It can also be proved, by considering the limiting form of the recurrence relation (19), that the frequency function f_n is asymptotically normal. The main difficulty of proving this fact lies in showing that the frequency function actually possesses a limiting form; and the proof is rather too long to be given here.

REFERENCES

- [1] R. Deltheil, Probabilités Géométriques. Traité du Calcul des Probabilités et de ses Applications: Tome II, Fasciscule II, Gauthier-Villars, 1926.
- [2] K. Pearson, Tables of the Incomplete Beta-Function, Cambridge University Press, 1934.
- [3] H. Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946.

A NOTE ON THE ASYMPTOTIC SIMULTANEOUS DISTRIBUTION OF THE SAMPLE MEDIAN AND THE MEAN DEVIATION FROM THE SAMPLE MEDIAN

By R. K. Zeigler

Bradley University

Consider a random sample of 2k + 1 values from a one-dimensional distribution of the continuous type with cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x) = F'(x). Let the mean, standard deviation and median of the distribution be denoted by m, σ and θ respectively (θ assumed to be unique). We shall suppose that in some neighborhood of $x = \theta$, f(x) has a continuous derivative f'(x).

If we arrange the sample values in ascending order of magnitude:

$$x_1 < x_2 < \cdots < x_{2k+1},$$

there is a unique sample median x_{k+1} which we shall denote by ξ . The mean deviation from the sample median is then defined by

$$M = \frac{1}{2k} \sum_{i=1}^{2k+1} |x_i - \xi|.$$

In the material that follows we shall assume that the sample items have been ordered only to the extent that k of them are less than ξ and k of them are greater than ξ .

We then have the following

THEOREM. Let f(x) be a pdf with finite second moment, continuous at $x = \theta$ with $f(\theta) \neq 0$. Then the simultaneous distribution of ξ and M is asymptotically normal. The means of the limiting distribution are θ , the population median, and u', the mean deviation from the population median, while the asymptotic variances are $1/4f^2(\theta)2k$ and $((m - \theta)^2 + \sigma^2 - u'^2)/2k$. The asymptotic expression for the correlation coefficient is $(m - \theta)/\sqrt{(m - \theta)^2 + \sigma^2 - u'^2}$.

PROOF: Let $u = (M - u')\sqrt{2k}$ and $v = (\xi - \theta)\sqrt{2k}$, where $u' = E \mid x - \theta \mid$. Then the simultaneous characteristic function of the two random variables u

and v is given by the following:

$$\phi(t_{1}, t_{2}) = E[e^{it_{1}u+it_{2}v}]
= E[e^{it_{1}(M-u')\sqrt{2k}+it_{2}(\xi-\theta)\sqrt{2k}}]
= E \exp\left[it_{1}\left(\frac{1}{2k}\sum_{i=1}^{2k+1}|x_{i}-\xi|-u'\right)\sqrt{2k}+it_{2}(\xi-\theta)\sqrt{2k}\right]
= \frac{(2k+1)!}{(k!)^{2}}\int_{-\infty}^{\infty}\int_{-\infty}^{\xi}\cdots\int_{-\infty}^{\xi}\int_{\xi}^{\infty}\cdots\int_{\xi}^{\infty}
\cdot \exp\left[it_{1}\left\{\sum_{i=k+2}^{2k+1}x_{i}-\sum_{j=1}^{k}x_{j}-u'\right\}\sqrt{2k}+it_{2}(\xi-\theta)\sqrt{2k}\right]
f(x_{1})f(x_{2})\cdots f(x_{k})f(x_{k+2})\cdots f(x_{2k+1})f(\xi)
dx_{2k+1}\cdots dx_{k+2}dx_{k}\cdots dx_{1}d\xi
= \frac{(2k+1)!}{(k!)^{2}}\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\xi}\exp\left\{-\frac{it_{1}}{\sqrt{2k}}(x+u')\right\}f(x)dx\right]^{k}e^{it_{2}(\xi-\theta)\sqrt{2k}}f(\xi)d\xi.$$

Upon making the substitution $\xi = \theta + y/\sqrt{2k}$, the above expression can be reduced to the following form:

$$(1) \quad \phi(t_1, t_2) = \frac{(2k+1)!}{\sqrt{2k}(k!)^2} \int_{-\infty}^{\infty} \left\{ \left[\int_{-\infty}^{\theta} \exp\left[-\frac{it_1}{\sqrt{2k}} (x + u') \right] f(x) dx \right] + \int_{\theta}^{\theta + (y/\sqrt{2k})} \exp\left[-\frac{it_1}{\sqrt{2k}} (x + u') \right] f(x) dx \right] \cdot \left[\int_{\theta}^{\infty} \exp\left[\frac{it_1}{\sqrt{2k}} (x - u') \right] f(x) dx - \int_{\theta}^{\theta + (y/\sqrt{2k})} \exp\left[\frac{it_1}{\sqrt{2k}} (x - u') \right] f(x) dx \right] \right\}^k \cdot e^{it_2 y} f\left(\theta + \frac{y}{\sqrt{2k}}\right) dy.$$

Now

$$\int_{-\infty}^{\theta} \exp\left[-\frac{it_1}{\sqrt{2k}} (x + u')\right] f(x) dx = \frac{1}{2} - \frac{it_1}{\sqrt{2k}} \int_{-\infty}^{\theta} (x + u') f(x) dx - \frac{t_1^2}{2(2k)} \int_{-\infty}^{\theta} (x + u')^2 f(x) dx + \frac{\xi_1(2k, t_1)}{2k};$$

and

$$\int_{\theta}^{\infty} \exp\left[\frac{it_1}{\sqrt{2k}} (x - u')\right] f(x) dx = \frac{1}{2} + \frac{it_1}{\sqrt{2k}} \int_{\theta}^{\infty} (x - u') f(x) dx - \frac{t_1^2}{2(2k)} \int_{\theta}^{\infty} (x - u')^2 f(x) dx + \frac{\zeta_2(2k, t_1)}{2k},$$

where for every fixed t_1 , $\zeta_1(2k, t_1)$ and $\zeta_2(2k, t_1) \to 0$ as $k \to \infty$. Similarly, under the substitution $x = (z/\sqrt{2k}) + \theta$,

$$\int_{\theta}^{\theta+(y/\sqrt{2k})} \exp\left[\frac{it_1}{\sqrt{2k}} (x-u')\right] f(x) dx = \frac{1}{\sqrt{2k}} \int_{0}^{y} f\left(\frac{z}{\sqrt{2k}} + \theta\right) dz + \frac{it_1}{2k} \int_{0}^{y} \left(\frac{z}{\sqrt{2k}} + \theta - u'\right) f\left(\frac{z}{\sqrt{2k}} + \theta\right) dz + \frac{\zeta_3(2k, t_1)}{2k};$$

and

$$\int_{\theta}^{\theta+(y)\sqrt{2k}} \exp\left[-\frac{it_1}{\sqrt{2k}}(x+u')\right] f(x) dx = \frac{1}{\sqrt{2k}} \int_{0}^{y} f\left(\frac{z}{\sqrt{2k}}+\theta\right) dz - \frac{it_1}{2k} \int_{0}^{y} \left(\frac{z}{\sqrt{2k}}+\theta+u'\right) f\left(\frac{z}{\sqrt{2k}}+\theta\right) dz + \frac{\zeta_4(2k,t_1)}{2k},$$

where $\zeta_3(2k, t_1)$ and $\zeta_4(2k, t_1) \to 0$ as $k \to \infty$ for each fixed t_1 . Substituting these expressions in (1) and performing the indicated multiplications we find after some calculation that (1) can be reduced to the following form:

$$\phi(t_1, t_2) = \int_{-\infty}^{\infty} \frac{(2k+1)!}{\sqrt{2k}(k!)^2 2^{2k}} \left[1 - \frac{t_1^2(\sigma^2 - u'^2) - 4it_1(m-\theta)yf\left(\frac{z_1}{\sqrt{2k}} + \theta\right)}{2k} + \frac{-4\left\{yf\left(\frac{z_1}{\sqrt{2k}} + \theta\right)\right\}^2 + \zeta(2k, t_1)}{2k} \right]^k e^{it_2y} f\left(\theta + \frac{y}{\sqrt{2k}}\right) dy,$$

where $0 < z_1 < y$ and $\zeta(2k, t_1) \to 0$ for every fixed t_1 as $k \to \infty$. Now taking the limit as $k \to \infty$, we have

$$\lim_{k\to\infty} \phi(t_1, t_2) = \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \exp\left[-\frac{t_1^2}{2} (\sigma^2 - u'^2) + \frac{4it_1(m-\theta)f(\theta)y}{2} - \frac{4[f^2(\theta)]y^2}{2} + it_2y\right] f(\theta) dy.$$

Upon performing the integration,

$$\lim_{k\to\infty} \phi(t_1, t_2) = \exp\left[-\frac{1}{2} \left\{ t_1^2 \left[(m-\theta)^2 + \sigma^2 - u'^2 \right] + \frac{2t_1 t_2 (m-\theta)}{2f(\theta)} + \frac{t_2^2}{4f^2(\theta)} \right\} \right].$$

Since $\sigma^2 > u'^2$, this is the characteristic function for two variables which are normally distributed. Thus, the simultaneous distribution of ξ and M is asymptotically normal. It is of interest to note that, if the pdf f(x) is symmetric, the correlation coefficient is zero, and M and ξ are asymptotically independent. We might also note that $\phi(t_1, 0)$ is the characteristic function for the mean deviation from the sample median. Thus, the random variable M is asymptotically normal with asymptotic mean and variance u' and $((m - \theta)^2 + \sigma^2 - u'^2)/2k$ respectively.

The author wishes to express his appreciation to Professor A. T. Craig for valuable suggestions in the study of this problem.

REFERENCES

[1] H. CRAMÉR, Mathematical Methods of Statistics, Princeton University Press, 1946.

[2] R. K. Zeigler, "On the mean deviation from the median," unpublished thesis, State University of Iowa.

NOTE ON THE EXTENSION OF CRAIG'S THEOREM TO NON-CENTRAL VARIATES

By OSMER CARPENTER

Carbide and Carbon Chemical Corporation, Oak Ridge

A theorem due to A. T. Craig [1] and H. Hotelling [3] concerning the distribution of real quadratic forms in normal variates is extended to the case of noncentral normal variates with equal variance.

The following notation is used: A, A_1 , A_2 are real symmetric matrices, L is an orthogonal matrix, Γ is a diagonal matrix of latent roots, and X, Y, M and U are column vectors.

THEOREM. Let $X' = (x_1, \dots, x_n)$ be a set of normally and independently distributed variates with equal variance σ^2 and means $M' = (m_1, \dots, m_n)$. Then, a necessary and sufficient condition that a real symmetric quadratic form Q(X) = X'AX of rank r be distributed as $\sigma^2\chi^2$, where

(1)
$$p(\chi^{2}, r, \lambda^{2}) = \frac{1}{2}e^{-\lambda^{2}}(\chi^{2}/2)^{(r-2)/2} e^{-\chi^{2}/2}$$
$$\sum_{j=0}^{\infty} (\lambda^{2} \chi^{2}/2)^{j}/j! \Gamma[(r-2j)/2],$$

is that $A^2 = A$. If $Q(X)/\sigma^2$ is distributed by $p(\chi^2, r, \lambda^2)$, then $\lambda^2 = Q(M)/2\sigma^2$. Further, let $Q_1(X) = X'A_1X$ and $Q_2(X) = X'A_2X$ be real symmetric quadratic

Further, let $Q_1(X) = X \cdot A_1 X$ and $Q_2(X) = X \cdot A_2 X$ be real symmetric quadratic forms of ranks r_1 and r_2 . Then a necessary and sufficient condition that $Q_1(X)$ and $Q_2(X)$ be statistically independent is that $A_1 A_2 = 0$.

Proof. The theorem is proved by establishing the equivalence and factorization of moment generating functions [4]. The moment generating function of