PROBLEMS IN PLANE SAMPLING

By M. H. QUENOUILLE
Rothamsted Experimental Station, Harpenden, England

1, Summary. After consideration of the relative accuracies of systematic and
stratified random sampling in one dimension the problem of estimation of linear
sampling error is discussed.

Methods of sampling an area are proposed, and expressions for the accuracies
of these methods are derived. These expressions are compared for large samples,
with special reference to correlation functions which appear to be theoretically
and practically justified, and systematic sampling is found to be more accurate
than stratified random sampling in many cases. Methods of estimating sampling
errors are again considered, and examples given. The paper concludes with
some remarks on the problem of trend in the population sampled.

2. Accuracy of systematic and stratified random samples in one dimension.
W. G. Cochran [1] has given expressions to the variances of the means of samples
of size n drawn from a population z:x; - - - Z.x when the method of sampling is
random (), stratified random (st) and systematic (sy). He assumes the elements
Z1%3 -+ + Znk t0 be drawn from a population in which

E@)=p E@i—p'=0, E@ —p) @itu — 8 = puo’

where p, > p, = 0 whenever u < v, and derives the expressions

(1 o= %2(1 - %) [1 Icn(kn — k"E_I (kn — u)pu]

@ ok = j—: (1 - ,%) [1 2: = u)p.,]

k
(3) kn—1 n—1
. [1 =T (k = E (kn — u)pu + 2 (n — u)Pku]-

Using these expressions which are linedr functions of the p, Cochran compares
the relative efficiencies of the methods of sampling for several types of correlo-
gram. It is worth noting that (1), (2) and (3) can be derived under more general
conditions than Cochran considered. If we assume that (a) each z; is a sample
from a population with mean p; and variance o7 , (b) that p, is distributed about
mean u with variance o, (c) that E(us — u) (k; — u) = psjo’, and (d) that

1 kn—u
P = > pii+u, then it is not difficult to show that (1), (2) and (3)
- =]
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kn
require the addition of a superposed variation% (1 - %) . IElﬁ > o} to the right-
1=l

hand side of the equations. Thus it should be remembered that Cochran’s
results give theoretical maxima to the relative efficiencies of the various methods
of sampling, while p, is the medn correlation between samples « apart. This
result is perhaps interesting in connection with sampling for say, insect infesta-
tion, when at each point there will be a mean level of infestation and the sample
will be distributed in a Poisson distribution about this mean. Then the superposed

variation is
1 1 1 & 1 1
ﬁ(l - E) T ‘““’ﬁ(l - z‘c)'*

If we are sampling a continuous process', for n large we can write down the
integral equivalents of (1), (2) and (3)

d~L
T
2
2 0 _;2]" _
“) Tat ~ [1 Z h (d u)puau]
2 ¢ ) )
(5) oty ~2 [1—%f pu5u+22pdu]
n d 0 u==1

where p, is the mean correlation between successive elements of the sample, u
apart and d is the mean distance between samples. We have thus

2 2 0 0
Tat — 0w 2 f’_‘ f u —d ]
0.3 d[ A dpuau + . PuOU gpdu )

which can often be used to investigate, quickly and roughly, with the aid of a
graph the difference between the efficiencies of stratified random and systematic
sampling. Figure 1 shows how this is done for four types of correlogram.
For a continuous Markoff scheme, we have p, = p“ and
2 d
2 O 2 2 2 ]
R R |

2 d
2 ~ o 2 ‘ 2p
Oy n [1 + log pd + 1 — p'i] )

which agree with Cochran’s results.

3. Replication and the estimation or error. Yates [2] has pointed out the
difficulties attached to the estimation of error for a systematic sample. It will,
however, be worthwhile to investigate this point using the above formulae.

1 In practice we can sample a continuous process only as if it were a discontinuous process
with k& large.
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For:random, stratified random and systematic sampling, if n is large and & is
regarded as constant, then the variance of the estimate of the mean will be of
the form o°F(k)/n, where F(k) is virtually independent of n. Thus, if we have
any method which provides an estimate of error for the samples it will be possible
to split the series to be sampled into several equal parts (or blocks) to obtain an
estimate of error of the mean of each part and to combine these to obtain a more
accurate estimate of the error of the overall mean. In fact, if n is very large, we
may wish to reduce our number of observations by obtaining estimates of error
from a random selection of these parts. For stratified random sampling, F(k) is
completely independent of 7, so that we may combine our estimates of error from
each strata. This leads us to the commonly used method of taking ¢ randomly
chosen elements per strata, and combining the sets of variances of ¢ — 1 degrees
of freedom to form an estimate of error. If we make our samples exclusive,
Le. no two elements can coincide, then this variance has to be multiplied by
1 — g/k to give the estimated variance of the sample mean.

We can in the same way estimate the variance of the mean of a systematic
sample by using sets of ¢ systematic samples of sufficient length with randomly-
chosen starting points. This sampling will, however, be more difficult to carry
out.in practice, and we might consider other methods. Our systematic samples
may be chosen to be invariable in each part or block into which the series is
split so that our sampling procedure involves, in all, only ¢ systematic samples,
or we might follow the method advocated by Yates of choosing our ¢ samples
to be evenly spaced, so that they are subsamples of a larger systematic sample.
Whereas this latter method has simplicity and its possible incorporation into a
more extensive scheme to recommend it, its use has to be very carefully con-
sidered. If we consider the discrete case, we wish to estimate

2 2 < 2k <&

(6) a(l—k———lu-zl Pu+m1§ﬁku)y

but any estimate of variance based on ¢ evenly-spaced systematic samples can
contain only terms of the form pi./, , and while an estimate of variance based
on ¢ randomly-chosen systematic samples will obviously be limited, it will, in
most cases, be more representative. As an example, suppose we take & = 16
and ¢ = 4 then we can compare the relative occurrences of observing the correla-
tions p; -+ pis in the estimate of variance. Six examples of this are given in
table 1, the random numbers having been drawn from Fisher and Yates tables;
pu and pie_. being shown together, since they occur equally frequently. The
table demonstrates how randomly-chosen samples, even as nearly systematic
as the first two randomly-chosen samples will avoid systematically sampling the
correlogram. It is obvious that in most cases either method will be fairly good
but the use of this latter will usually be the more accurate. Comparisons are
made in table 2 for various types of correlogram using the samples indicated
in table 1. It is, of course, possible to postulate theoretically many kinds of

2 Throughout this paper ¢ is used for the differential sign to prevent confusion with d.
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correlogram for which the equal-spaced sets of systematic samples will break
down, but ultimately we must decide with reference to the types of correlogram

TABLE 1

Frequency of occurrence of the serial correlations py , ps ... pis in the estimate of
variance when /4 systematic samples each with spacing 16 units are taken

4 systematic samples with random starting
4 evenly- points at
. space Total fre-
b systematic quencies
samples 4,7, 317, 3, 6, 4, 6, 2,8, 2, 6,
8,12, | 8,12, | 10,13, | 7,14, |11, 15,| 11, 16
1, 15 1 1 1 3
2,14 1 1 2
3, 13 1 2 1 2 6
4,12 4 2 2 1 1 1 7
5,11 1 2 2 5
6, 10 1 1 1 1 4
7,9 1 2 1 2 1 7
8 4 2 2 4
TABLE 2
15
Values of ‘El Pu as estimated by systematic samples
Evenly- Systematic samples with random starting points ~
bu syetemati Mean | Loy
samples 1 2 3 4 5 6
1-0.2 u, (u = 1, .5) 0.17 |1 0.27 | 0.20 | 0.17/ 0.30 | 0.17| 0.13| 0.21 | 0.27
1-0.1 u, (v = 1, .10) 0.53 || 0.62 | 0.58 | 0.53/ 0.60 | 0.53] 0.53| 0.57 | 0.60
27 0.04 { 0.13 | 0.12 | 0.06/ 0.15 | 0.06/ 0.07 0.10 | 0.13
2-ul4 0.58 || 0.66 | 0.64 | 0.60 0.66 | 0.60 0.60| 0.63 | 0.65
Kendall’s Series 1 —0.14 | 0.03 | 0.00 |—0.05| 0.16 {—0.05—0.05| 0.01 | 0.07

* Naturally the use of this method of estimating the sampling error assumes that the
correlation between the corresponding elements in each part or block into which the series
is split may be neglected, i.e. in this case that the terms p;s and above are negligible. In

this case pis = 1/16 and consequently the term 2 (1% il pu— 18 51 p1es) = 0.56, required in
u= u=-
15 ‘
(6) differs slightly from the term 21 pu = 0.65 which we are attempting to estimate.
us

experienced. We shall consider this point further, after we have dealt with
two-dimensional sampling.

4. Methods of sampling in 2 dimensions. The number of ways in which we
can sample a two-dimensional space’ is large, since we can employ random,

# We shall, in general, consider our two-dimensional space to be rectangular, but it is
not difficult to draw similar conclusions for an area of any shape.
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stratified random or systematic sampling in either direction. Thus we will be
able to consider every possible combination of these methods, e.g. random in
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F16. 1. Graphical comparison of the efficiencies of systematic and stratified random
sampling for various correlation functions. The thick line gives the function

fi(w) = ypu/d, 0<u<d
= Pu, d < u,

and the dotted line the function
f2{u) = pia, (t—1d < u <1

Thus systematic sampling is more or less efficient than stratified random sampling according
to whether the area under the thick line is greater or less than the area under the dotted
line. The most efficient method is indicated on each graph.

one direction and systematic in another will be denoted by r-sy. Furthermore
we can consider the sets of samples in one direction to be aligned with one
another, or to be independently determined. The suffix 1 will be used to denote
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Fic. 2. Methods of sampling a field. In this case, 7 = ns = ky = ky = 3,

aligned samples while suffix 0 will denote independent samples, e.g. we might
sample according to the system risy, . Examples of several methods of sampling

are given in Figure 2.
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6. Accuracy of sampling in two dimensions. Suppose we consider a sample
of nin, elements drawn from the elements z;;(¢ = 1,2, - - - mik1 ,7 = 1,2, - - - nok ),
(which form a single finite population drawn from an infinite hypothetical
population), such that the mean spacing in the two directions is k; and k..
These parameters will, if necessary, be indicated in brackets after the method of
sampling, e.g. r18yo(niey ; noliz).

Let X denote the mean of a sample formed by the method considered, and
x’ a member of this sample. Suppose, also, that the xz;; are drawn from a popula-
tion in which

E(xii) = M, E(xii - /‘)2 = ‘72:
E@i; — ) @igujpo — 1) = Piiuvo'zy
Further we may average p;ju, Over all possible values of ¢ and j to define p,, =
p—u,—» by the relation

Z_ Z Pijuy = (Fkrmy — Iul)(kznz - Iv I)Puv-
t 1

The purpose of these definitions is to allow to eliminate the difficulties associated
with the parameters of finite populations by considering this population as
being itself a sample from an infinite population. Cochran employs a similar
device.

5a. Random sampling. It is not difficult to see that

F(X) =  E(Xy — Xo)' = B(Xy — p)* — B(Xx — p) (X2 — n),
where X; and X, are independent samples.
Also
EX, — p(X2 — ) = E(zi — w) (@ — u)

2

: [1 i DE o — ) - lvl)pu,,]

= kl k2n1'ﬂ2
where the double summation* exists over the region S given by |u| < ki,
|v| < kone and excludes u = v = 0. We thus have to evaluate E(X; — u)’ for
the different types of random sampling.
It is easily shown that

2
E(X,— ) =2
nNa

. [1 + mn — 1 2> (kg — |u)(kany — |v I)puv]

k1 kg n1 n-z(kl k;z ning — 1)

for o7y,
2

- 7 [1 + n — 1 Z Z (761711 - [ul)(k2n2 - |U|)pw

= NN klk?nl(klk2n1’ﬂ2 —_— 1)
2(”2 _ 1) kyng _ ]
ol = 1) 2 (Rema = voos

4 In general, unless otherwise stated, double summations will exist over the region for
which the coefficients are positive, excluding v = v = 0.
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for rirg,

- -"—1[1 b oD =D s Ly Dee

nine klkz”dnz(klkgnlnz —_ 1)
_2m—1) K% _ 2(m — 3 ]
kana(keme — 1) .Z; Ukamz — v)pun + kml(kml = 1) Z: (krma — wpuo
for nr,
whence

NS Y AR O W
g (7'0 7'0) = prypen (1 k—l—k—z) o

[ kl kznlnz(kl kzﬂlnz - 1)

. _ 1 _ 1 2 _ klkzm—l
oln) = m(l ﬁ) ’ [1 (Fu by — 1)kex oo ma ma(ly ko mamy — 1)

() Z Z (kymy — l u I)(kznz - I v I)Puv
2(ny — 1) kf (kymg — v)pov]

ke ma(kame — 1)

1 (1— 1)2[1_ Ferkolm + g — 1) — 1

)

T (= | Dlbams — |0 ,),,,,,,]

2 = e
? (7'1 7'1) - N1 N2 kl kz ¢ (kl kz - l)kl kz n nz(kl kz mmns — l)
2k -1
() 2220 Uima = [u)(kang — |0 pus + i = ll(;%:w(kﬂzz —

831 2ka(m — 1) £ ]
. ~ (kz‘nz - U)Pw + (eiks — Dmlkam — 1) 1; (kymy — u)PuO .

5b. Stratified random sampling. We can deduce the variances for some methods
of taking stratified samples if Z; , the mean of the elements sampled in the ith
stratum, is independent of Z; , since we will then have

E(X — z) = E(zi — %)*/n,

where Z is the mean of the finite population which is sampled. Hence

a(stomo) = ;zl- o {roro(l, by ; maFer) }

1
(10) T m nz( kl ks [ by by ma(le ko mp — 1)

S G — [ u Dl — |0 m].
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w, v 1 (1 \L[ 1
olstr) = o (1 kl_kz)" [1 hhamta = 1)
(11) 'ZZ(kl - |ul)(k2n2 - Ivl)Pu'

2ky(ng — 1) kane
(k1ke — Dna(keng — 1) o= E (k2 me — ”)Puu],

2 _ 1 _ 1 2|4 _ 1
ot = (l lTkz) ’ [1 T -
3 G — [u ks — [0 I)pu.].

To estimate the variance of other methods of sampling, we will make use of a
general formula which we might have used to derive the expressions (8)—(12).
If z; is any element of the sample X, then

X —2) = L[E @ — ' — 3 (@ - X)
‘*la[}:(x it S L

nine

—2n222(x.~#)($:—u)]

(12)

whence
A(X) = EX — )?
Feykamying = 1 2[ 1
ky by my mg k1 ke nyng(ky k2 myme — 1)22(1"4 |u])
mne — 1

2 NN — 1 ’ ’
E(xi — '
e (x: — w)(xi — )

1 1 9 1
ﬁl—n—? (1 ky k‘-’) 7 [1 k k2nln2(kl ke — 1) E E (klnl Iu l)

. _ ky k2(nl ng — 1) E(xs - M)(-’% - ll)]
(k2n2 IU I)Puv k kz — 1 0_2

1) - (ke — lvl)pw] -

Thus, provided that we can estimate E(x; — u) (x; — w)/o’ the expression (13)
gives the error for all methods of sampling.

As an example, we might deduce the expression (12). If we choose any member
! , then a second member z; will be located at random with respect to x; except
that there will be kiks — 1 positions in the same stratum as z; that z; will not be
able to occupy. Thus the expected correlation E(z{ — u) (z; — u)/¢" will be
given by

(14)

— 1) 222 Gma = |u)(keme — | v Dous
S S5 G [u D~ 1D

T K k(e

272
]L'] kz n n2(n1 Ne
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If we substitute (14) into (13), we will obtain expression (12) for the variance of
stysty . In the same manner, we can derive for st;st; the expression

E(zi — u)(zx; — u)
_ 1
- ky kz(nx ng — 1)

1
- kykamy ZZ (Llnl - Iul)(’”“’ - |1) ’)Puv

[klk2nln2 ZZ (klnl - lu I)(k2n2 - lv I)Puv

— Ju Dl = |o Dpur + 1 T3 G — |

2(kikemy — 1) B
ke — |v ,)Puv + E};T;li“_—?) Zl (k11 — u)pow

(15)

2(kiky — 1) 2(kikymy — 1) R
—_ kl(kl — 1) Z (kl - u)Puv + k nz(k Ny — 1) E (k2n2 - U)pm;

u=1 v=1

_ 2(ki K,
e e
Thus we can evaluate o°(X) for all types of stratified random sampling.

5¢. Systematic sampling. In a similar manner to that used for stratified random
sampling, we can use (13) to evaluate the variances of systematic sampling.
Values of E(z; — u) (x; — w) for three of the possible methods of sampling are
given below. For syisy

1
(16) E(xi — Wi — p) = (e — 1) 2222 (n = [z = [0 ])prguige
For syiro .
Bz — W)@ — ) = jr—r oy 2 2 = [u)
(17)

2(]»2 - l) kang
=1

. (k2n2 - l” I)Pklu,v - ]'/2 1’12(711722 _ 1)(]0}% _ ]) Z (]277/: - U)P(Jv

For syesyo

B@) — w)() — ) = L

]vl 2(n1 Ny — ])

[]q q Ny Na Z Z (kl n; — | % D

« (keme — lvl)Puv_/ ,‘ . 22 Uy = | ul)les — |0 Dous

1

o - klénz 2020 U = fulhams = [0 Do + 57 B30 — Jul)
18

(k= o Dpuwo + , o 202 (= [u ke = [ v Dorgun
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2, &
— 2 k= o+ T DT = |u e — |0 Dpugee
ke o kime

k1
- -2—k‘2 E (kr — u)Puo]-

](71 uml

The derivation of (18) may be compared with that of (15).

6. Effect of alignment. We can examine the effect of alignment either by
an examination of the values of the variance of different samples, or by the
direct use of (13). For random and stratified random sampling, the effect of
alignment is to increase the variance of the sample by an amount

2z auv(POv - Puv) + 22 buv(PuO - Puv) where Guy > 0,

buy 2 0.

This will be positive for monotonic decreasing correlation functions, and for the
majority of functions realised in practice. Thus alignment will usually increase
the variance for random and stratified random samples.

For systematic samples, the position is more complicated, but, roughly, the
variance is increased by an amount

2z auv(Pkiu,kzv - I-)klu,k,v),

where au, > 0 and pru.i,e 1S & mean over a rectangle, centre pi,u i, for  and v
non-zero, and is a mean over a line, length k; centre po, &,» for  zero, (and similarly
for v zero). Whether this is positive or negative will depend on the correlation
function, and it will have to be investigated for the types of correlation function
which are encountered.

7. Limiting forms. For a continuous process, when n, and n, are large, we
may, in the same manner as for linear sampling, obtain integral approximations
to the sampling variance, provided that 2 pg,u,q4,» cOnverges.

We thus have

(19) A (rore) = o*(storo) ~ o’ /mamg,
2 il 2 f‘
(20) 4 (7'1 7‘0) ~ — [1 4+ ds A poﬁv] .
‘ 2 Ll 2 f" 2 f“‘
e dam~ T[4 g [t g [ e,

‘ 2 Il I S F‘ _ 2 j‘° ]
(22)  (stimo) . [] 2 [w . (dr — | u pusbu + % h powdv |,
2

2 Al IS T Al e —- ]
@) s ~ o1 - g [ @ = 1uD@ = 10 Dpsusn |,

12
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2 0.2 1 © dy
o (st sty) ~ . [1 - [m ., (dr — | u |)pus ou v

_%dg‘[::‘/_‘:(dg—]vl)hvauﬁv-l-(ﬁidg[ fd' d—|ul)

(24) 2 = 2
< (d2 = | v )pu Su S + 51-[ pu du — &?fo (dr — u)puo du
2 ° 2 %
+ ng Pow OV — t_l_’fo (dy — v)povév],
02(83/1 7‘0) ~ ,;:-_— [ dl d2 f f Puv ou dv
(25)

2 (]
+ JZ ugao -[co Pau.0 o = C-l_z j; Pre 60] ’
(26) o*(sy1s11) ~ [ > Z Pdyu.dys — (%dz [a _Lo pwﬁu&v:l ,

YE=—00 Y==e=00

2 1 dy
*(syo 81/0) Nm[l - 74 Lﬁ ., (di — |u|)puodusy

dg ©
- (m‘[ [ (d2 - IUI)Puvau&v

fdz fl (i — |u(dz = |2 ])pus Sudv

27)

|~s~

+ 2 Z[ (da = 1 Dpayu 30 — dz[ (@ = v Donsto

1 =
dl '_Z_:w ‘[dl (dl - Iu |)pu.d,1,8u - d: -[dl (d1 - [u |)pu05u:|.

8. Particular case where pus = pup, . We note that, if pu, = pupy® most of
these forms can be simplified greatly. If we write

2 o0 0
e = 1 -;l-f pudlti + 2 Y para,
1J0 ym=]

+

2 1
Sty =1 — 5 fd (& — u)pudu,
di o
with similar forms for sy, and st, , and, also

2 2 2 =

fi= ;if pdy,  fi=7% f (de — 0)pudv,  f1 =22 pass,
2 Jo 2 Jo v=1
2 ) 2 1 =

= ;i—f Pu b, fé = ? f (dl - u)Puau, f;, =2 Z Pdyu,

A suﬂiclent condition for this to be a valid autocorrelation function is that both Pu
and p, should be autocorrelation functions.
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then we have, for example,

2
(28) o (rimo) ~ 'I{;‘ﬁ; a + 1),
2
(29) Arirm) ~ ,—:7” A+ fi+ £,
2
2 g
(30) | o (8t sto) ~ P (8tu sty + sty + st.),
2
31 o (st sty) ~ 1—;% (stu sty + fiste + fosts),
2
(32) o (sy18p) ~ 7—;— (syu8ys + f18yu + f28Y5),
1M
2
(33) o*(syo syo) ~ nle (stusto + f15Yu + f28y0).

From these we get

2
o (stisty) — o*(sprsp) ~ Z

(34) nne
[(8tu3t'v - syusyv) + fl(Stu - syu) +f2(3tv - syv)],

2
o (sy1sy1) — o (staste) ~ 7—5-7—1;

[{(1 - syu)(l - syv) - (1 - Stu)(l - Stv)} +f'1,31/u +f;,8%];

(35)

(36) o*(stoste) — o*(syosye) ~ 7—@—;'-7—'2 [fi(sts — syu) + falsts — syu)l.

The forms (34), (35) and (36) enable us to compare the variances of the samples
in two dimensions by using the one-dimensional results. For most practical
cases, we know that the f’s are positive, st. > sy. and st, > sy, , so that

@7 a-z(stlstl) > u’(sylsyx) > Gz(StoSto) > 0’2(3%31/0)-

The values of o’ (ststs)/c’(roro), o (8yssyn)/o”(rare), o (Syosyo)/o*(rore) and
o*(stosts) /o” (syosyo) for payu = pi*' and pa,e = pi” are given in table 3. It is not
difficult to show that for a given number of samples, (d;, d; fixed), o*(stosto),
o*(sy1sy1) and o (syosyo) are least when p; = p; . The expressions tabulated have a
value of 1 for p; = p. = 0 and tend to limiting values of 0, 2/3, 0, and 2 respec-
tively as p; and p, tend to 1. It is interesting to note that for p; and p, differing
by more than 0.4 the grid imposed by syisy: is less efficient than purely random
sampling. The type of function pu, = pup,® is, however, less likely to be realised

8 For a town survey, we might find the correlation between two points'depending on a
within-streets and a between-streets correlation, so that this function could be realised.



TABLE 3
Comparison of the efficiencies of systematic and random sampling for various values of py and ps

~
~ o1
o \\ 0 0.1 0.2 0.3 04 0.5 Q0.6 0.7 038 0.9 1.0
~,
~
1.000| 1.000] 1.000| 1.000| 1.000{ 1.000{ 1.000| 1.000| 1.000| 1.000| 1.000
0 1.000{ 1.222| 1.500{ 1.857| 2.333| 3.000| 4.000| 5.667| 9.000[{19.000] «
1.000{ 1.000| 1.000| 1.000] 1.000| 1.000{ 1.000| 1.000{ 1.000| 1.000{ 1.000
1.000{ 1.000| 1.000( 1.000| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000

0.720| 0.669| 0.632] 0.601| 0.575| 0.551f 0.529| 0.508| 0.489| 0.471
0.1 0.739] 0.754| 0.827| 0.956/ 1.160| 1.488| 2.055| 3.215| 6.734| <«

0.596| 0.534| 0.493| 0.462| 0.437| 0.416| 0.398| 0.382| 0.367| 0.354
1.21 1.25(1.28/1.301.31|1.321.33|1.33|1.331.33

0.609| 0.565| 0.529| 0.497| 0.469| 0.443| 0.419| 0.396| 0.375
0.2 0.706{ 0.721) 0.788| 0.914| 1.134| 1.532| 2.362| 4.911] «

0.462| 0.416| 0.380( 0.352( 0.328| 0.307| 0.289 0.272| 0.257
1.32 1 1.36 | 1.39 | 1.41 | 1.43 | 1.44 | 1.45 | 1.46 | 1.46

0.516| 0.476] 0.441| 0.409| 0.380| 0.354| 0.328| 0.305
0.3 0.689| 0.707| 0.778| 0.924| 1.209| 1.825 3.751] o

0.365| 0.327] 0.297| 0.271} 0.249| 0.229| 0.212| 0.196
1,41 |1.45|1.49(1.51|1.53|1.54|1.55]|1.55

0.432] 0.394/ 0.360( 0.329| 0.300| 0.272| 0.247
0.4 0.680] 0.702| 0.787| 0.983| 1.437| 2.900| «

0.288| 0.256| 0.229| 0.206| 0.185! 0.167| 0.151
1.50 | 1.54 { 1.57 | 1.60 | 1.62 | 1.63 | 1.64

0.354| 0.317| 0.284| 0.253| 0.223( 0.196
0.5 0.675 0.703| 0.821| 1.139| 2.228| « .
0.223| 0.195| 0.171| 0.150| 0.132| 0.115
1.59 | 1.63 [ 1.66 | 1.68 | 1.70 | 1.71

0.279] 0.243) 0.210 0.180| 0.151
0.6 0.671) 0.712] 0.908| 1.679] «

0.167| 0.142) 0.121] 0.102| 0.085
1.67 11.71 | 1.74 | 1.76 | 1.78

0.206| 0.172} 0.139] 0.109
0.7 0.669| 0.742) 1.226] oo

0.118 0.096| 0.077| 0.059
1.7511.79 | 1.82 | 1.84

0.136| 0.102; 0.070
0.8 0.667| 0.863] «

0.074] 0.055| 0.037
1.84 | 1.87 | 1.89

0.067| 0.034
0.9 0.667| «

0.035| 0.018
1.92 | 1.95

368
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in practice than a centrally-symmetric function, which is independent of the
choice of axes. For this reason, we consider next this latter type of function.

9. Centrally-symmetric correlation functions. Dedebant and Wehrte [3]
have given a necessary and sufficient condition for p(u, v) to be a correlation
function as

(38) p(u, v) = f_ : [: cos (wu — po)oF (w, u),
or alterﬁatively,
(39 flow, w) = (—2—177—)2 [: [ : cos (wu — po)p(u, v) du dv.

For a centrally-symmetric correlation function we can put v = r cos 6,» = rsin 6
then p(u, v) = p(r) and
flo, u) = (21—7;—)—2 j(; [ cos (rv/w? + 2 cos 0;)p(r)r do: dr,

where 6; = 0 + tan™(u/w),

= 51; f Jo(rr)p(r)r dr, where 7 = \/w?+ p2
0

Thus, if p(u, v) is centrally-systematic, then so is f(w, u) and conversely, so that
we get

(40) f(r) = 2%_ _{ i Jo(rr)p(r)rér,
and
(41) o(r) = 2r ‘L‘ ) Jo(ro)f () ror.

We can thus find suitable forms for p(#) and f(7). In this connection the formula

) 51»
f Jo(y2)e ™oy = 1/(a® + )% a > 0, is useful, since we can see that a—a;(e""’/y)
o

51»

and S
must be limited by the stochastic nature of p(r) as well as by its convergence.
Thus, for example, @ = n = 0 gives 1/2r+ and 1/r as spectral and correlation
functions, but these will not converge.

In the linear case, the Markoff process p(u) = ¢ ™ had a spectral function
f(r) = 1/m(a® 4+ +*) which is a Cauchy distribution in one dimension. If we take a
two-dimensional Cauchy distribution’ as our spectral function we get f(r) =

(@® + 22)™* are possible functions for 27f(r) and p(r) although our choice

7 In the same way as the ordinary Cauchy distribution can be considered as a density
distribution on a line produced by a point source at a distance a, radiating in all directions,
50 can a two-dimensional distribution be considered as a density distribution on a plane
from a source at distance a.
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]
a/2r(a*+ ) and p(r) = — 5a (€ ""/r) = &', Thus it appears that a generalised
Cauchy distribution will be the spectral function for a generalised Markoff
process.
We can, of course, consider an elliptical” Markoff process given by®
2 2-11/2
_ ¥ _2mw v
(42) p(u, v) = exp [ 7 o T b,]
but, in what follows, to simplify the computation, m will be taken as zero, so

that by changing the units in which d; and d, are measured, we will work with a
process p(r) = € °".

TABLE 4

Compartson of observed serial correlations with theoretical values obtained from a
centrally-symmelric correlation function

Rows Columns North-east South-east

Distance
inmiles | Op. | Caleu- | Ob- | Caleu- | Ob- | Caleu- | Ob- | Caleu-
served | lated | served | lated | served | lated | served lated
1 0.332 | 0.368 | 0.310| 0.368 — — — —
2 — — — — 0.264| 0.243 | 0.264 | 0.243
2 0.149 | 0.135 | 0.090| 0.135 —_ — —_ —
242 — — — — | 0.050{ 0.059 | 0.129 | 0.059
3 0.009 | 0.050 [—0.029| 0.050 — — — —
3v2 — — — — |—0.050| 0.018 | 0.070 | 0.018
4 0.034 | 0.018 {—0.041| 0.018 — — — —
42 — — — — [—0.020] 0.004 | 0.060 | 0.004

This process does not seem to be far removed from the type of correlation
function experienced in agricultural field work.? Osborne [4] has mentioned
the possible use of p, = ¢ . Mahalanobis [5] has calculated correlations for a
paddy field of 800 cells; his values are shown in table 4, together with values of
the function ¢ ". Bearing in mind that the standard error of each of Mahalanobis’
values is approximately 0.035, the fit is seen to be quite good, although an
elliptical process with axes running south-east and north-east would undoubtedly
fit the observations better.

8 In this light, p(r) = ¢™" will be called the circular Markoff process, while py» = PN
and pyy = €xXp —’Z + % will be known as degenerate Markoff processes of the first and

second orders.

9 This is further supported by the fact that using a function of this kind it is possible to
obtain numerically a law in substantial agreement with Fairfield-Smith’s law over a wide
range of values.
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10. The relative efficiencies of systematic and stratified random sampling.
Ideally the correlation functions developed in the last section should be used
in the expression (19)-(27), but these functions are not capable of easy integra-
tion. An alternative approach can be made if we note that

2 2 dy
Feoat) ~ S 11" (1 - 120 p, apu
1

0‘2(1'0 To) dx dy
1l _ v |)
44 [0 (1 =) o

_ 2 f” v ° R
F(u,dz) = é;[ b szuvsv + ‘/;s Puv OV d‘)épu.dﬂ],

1 © o
F(v, d],) = _% [f -y Puv ou + f Puvau - d] Z Pd‘u,v].
diLh d dy u=1

It is seen that F(u, d;) and F(v, di) are extensions of the expressions obtained for
(c3 — ox)/os in section 2. Hence, if F(u, ds) and F(», dy) are both positive
functions, systematic sampling is more accurate than stratified random sampling.
A particular case of this occurs when pu, = pi'pz. However when p,, = exp
{— (u? + v*)"*}, F(u, ds) is not always positive, since, as u increases, p., becomes a
convex function of v. This complicates the interpretation of (43) greatly since it
appears that as u varies from 0 to dy , F(u, d;) varies from 4+ « to an unknown
value X. This value will be positive if d» > > d; and negative if d; >> d; so
that if the sampling is disproportionate in the two directions systematic sampling
will be more efficient than stratified random sampling. Furthermore, if d; = dz =d
and d — 0, F(u, d) — o and systematic sampling again appears to be more
efficient. Thus in a wide variety of cases this type of systematic sampling i.e.
sYeSyo gives a more accurate result than random sampling.

(43)

where

11. Estimation of sampling errors. An examination of formulas (7)-(18)
shows that the principles used for the estimation of linear errors can be used in
plane sampling. If we consider that each sample can be broken up into inde-
pendent units each of which is situated in one of s strata, then for ¢ replications
we will have gr — s degrees of freedom for error. For example, 7oy , 7or1, storo
and stgry, will have gnins — 1, gne — 1, gnine — ny and gn, — 1 degrees of freedom
respectively, so that a single sample will contain an unbiased estimate of error,
but stesty , stests , stist , syosye and syisy: will have nn.(g — 1), na(g — 1), ¢ — 1
and ¢ — 1 degrees of freedom and will require replication to form a valid estimate
of error. We can however use the method of splitting our sample into several
parts each of which will give a fairly accurate estimate of error. We may, again,
consider the possibility of using a set of systematic samples, which are evenly
spaced, to estimate the sampling error, and we will see that the exclusion of the
p’s of lower order may lead to appreciable bias unless the correlation between
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successive terms of the sample is small, but, as Yates has pointed out, this
method will provide an upper limit for our sampling error. These methods of
sampling are illustrated by the examples given below.

12, Examples. We shall consider the three methods of estimating the sampling
errors of a systematic sample:

(1) using sets of systematic samples randomly placed with respect to each
other, i.e. the material to be sampled is broken up into a series of sub-areas
or blocks and several systematic samples are taken in each block; the
error variance is calculated from the variances of the systematic samples
in each block,

(2) using one set of systematic samples randomly placed, i.e. several sys-
tematic samples are taken and the area is then broken up into sub-areas
or blocks; the error variance is calculated from the variances of the
portions of the systematic samples in each block,

(3) using one systematic sample i.e. one systematic sample is taken which is
broken into several systematic samples of wider spacing, e.g. four samples
at four times the original spacing, the area is then divided into several
sub-areas and the error variance is calculated from the variances of the
portions of the sub-systematic samples in each block.

These three methods are increasingly accurate in their estimation of the
mean, increasingly biased in their estimation of the sampling variance, and
decreasingly difficult in their practical application, so that our method of sam-
pling may vary according to the population and according to the use to which the
results are to be put. It is, for example, conceivable that subsequent sampling
will yield an improved estimate of error so that initially only a rough guide
may be required.

a. If we are sampling from a continuous linear population with a large number
of observations in each part into which we split our series, methods (1) and (2)
will both give accurate estimates of the variance per term

2 (] 00
az(l —Elfo Pu3u+2zpdu>-

um1

Method (3) will, however, estimate ¢ instead of the correct variance per term,

which is
62( - %f pudu + 2 Epdu/q)°
(] ‘ u=]

Thus the estimates of sampling variance by method (3) will in general be higher
than the estimates by methods (1) and (2), although the actual variance will be
lower.

b. Kendall [6, 7] has constructed 480 terms of an artificial series %n42 =
1.1 %ny1 — 0.5 %, + €142 Where the e, are rectangularly distributed from —49
to 49. For this series ¢* = 2379.81 and s = 2535.11. The series was split in six
parts of 80 terms, for each of whichn = 5,k = 16, ¢ = 4, so that 18 degrees of
freedom were available for error. The results for this sampling configuration are
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given in table 5. The values in this table corroborate the conclusions for large
samples of continuous populations.

c. A number of uniformity trials were taken and sampled according to the
systems st;st; and syisy; . For sampling according to the system stist; the error

TABLE 5

Comparison of three methods of estimating the sampling error of systematic samples
for an autoregressive scheme

Estimate of samplinag T .
variance per term, s?, rue sampling
Method based on 18 degrees of E (&) variance per term
freedom
1) 3228 2170 2170
@) 1872 2170 2167
3 3709 2577 423
TABLE 6
Comparison of efficiencies of different methods of sampling on three uniformity trials
SOUICE. . evvevnrnrunensnans Kalamkar (8] Wiebe [9] Wynne Sayes and Karishna,
yez llof
No. In Cochran’s
{i1] Catalogue.......... 72 132 108
CrOP - vcvvvnenennns ceee Potatoes Wheat Sugar cane
No. of Plots.............. 576 960
€AM. .. evrnenenenn e 23.262 587.95 270.89
Variance per term 15.555 10,018.0* 1794.42
Type of sampling. .| st; st1 [8y1 sy: [Sy1 8y1 | 8t1 8t1 [8y1 8y1 [8y1 8y1 | st 8t: |8y1 8y1 | 8y1 831
Proportion sam-
pled............. 1/6 1/6 1/6 1/9 1/9 1/9 1/8 1/8 1/8
Method of estimat- .
ing error........ 2) @3) 2) 3) 2) 3)
No. of partitions...| 1 4 4 1 4 4 1 5 5
Moeeeeieenann s 3 3 6 4 2 4 4 2 4
kroooooee o 2 2 1 3 6 3 2 4 2
Move vveennn . 16 2 4 20 5 10 15 3 6
kovoiriunenns 6 12 6 6 6 3 8 8 4
S 2 4 1 2 4 1 2 4 1
Mean.............. 23.140| 23.435| 23.323| 586.54| 598.65 275.29| 275.29| 266.72| 271.27
Estimated variance
per term......... 9.763| 2.689| 4.889(5151.6 |5772.7 (7038.5 (1320.15| 799.29(1269.54
Degrees of freedom
of estimated var-
iance............ 48 12 12 80 12 12 60 15 15

* Based on the original 1500 plots.

was estimated by taking two samples per strata, while, for sampling according
to the system syisy1 , the error was estimated by comparing sets of four samples
in each part of the series by methods (2) and (3). The results of this sampling are
shown in table 6. While the number of trials is small, the trend to be seen in the
results agrees very well with the conclusions reached above.
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13. Trend in the population. Frequently in taking samples from a population,
we are faced with the problem of a trend. This will not greatly affect random and
stratified random samples as estimates of the population mean, but the efficiency
of systematic samples will be affected to a large extent. If we consider linear
sampling, and denote by S; the sample whose first element is z; then the set of
samples S; will usually be monotonic with 7 and the difference between S; and
Sy, will be large (roughly equal to z; — z).

Yates [1] has suggested a method to overcome this difficulty; by letting S;
represent

1
n—1

. b — i
I:-]% Ti + Togr + 000+ oo + % : x,.+(,._1)k:| ,

the difference between systematic samples due to trend is largely removed.
It is easily seen that this necessitates a small loss of information, and in particular,
for a continuous random population the variance is (n — §)o’/(n — 1)* instead
of ¢’/n. For plane samples, the corresponding adjusted sample will be

] i . o — 4
84 = (m— 1)(n2 — 1) [1;1]72 i+ l{-zx*”‘“" +o +L(il—ﬁz——) Pekm-Dhd
. k —
+ %1 Tijiky + Birky itk + o0 + Qik——lz) Zit (ny—Dky i+kg
o o — s — 7
+ z‘(kzkl Fez D tisrrimn + -+ Iggc’? 2 x”(”‘—m"”("’_m’]

with a similar loss of information.

Trend is, however, most likely to be appreciable in large samples, and in this
case, the loss of information due to end adjustments is negligible, so that the
conclusions reached above will remain unaltered.

The author wishes to thank Dr. F. Yates and Professor M. S. Bartlett for
advice in the preparation of this paper.
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