
sign if the series (cf. Corollary 1 to Theorem 7.4. in [6])

3 Pln = m) 3 240
meml =1 ¢u(t)

is uniformly convergent with respect to ¢.
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SPREAD OF MINIMA OF LARGE SAMPLES

By Brockway McMILLAN
Bell Telephone Laboratories, Murray Hill, N. J.

1. Theorems. Let = have the continuous cumulative distribution function
F(z). Let (x1, --- ,2x) be a sample of N independent values of z and y =
inf (21, - -+, zx). Then y is a random variable with the cumulative distribution
function

) Grly) = 1 — (1 = F()".
Let K values of the new variable y be drawn, (y1, - -+, ¥x) and let the spread

'w:SuP(le;"':?/K) —inf(illly"',?/x)-
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Fixing K, we consider the cumulative distribution function of w, Py(w), as
N — . That is, we have K large samples of  and wish to examine the spread
among their minima. It is evident intuitively that if F(x) = 0 for some finite z,
these minima are bounded from below and will cluster near the vanishing point
of F(x), making w — O statistically as N — . Our theorems also show that
even when y — — oo statistically, i.e., when F(z) = 0 for no finite z, the spread
w — 0 statistically if the tail of F(x) is sufficiently small (e.g. Gaussian). On
the other hand, if F(z) = 0(¢*) as £ — — o, the distribution Py(w) does not
peak as N — o, while for larger tails (e.g. algebraic) w — + « statistically.
Two simple theorems are
L Iy

lim _Fz)

Z=r—c0 F(x + 8) 1’
then

lim Px(s) = 0.
N=—+0

II. Lets > 0. If
F(xo) = 0 for some &y > — o, or if
_F@) _
,I.I.IP., F(z + s) 0,
then
lim Px(s) =

N—w0

Theorem I is directly applicable to distributions with algebraic tails, theorem II
to Gaussian tails. We prove them both as corollaries of-the more general results:
III. If

_F@)  _
lim inf Fz + 5 !

then
lim sup Px(s) < (1 — D)™
N—

IV. Let s > 0. If
F(z) = 0 for no finite x and

i i 9 = -

then
lim inf Py(s) > [e7** — %%
N—

for any a > 0.
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Theorems IIT and IV together show that an exponential tail (F(z) = 0(¢*))
leads to a Py(w) which, asymptotically, is bounded away from 0 for any w > 0
and bounded away from 1 for w sufficiently small.

2. Proofs. Explicitly, for any s > 0,
@) Pu(s) = K [ [Gr(z + ) — Gu(@)]™" dG(z + 5).

Turning now to III: given s > 0, choose z1 = z1(¢) so that (i) F(z;) # 0, and
(ii), z < x; implies
F(z)

(3) m 2 l - €
We then rewrite (2) as

E2Y K—1 ©
@) Pu(s) = L [1 - (%] Gz + 8)* + f K

Treating Gv(z + s)© as the independent variable, the first integral may be
evaluated by the mean value theorem in the form

5) [1 - G—f@”-z‘%]x_l [ deute + 9% < [1 = W‘é’{f‘—fg]kl

with an appropriate x: = 2s(N), — © <z < ;.
Using the form (2) of the integrand in the second term of (4), we may bound
the latter by

(6) K f :° G + 5) < K[ — Gulzs + 9,

since
Gr(x + 8) — Gu(z) < 1.
Now, by factoring (1),
0 Gy(x) _ F(x) 1 +Q+ -+ Q’:’:‘l > F(x)
Gz +s) Flx+)14+Q+ - -4+ Q. F(z + s)

where Q = 1 — F(x), Q. = 1 — F(z + s) < Q. Combining (3), (4), (5), (6),
and (7),

Py(s) <[l — 1+ " + K[1 — Gu(z1 + 9)].
Since F(z; + s) > F(x1) > 0, we have
lim Gy(x, 4+ 8) = 1.

N—owo
Hence,
lim sup Px(s) < [1 — 1 + **
N—o0
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and III follows by letting e — 0. Then I follows immediately with I = 1, when
we note that Pxy(s) > 0.

To prove IV, choose any o > 0. By hypothesis, for sufficiently large N we
may always find 2y = z~(a) such that
aL
_N‘.— .

By hypothesis, and the monotonicity of F(x), zy — — o as N — . For any
¢ > 0, therefore, we can find Ny = Ny(a, €) such that N > N, implies

F(zx) L
©) Flan+8 1=

®) F(zx) =

or Flay + s) > Z%'(l — ¢). Directly from (2), since s > 0,

Px(s) > wa [Gr(x + 5) — Qu(@)]* " dGx(z + 5)

TN—8
IN 1
>K f [Gx(z + 8) — Gu(exn)=" dGu(z + 3).
ZN—Ss
But this last integral is of the form

f KU — ¢ dU = (U — &F,

whence
Px(s) > [Guxy + 8) — Gul(zn)I5,
or
(10) Px(s) > [(1 = F@n))" — (1 — Fl@x + o))"~

By (8) and (9), therefore

o= [(1-5) - (- 2457 T

Since this holds for all N > Ny(e, ¢),

lim inf Py(s) > [¢°F — 209X

N—o
This last, in turn, now holds for any ¢ > 0, hence

lim inf Px(s) > [¢** — ¢
N—o0
This now holds for any « > 0. Maximizing on « yields a sharper bound than the
result of IV. The applicable part of II follows, when L = 0, by letting o — .
That the conclusion of II holds when F(x,) = 0 for some finite z, follows from
(10) with zx replaced by some z; such that F(z;) = 0, F(z; + s) > 0.



