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for a sample of size n. By reversing the process, it is clear that if »s, v1jn—,

-, 1 are known, the normalized moments for all samples of size no greater
than n can be determined by successive differencing, although in this case there
is a progressive loss of significant figures.

e

CORRECTION TO “THE PROBLEM OF THE GREATER MEAN”
By RacrUu RAJ BasADUR AND HERBERT ROBBINS
University of Chicago and University of North Carolina

In the paper mentioned in the title (Annals of Mathematical 'Statistics, Vol.
21 (1950), pp. 469—487), the paragraph on page 484 beginning “We have given
no criterion . . .” is erroneous, and should be omitted. The following paragraph
would then read: “Let us suppose that @ is given by (33). Then f°(») is admissible
and minimax, by the preceding paragraph. There is, however, another reason
for preferring f°() . . ..”

‘We remark that in case a point on the plane {w:m; = m,} is an interior point
of @ and the risk function is 7, then (contrary to statements in the erroneous
paragraph) f°(») possesses the following property. If f(v) is a decision function
such that f(v) # f'(v) and

sup #(f| ) < sup #(f° | a)(= 3),
we weld

then 7(f° | w) < 7(f | w) for all w in Q, the inequality being strict whenever my % m.
It follows that f°(v) is the unique decision function which is admissible and minimaz.
A proof of this remark is contained in an unpublished paper by R. R. Bahadur
entitled “A Property of the ¢ Statistic.”

—— e

ERRATA

By P. V. Krisana IYER
University of Oxford

In the author’s paper ‘“The theory of probability distributions of points on
a lattice” (Annals of Math. Stat., Vol. 21 (1950), pp. 198-217), read “2 X 2 X 3”
for “2 X 8 X 3” on page 211, line 22, and on page 213, Table 8, heading.
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ABSTRACTS OF PAPERS
(Abstracts of papers presented al the Oak Ridge mceting of the Institute, March 1517, 1951)
1. Confidence Intervals for the Mean Rate at Which Radioactive Particles

Impinge on a Type I Counter. (Preliminary Report.) G. E. ALErT, Univer-
sity of Tennessee and Oak Ridge National Laboratory.
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The number of particles impinging on a Geiger-Mueller counter in a time interval of
length ¢ is assumed to be a random variable with a Poisson distribution of mean at. Starting
with Feller’s results for a Type I counter given in his paper “On probability problems in
the theory of counters” in the Courant Anniversary Volume, 1948, it is shown that the count
N registered by the counter in time ¢ has the distribution: Pr(N = m) = 0if m = (¢/u) + 1,
and Pr(N. = m) = exp (—N)Z5-mM\/kL, N = a[t — (m — 1u], if m < (¢/u) + 1, where u is
the dead time of the counter. Confidence interval charts for the parameter b = au for various
values of ¢’ = ¢/u are prepared by the usual inversion procedure. If N and {—Nwu are both
large, approximate confidence intervals for the parameter a take the simple form

(N = z,NH/[t — (N — Dul,

where z, is the two-tailed percentage point of the normal distribution for the confidence
level 1 — p.

2. A Problem of Elapsed Times in a Sequence of Events. OsMER CARPENTER,
Carbide and Carbon Chemicals Division, Oak Ridge.

The problem considered refers to a series of random events forming a sequence in time
or space, for example, the emission of particles by radioactive matter. From a sequence f
of such events, a derived sequence g is formed by selecting from f all those events which
follow the preceding event by an elapsed time greater than a given constant, U = 0. The
times between successive events in the sequence f are given to the independently distributed
by a known distribution function, F(¢). It is required to find the distribution functions of
elapsed time and of the number of counts per fixed time interval for the derived sequence,
g. A general method is applied to the solution of the exponential case, F(¢) = ke~*¢,

3.'On the Existence of Unbiased Tests for Testing Cdmposite Hypotheses.
EstHER SEIDEN, University of Buffalo.

The following problem was suggested by J. Neyman. Let X be an observable random
variable, multivariate or not, and H a composite hypothesis concerning X. Let H denote
a hypothesis, concerning X, alternative to H. Finally, let « be a chosen level of significance.
What restriction should one impose on the hypotheses H and H in order that there exists
a critical region w such that (i) P(X e w | H) = «, and, whatever be the simple hypothesis
heH, (i) P(X ew | k) > a? It is shown now that if H as well as H consists in assuming
that the random variable X follows a continuous distribution law, then there exists always
the most powerful regionw satisfying conditions (i) and (ii), provided that the distributions
belonging to H and H are linearly independent. If H and H are infinite families of absolutely
continuous distributions and condition (i) is replaced by (i’) P(X e w | H) £ «, then for
some o less than } there exists a region w satisfying conditions (i’) and (ii), provided that
the convex closures of H and H are disjoint.

4. Group Divisible Incomplete Block Designs. R. C. Bosg, University of North
Carolina.

An incomplete block design with » treatments each replicated r times in b blocks of size
k is said to be group divisible if the treatments can be divided into m groups each with
n treatments, so that the treatments of the same group occur together in \; blocks and
treatments of different groups occur together in A blocks, A; # A2 . The parameters are
connected by the relations » = mn, bk = vr,\i(n — 1) 4+ Aen(m — 1) = r(k — 1). It is shown
that these designs fall into three classes: (i) singular for which r = A\, (ii) semireg}xlar
for which r > A\, 7k = v\, , (iii) regular for which » > A, 7k > vX. . It is proved that for
regular designs b = v, and for semiregular designs b = » — m + 1, every block containing
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the same number of treatments from each group. A singular design is always derivable
from a balanced incomplete block design by replacing each treatment by a group of n
new treatments. When b = v the quantity (r — A)™» D(rk — vA:)™~! must be a perfect
square, and the Hasse invariant of NN’, where N is the incidence matrix of the design, must
be +1. The value of this invariant has been calculated in terms of the parameters. The
parameters for all group divisible designs with 7 < 10, & < 10, whose existence is not ruled
out by theorems stated above, have been listed. Combinatorial solutions for most of these
have been derived, though there remain a number of unsolved cases. The analysis of vari-
ance and the equations for intra- and inter-block estimates have been given. These designs
are likely to prove useful both in varietal trials and in factorial experiments.

5. Orthogonal Arrays of Strength Two and Three. R. C. BosE AND KENNETH
A. Busg, University of North Carolina.

Consider a matrix A = ((ai;)) with m rows and N columns where each element a:; repre-
sents one of the s integers 0,1, 2, --- , s — 1. The columns of any ¢-rowed submatrix of A
provide N ordered t-plets. The matrix 4 is called an orthogonal array (N, m, s, t) of size
N, m constraints, s levels, and strength ¢ if each of the C7 partial t-rowed matrices formed
from A contains all the st possible ordered ¢-plets each repeated A times (N = Xsf). The
known upper bounds for the number of constraints when ¢ = 2 and 3 have been improved:
Ifx—1=a(s—1)4+b,0=b<s—1,and nis the largest positive integer (including
0) consistent with s(b — 2») = (b — n) (b — n + 1), then for the case ¢ = 2,
m < Il(zs? — 1)/(s — 1)] — n — 1, and for the case t = 3, m < I[(\s®+s—2)/(s — 1)] —
n — 1. Methods of constructingorthogonal arraysofstrength 2 and 3 have been investigated.
A difference theorem enabling the construction of the arrays (18, 7, 3, 2) and (32, 9, 4, 2)
has been proved, and it is shown that if s = p», X\ = p%, where p is a prime, then we can
construct the array (\s?, m, s, 2), with

m=1-+ pn'!'d 4+ e 4 prn'hi + prn+n+d,

where v = rn + d,0 < d < n,r = 0. Another theorem connects finite projective geometries
with orthogonal arrays, and is used to construct the arrays (i) (s3, s + 2, s, 3) when s = 27;
(ii) (s3, s + 1, s, 3) when s = p», p being an odd prime; (iii) s¢, s* + 1, s, 3) when s = p",
where p is a prime; (iv) (s7, s*1, s, 3) when s = 2. Orthogonal arrays are useful in connec-
tion with many problems of experimental design.

6. The Structure of Balanced Incomplete Block Designs, and the Impossibility
of Certain Unsymmetrical Cases. WiLLiam S. ConnoRr, University of North
Carolina.

If a;; is the number of treatments common to the ¢th and jth blocks of a balanced in-
complete block design with » treatments, b blocks, r replications, and k treatments per
block, with any two treatments occurring together in the same block A times, then the
characteristic matrix C' = ((c:;)) of the design may be defined by ci; = (r — k) (r —\), ¢ =
1,2, 7 ,0,c5= kN —raij 4,5 = 1,2, .-+ ,v,% # j. If | C¢ | is any symmetrically chosen
partial determinant of order r belonging to C, we prove that (i) | C; | is nonnegative; (ii)
ift = b — v, then | C¢ | k(r — \)*=+=1/rt-1is a perfect square; (iii) if t > b — v, | C¢| = 0
From (i) Fisher’s inequality b = v is deduced and it is shown that

E+N—r=Saiij SrT—N—Fk+2kN/r.

The structure of the designs (a) v = 15,b =21, r =7,k = 5, = 2; (b) v = 36, b = 45,
r=10,k=8x=2;(c)v=21,b=28,r=8,k =6, = 2 is studied. For (a) and (b)
it is proved that there must exist b — v blocks, the | Cs_. | for which contradicts (ii). For
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(c) it is shown that if the incidence matrix N is augmented to Ny by adding 7 suitably chosen
row vectors then the Hasse invariant C,(NoNg) for NoNg is —1, when p = 3. This demon-
strates the impossibility of (a), (b), and (¢). The last two results are new. (Research car-
ried on under the sponsorship of the Office of Naval Research.)

7. Some Bounded Significance Level Tests for the Median. Joun E. WaLsH,
The Rand Corporation.

In practice it is often permissible to assume that the observations of a set are statistically
independent and from continuous populations with a common median. This is the case,
for example, if the observations are a sample from a continuous population. Then the
population median can be investigated by using the sign test. For small numbers of ob-
servations, however, the sign test does not furnish very many suitable significance levels.
Also, some of the sign tests with suitable significance levels are not very efficient. This
note presents some tests whose significance levels are only approximate but cover a wide
range of suitable values. The significance levels of these tests are exactly determined if the
populations are also symmetrical; they are bounded otherwise. Some of these bounded
significance level tests have high efficiencies.

8. Joint Sampling Distribution of the Mean and Standard Deviation for Distribu-
tion Functions of the First Kind. MeLvin D. Sprincer, U. S. Naval Ord-

nance, Indianapolis.

Consider a universe characterized by the distribution function f(z), —» < z < =,
If n variates 2; ,¢ = 1,2, - -+ , n, are selected at random from this universe, the probability
that they will fall simultaneously within the intervals dz; , ¢ = 1, 2, --- | n, is given, to
within infinitesimals of higher order, by f(z1)f(x2) - - - f(s) d21 dxs - - - dx, . As animmediate
consequence of the definitions of Z and s one may employ the transformation T': z; = z,,
Ty =Ty, occ s Tna= Tag, Tna = (n2 — 21 %0 £ Q) /n, 3. = nE — 27 'x;, where ;=
[—32% %z} — 22} 12} twizi + 208 27 C; — n(n — 2)22 + 2ns?]}. Application of this trans-
formation gives

F(@)f @2) ««f(@n) dzyde + -+ dn
= f(@)f (22) *+ - (@ns)f((nZ — 2} '2; — ]/2)
f(n% — 27"z + 21/2) | J | dz1ds -+ dwa_s dE ds,

where | J | = | Jacobian of T | = n?s/Q; . Evaluation of the multiple integral
Fe o = [ [ [ 1@ - fGine - 30 - a2

S(ng — 22 %z + 211/2) 2n%/9 d@n_s - -+ dzs dzy

yields the joint distribution function F(Z, s). The limits of integration are established by
employing the relationships Ziz; = nZ and 212% = ns? 4 n#?, together with mathematical
induction, to prove that z,_,,r = 2,3, -+, » — 1, is restricted to the closed interval

(n2 — 27 'z — @)/(r + 1), (18 — 277 2 + Q.1/[r + 1D),

where

r—1 2 n—r—2

Q = [—r(r +2)27 " w; — 2Z;01 2';:2_2:0;:0;“

+ 2riZy Tz — ma(n — r — 132 + (r + 1)ras2)h
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9. On Certain Distribution Problems in Multivariate Analysis. (Preliminary
Report.) INeraM OLKIN, University of North Carolina.

This paper is concerned with the derivation of the joint distributions of (i) rectangular
coordinates, (ii) correlation coefficients, (iii) characteristic roots of a matrix, and (iv)
roots of a determinantal equation, starting in each case from the multivariate normal
distribution. Consider a set of pn random variables following the distribution law f(X, n) =
K exp (— % tr XX’), X a p X n matrix, and the real transformations: (1) X = (T O)e‘,
where T (p X p) is a triangular matrix with &;; =0 ( <), 4 (n X n) is a skew-symmetric
matrix; (2) X = DU O)eB, UU' = R, where D, is a diagonal matrix with ele-
ments a; , +++ , ap, U (p X p) is a triangular matrix with u;; = 0 (7 < j), Z’;uff =1,7=
1, .-+, p, B (n X n) is a skew-symmetric matrix, R (p X p) is a symmetric matrix; (3)
X=¢ (D, O)eo, whereC (p X p) and D (n X n) areskew-symmetric, D, isa diagonal matrix
with elements u1 , «++ , up , Where u? are the characteristic roots of XX'. Using these trans-
formations on f(X, n), (i), (i), and (iii) are obtained. From the distribution law

f(Xy, m)f(Xs, 72)

and the transformation (4) X, = Y(D.O)en, X = Y(D,O)ep, where Y (p X p), E (ni X m1)
and F (ny X ns) are skew-symmetric matrices, D, and D, are diagonal matrices with elements
s, ,spand ¢, ...,¢cp respectively, such that s? + ¢* = 1, the joint distribution of 6
= s? is found, where 0 are the roots of | XX — (X, X1 + X:X2) | = 0.

10. A Unified Approach to a Wide Class of Distribution Problems in Multi-
variate Analysis. S. N. Roy, University of North Carolina.

(1) X being a p X n matrix of random observations (reduced to means) from a p-variate
normal population, and it being known that there exist a p X p triangular matrix T and
a p X n matrix L (both ordinarily uniquely determined) such that X = TL and LL' =1,
it is of interest to obtain the sampling distribution of T from which various distributions,
including those of partial and multiple correlations, would easily follow. (2) X and X,
being p X n; and p X n matrices of random observations (reduced to means) from two
p-variate normal populations and it being known that there exist (ordinarily uniquely) a
p X p matrix Z, and a p X n; matrix L, , a p X ne matrix L, (with the constraints I,L; =
L:L; = I), and p X p diagonal matrices D, and D. (where 8; = Sin 6; ; C; = Cos 6;; 1=
1,2, --- , p) such that X; = ZD,L, , X2 = ZD.L. , it is of interest in multivariate analysis
to obtain the sampling distribution of § (=6, , - -- , 6,). (3) With the same X matrix as in
(1), and it being known that there exist (ordinarily uniquely) a p X p orthogonal matrix
T, a p X n matrix M (such that MM’ = I), and a diagonal matrix D;(p X p) such that
X = T'D:M, it is of interest to obtain the sampling distribution of =1, 2, -*-, tp).
With the help of the constraints indicated éne could knock out any p(p + 1)/2 out of Lin
(1), out of each of L, and L. in (2), and of each of T' and M in (3); denote the remaining
elements respectively by Lg, (Liz , Lyg(, and (Tg , Mz). Thenin (1), (2), and(3), respec-
tively, we change over from X to (T, Ly), from (X, , X1) to (Z, 6, L1 , Lsg), and from X to
(Tz , t, Mp). This is made easy by an artifice discussed in the paper, and the way L in (1)
(L1, L) in (2), and M in (3) occur, makes it easy to integrate out over them leaving us
with the distributions of T in (1), (Z and 6) in (2), and (T and ¢) in (3). From this the null
distributions of 7 in (1), 8 in (2), and ¢ in (3) follow with great ease. Certain nonnull dis-
tributions would also come out without much difficulty.

11. An Extension of the Buffon Needle Problem. Natuan ManTteL, National
Cancer Institute.

Historically, the Buffon needle problem is concerned with the estimation of the value of
x from the probability of intersection of a straight line of fixed length (< 1) with a series
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of equally unit-spaced parallel lines, on which the straight line is allowed to fall at random.
The present paper extends the problem to the estimation of = from the average number of
intersections of a straight line of any fixed length with a series of equally spaced parallel
and perpendicular lines on which the straight line is allowed to fall at random. It is also
shown that, comparatively, very precise estimates of = can be made, for long straight lines,
from the variation in number of intersections rather than from the average number of
intersections. From purely statistical considerations it is demonstrated that = must lie
between 3.1231 and 3.1752, with no necessity for any measurements being made.

12. A Generalization of Sampling without Replacement from a Finite Universe.
D. G. Horvitz anp D. J. THOoMPSON, lowa State College.

Let the finite universe consist of N elements U; ({ = 1,2, --- , N). A sample of n ele-
ments is to be drawn without replacement and the total T’ of some character X of the ele-
ments estimated from the sample. Denote by P(U;) the probability that the 7th element
will be included in a sample of size n. An unbiased estimator T = 2} _,z;/P(U;) is proposed,
and expressions for the variance of this estimator as well as an unbiased estimator of this
variance are given. An extension to a two-stage sampling scheme is presented. Considera-
tion is given to methods of determining selection probabilities which will result in optimum
probabilities P(U;) on the basis of the prior information available on the elements of the
universe, and two approximate methods are illustrated.

13. A Problem in Two-Stage Sampling. B. M. SEELBINDER, University of North
Carolina.

Charles Stein has suggested a two-stage sampling plan, the size of the second part of
the sample depending on the information supplied about the variance of the population
by the first part of the sample. In his work, the size n, of the first part of the sample is left
to the discretion of the experimenter. This study is designed to throw further light on the
choice of the value of n, . For this purpose the expected value of the total sample size n
for given n; has been computed for four different significance levels « = .1, .05, .02, .01
and varying ¢ = d/o, where d is the allowable discrepancy. These values are presented in
four tables where ¢ ranges from .01 to 1.0 and n,; ranges from 5 to 72,000. It is shown that
the computation can be made to depend on the knowledge of Pearson’s incomplete Gamma
function. An approximation whereby the computation can be made to depend only on the
knowledge of the normal distribution function has also been developed. Numerical evidence
for the adequacy of the approximation for moderately large values of n; (n; = 61) has been
adduced. Limiting values for the expected value of the total sample size are given for
fixed n; and « with varying c¢. The discussion of the use of the tables covers the different
sampling situations which may arise: (i) an approximate estimate of ¢ is available, (ii)
only a rough estimate of o is available. Reasons are given which point to 250 as the upper
limit for n, in a two-stage sampling plan.

14. Bounds on a Distribution Which Are a Function of Moments to Order Four.
(Preliminary Report.) MArvIN ZELEN, University of North Carolina.

Let F(y) be a cumulative distribution function defined for the random variablea < y < b,
and z be a known quantity. Markov and Stieltjes considered the problem of finding the
inf pg) F(z) and the sup ru) F(z) as a function of a finite number of moments of the dis-
tribution. This present paper investigates the explicit expressions for these bounds if the
moments to order four are known (1) in the case when the random variable has finite range,
(2) in the case when the random variable has infinite range. In the applications of these
bounds, it is necessary to order roots of certain orthogonal polynomials. It is suggested
that for ready application, a nomograph be used. These bounds would be useful when one
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is confronted with a cumulative distribution function which is unknown or difficult to
handle.

15. An Inconsistency among Type A, Regions. HErMaN CHERNOFF, University
of Illinois.

In a test of a hypothesis one may regard a sample in the critical region as evidence that
the hypothesis is false. Let us assume that for some reason it is desired to increase the
critical size of the test, i.e., to make rejection of the hypothesis more probable. Then one
may expect that an observation which led to rejection in the first test should still lead to
rejection in the new test. In other words, one should expect Wo D W if « > o where Wa
is the critical region of size a. An example is given where regions of Type A fail to have
this property.

16. Stochastic Approximation. (Preliminary Report.) HERBERT ROBBINS AND
S. Monro, University of North Carolina.

We consider the general problem of estimating a constant associated with a function
M(z), e.g., the root of an equation M(z) = « or the abscissa of a maximum of M(x). When
M(z) is observable there are methods of determining the constant by ‘‘successive ap-
proximation.” We suppose, on the contrary, that M(z) is unknown but that to each value
of z corresponds an observable random variable ¥ = Y(x) with distribution function

P[Y(z) £ y] = H(y | ) such that M(x) = f y dH (y | ») is the expected value of Y for the

given z. In the case where M (z) is increasing and we wish to estimate the unique root,
z = 0, of M(z) = a, we propose to let Tay1 = % + @a( — yn), where z; is an arbitrary con-
stant, {a.} is a sequence of positive constants, and y. is a random variable such
that Plys = y | 2.] = H(y | #.). One of us has shown under certain conditions on H(y | z)

that, if {@.} is of the type {1/n}, then no matter what the initial value z,
lim E(zx, — 0)? = 0,

n—r0

so that z. is a consistent estimator of 8. Work is in progress to establish in special cases
bounds on E(z, — 6)2. By replacing (@ — y.) by sgn(a — yn), less severe restrictions need
be imposed on H(y | z) in order to obtain the same result. This sequential type of design

can be applied to estimation in regression problems, to ‘“‘all or nothing’ response experi-
ments (where ¥, is limited to the values 0 and 1), and to the experimental determination of
the maximum of a function (cf. Harold Hotelling’s paper in Annals of Mathematical
Statistics, vol. 12 (1941), pp. 20-45). (This research was done in part under an Office of
Naval Research contract.)

17. On the Properties and Statistical Purposes of Some Well-known and Some
New Tests in Multivariate Analysis. S. N. Roy, University of North
Carolina.

Consider two problems of multivariate analysis, each of which could be made to cover
a wide number of situations. (1) With two random samples of sizes n; and n; and dispersion
matrices (a1:;) and (azs;) from two p-variate normal populations with dispersion matrices
(1) and (e2:), 4,7 = 1,2, -+ , p, an infinite number of similar region tests could be con-
structed for the composite hypothems (a1i) = (ag,,), among which there is none having
the strong optimum propertles of the usual F-test in the anlogous univariate problem
Among these similar region tests, however, there is a subset based on F; , ¢ = 1,2,---, p,
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where Fi’s are the roots of the equationin F: |a;;; — Faz:;| = 0, such that the largest root has
moderate optimum properties with respect to one class of alternatives, the smallest for
another class and the product of the roots (which is the likelihood ratio test) for another
class of alternatives—all discussed in this paper. (2) With k random samples of sizes n,
from k p-variate normal populations with means m,; and a common dispersion matrix
(as5),r=1,2,--- , k; 4,5 =1,2, ---, p, an infinite number of similar region tests could
be constructed for the composite hypothesis (mi;) = (mgys) = -+ = (mpi), 2 =1,2, -+, p,
among which there is none having the strong optimum properties of the F-test in the analo-
gous univariate problem. Among these similar region tests, however, there is a subset based
onF;,2=1,2 ..., g = p, where Fi’s are the nontrivial roots of the equations in F:
| bisj — Fbgij | = 0 (where (bii;) is the matrix of the sample means reduced to the grand
means and (bz;) is the pooled dispersion matrix from the different samples), such that
the largest and smallest roots have moderate optimum properties with respect to two
different classes of alternatives and the sum of the roots for a third class of alternatives—
all discussed in this paper. The likelihood ratio test, however, leads to the product. The
wide variety of situations each problem could be made to cover is also discussed in this

paper.
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NEWS AND NOTICES

Readers are invited to submit to the Secretary of the Institute news items of interest.

Personal Items

Dr. K. S. Banerjee, Statistician at the Central Sugarcane Research Station,
Bihar, India, received his doctorate degree from the Calcutta University in
January of this year. His thesis covered his contributions to “weighing designs.”

Mr. Lyle D. Calvin, formerly at the Institute of Statistics, North Carolina
State College, has accepted the position of Biometrician with the Division of
Biological Research, G. D. Searle & Co., Chicago, Illinois.

Dr. Robert J. Hader has accepted a position on the staff of the Institute of
Statistics, North Carolina State College. He leaves Los Alamos, New Mexico,
where he has been employed as statistician for the Los AlamosScientific Labora-
tory for the past two years.

Mr. Bernard Hecht has joined the Victor Division of RCA, Camden, New
Jersey, as Manager, Assembly Quality Control, after five years as Quality Con-
trol Manager of the International Resistance Company of Philadelphia, Penn-
sylvania.

Dr. Edward L. Kaplan has received his doctorate degree in mathematics
from Princeton University and is now a member of the Technical Staff, Bell
Telephone Laboratories, Murray Hill, New Jersey.

Dr. Eugene Lukacs has joined the staff of the Statistical Engineering Labora-
tory of the National Bureau of Standards. At the Bureau he will be engaged
in research in mathematical statistics, particularly autoregressive series and
stochastic processes.

Mr. A. W. Marshall, formerly at the Washington, D. C., office of the Rand
Corporation, has now moved to its Santa Monica, California, office.



