A SIGNIFICANCE TEST FOR EXPONENTIAL REGRESSION

By E. 8. KeepING
University of Alberta

1. Summary. A general method of testing the significance of nonlinear re-
gression, suggested by Hotelling, is adapted to the regression equations ¥ =
be™ and Y = a + be™ . The values of x are taken to be in arithmetic progression,
and the standard deviation of the observed y is supposed constant for all z.
This is in contrast to the assumption, implicit in the usual procedure of fitting
a straight line to log y, that the standard deviation of log y is constant.

It will be observed that the distribution of yi, ¥2, * * -, y» must be such that
the joint probability density foryy, ys, - -+ , ¥» is a function of 23 + 23 + -+ +
z% , and this condition implies the assumption of normality. The null hypoth-
esis is that be™ = 0 for all z, while the alternative hypotheses are specified by
b#0,p= —o.

The method involves the calculation of the volume of a ‘“tube’” on a hyper-
sphere in n-dimensional space. An asymptotic expression for the length of the
tube is developed, and it is shown that the curvature of the axis is everywhere
finite. From this expression, for values of the correlation coefficient R between
observed and fitted values of y at least as great as 0.894, a function of R is
obtained giving the probability that a random sample would yield at least as
great a value of R. ) )

A short table giving R for various significance levels and variqus sizes of
sample is calculated for each of the equations mentioned, and the application
to certain experimental data is discussed.

2. Introduction. Some years ago, Hotelling [1] suggested a geometrical method
of determining the significance of the correlation coefficient corresponding to a
fitted regression of ¥ upon z, when y is a random variable and the values of x
are known. Suppose that a curve of the form

2.1) Y = bf(z, p),
where b, p are constants and f(z, p) is not identically zero, is fitted to a set of
observations 41, ¥2, ***, Y., which are assumed to be independently and

normally distributed about zero, with the same variance ¢°. The null hypothesis
is that b = 0, while the alternative hypothesis is that b is not zero. By the
principle of least squares, we minimize

(2.2) 2 Wa — Yo' = 2 [y — bf@a, p)I.

The set of values y,, - -+ , y. defines a point in n-dimensional space. The set
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Yy, -+, Y, also defines a point which lies on the 2-dimensional hypersurface
defined parametrically in terms of b, p by the n equations:

2.3) Yo = bf(xa, p), a=12 - n.
If] 6 is the angle between the lines .joining the origin to (y1, -+, ya) and
(Yl, R} Y”);

(2.4) cos 8 = 2y Y./[Z k2 Vi,

and this is the correlation coefficient R between the observed and fitted values,
calculated without elimination of the mean. The least squares process is thus
equivalent to maximizing R, or minimizing 6.

Since by the null hypothesis the point (y1, : - , ¥») lies with uniform prob-
ability density anywhere on the surface of a sphere whose centre is the origin,
the density function of the projection of the point (y1, -, y») on the unit
hypersphere has complete spherical symmetry around the origin. This will
also be true if the ]omt proba,blhty density for y1, y2, * -, y,. is any functlon
of 22 + 23 + --- + 2%, and so is constant on the hypersphere #f + - -+ + T =
1. The probablhty that R is greater than some fixed value R, is therefore, for a
given Y, proportional to the “volume” of the sphere, in the (n — 1)-d1men-
sional spherical space, having centre ¥ and geodesic radius §p = cos™ ' Ry . The
total probability that R lies between R, and 1 is therefore given by the ratio
of the “volume” of the “tube” of geodesic radius 6y, surrounding the curve
formed by the projection of Y, to the total “area’ of the unit hypersphere.

Hotelling [1] has shown that the volume of such a tube on a hypersphere in
n-dimensional space is equal to the length of the curve multiplied by

w7 sin""* 60/T(n/2),

provided that the curve is closed, and nowhere has a radius of geodesic curva-
ture less than sin 6, , and provided also that portions of the tube corresponding
to nonconsecutive arcs of the axial curve do not overlap. If the curve has ends,
there will be hemispherical “caps” at the ends of the tube to be added to the
total volume.

This geometrical method was applied by D. M. Starkey [2] to the case of
periodogram analysis, in which there are additional parameters, so that the
projection of Y is not a curve but a surface. The practical application of the
method in this case is limited to quite small values of 6y, because of the ap-
proximations necessary in the evaluation of the integrals involved.

The 3-parameter equation

(2.5) Yi.=0a+ bf(za, D)

is readily reducible, theoretlcally, to the form treated a,bove Mmlmlzmg
2 ya — @ — bf(xa, p)I' is equivalent to minimizing = (o — Yo), where
Yo, Y are the projections of y., Y. on the hyperplane Z y, = 0. Since Yo =
Y« — 7 and Yo = b(fo — f), where f, stands for f(z., p), the angle 6 between



182 E. 8. KEEPING

the lines joining the origin to (41, ¥s , - -+ , ¥=) and (Y1, ¥z, -++, V) is given
by

(2.6) 080 =2 Ya — §)(Ya — P)/[E Wa — 92 (Ya — 7

and so is equal to the correlation coefficient R between observed and fitted
values calculated in the usual way with elimination of the means. The point
(Y1, Yy, -+, Y4) lies on a 2-dimensional projection of the 3-dimensional
hypersurface defined parametrically by (2.5). If we now pro;ect from the origin
on to a hypersphere of nn — 2 d1mens1ons (intrinsically) in the hyperplane
2 ya. = 0, the projection of (Y1, Yz, ---, ¥%) will be a point vy, vs, -,
Y% lying on a curve on the surface of this hypersphere. The method already
given therefore applies in this case, with the appropriate change in the dimen-
sionality of the hypersphere.

The present paper deals with the application to exponential regression. The
curves to be fitted are

2.7) Y = be™
and
(2.8) Y = a + be™,

the latter of which will be referred to as the “modified exponential equation.”
The mathematical difficulties are increased greatly by the additional constant.

3. Formulas for projections of regression curves. We suppose that the fixed
values of z are equidistant, and choose units so that
3.1) =1 T2 = 2, SRR T = N.
The corresponding values of Y are
(3.2) Yi=0bg, Yy=bg, -, Y.=0bq",

where ¢ = ¢”. If the projections on the unit hypersphere are denoted by
Yi, -, Y,

(3.3) Y, =N, Z2¥i=1
Hence
(3.4) M o=g70 - - ¢!
and '

’ — a1 1-— q )
3.5) Yo =g ( =)

The element ds of the curve formed by Y’ (0 < ¢ < «) is given by
(@s)* = 2(dY.)’
(3.6 1 - q

f _ _ q2 \2201—4 2
az_:;\a 1+1_an 79 (dg)*.
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This reduces, after some algebraic manipulation, to
ds _ (o v z n'z" :I*
(37) % = (22?) [(1 = x)2 (1 — a:”)’ ]

where z = ¢’. The length of the projected curve is obtained by integrating from
0 to .
For the modified exponential equation, we have, instead of (3.3),

(3.8) Yy = \g® — f/n),
where
(3.9) f=2¢=q1l -1 -9

Since = (Y'.f',)2 = 1, we obtain

A= (g — /)

where
(3.10) g=¢1-¢"/Q1~-9g.
The expression for (ds/dg)’ = = (dYa/ dg)’ reduces after lengthy algebra to

d , nqn—l _ 1 ) 1 - qn 2

1 —¢ ' G-

(3.11) (ﬁ) = - ,

dg (1 — ¢’ n_ 1 14+q,_ -

1+4¢" -2 1_'q(l q")

whence s may be obtained by integration.
4. Lengths of the projected curves. From (3.7)

L= " = 27 — w1 — 27 do/(20)
(4.1) |
= [o (1 — )~ — n%"(1 — 2" du/z,

since the substitution x = 1/y leaves the integral unchanged.

For n = 2 the integral is elementary and reduces to =/2. For n = 3 it can
be expressed in terms of elliptic integrals of the first and third kinds. For higher
values of n a convergent series can be obtained, which, however, converges
very slowly for » larger than 5.

Puttingz = (1 — w)/(1 + u), g = 1 — u*, we obtain

_ My — n*(l — u)" Yodu
l"‘?‘fo[ 4 ':(1+u>"—(1—u>"}2] I—w

(42) =2 fo ' g? [m{—a - 2Zn (gn) o 2::)9:1 2207': (2tn> (—u)t:lé du,

= \?
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and this integral may be shown to exist for every finite n. For n = 3, we have
I =x/2[1+ 1/4 + 9/256 + 5/512 + 385/262144 + +--1]
= 2,037. ‘

For n = 4, a similar method gives I, = 2.35, and for n = 5 we obtain l; = 2.58.
However, as n increases, the method is more laborious and the integrand does
not converge so rapidly, so that an asymptotic expression for I, is more con-
venient.

For the case n = 3, (3.11) reduces to

I

_ = e

whence I3 = /3. That this is correct may be seen by visualizing the projection
of the regression curve on to a circle in the plane through the origin which is
equally inclined to all three axes. Writing u = tanh p/2, we obtain

-1
43) &=Au—ﬂWW%

where

_ _ 4n2u2(1 - u2)n—1
¢‘P {a+uw—u—um4
- [nu{(l +w'+1—-w"} 1]
A4+ wr—->1—-uw )

It may be shown that the denominator of ¢ never vanishes and that ¢ < 1 in
the region of integration.

When n = 4, the integral (4.3) is elliptic, and we find i = 1.418.
_ 25 — 5u’ + 15u' — 3
? T 25 + 65w + 35uf + 3us’

The integral may be evaluated by quadrature. The numerical value is s =
1.675. For larger values of n, an approximation is obtained in the next section.

(44)

When = =5,

6. Approximations to the length. Putting z = ¢~?%, we have from (4.1)

) 1 ’ﬂ2 }
(5.1) b = fo (sinh2 v sinh? nv) dv

For values of v in the range 0 to 1/n we may write the integrand as a series
and integrate term by term. Thus, if

1/n 2 by
1 n
L= /; (sinh2v sinh? nv) v,
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we obtain
(5.2) I, = 0.559 — 0.298n~% — 0.0594n* —
Let )
® 1 n? i
L= /1/,. (sinh2 "~ sinh? m)) dv
(5.3)

e—1lin 2 2n—3 R ]
=2 [ ’11‘__(_1___“_)_] du.
11— (1 — un)?
The second term in the square bracket is less than 1 at both ends of the range.
Also, it has no maximum within the range. Hence the bracket may be expanded
and integrated term by term, giving

¢1/n 2 2 2n—2 4 4 An—4
_ i1 — W)W 'l — ) _:l
b Zf 1- u”[ 2(1 — un)? 8(1 — u)* du

=In+Ip+ It -,

where
e—1/n
1 1
54)  In=2 f = log 2n + ey n2 — s+ 0 (;E)
Also,

e—1/n

Ip = —n’ f w1 — WA — w) P du
0
e~1/n
— _nzfo [ — o) + 264 — 4n) T+ 3 — ) 4 -1 du,
which, on integrating, expanding the exponentials, and collecting terms, becomes
In = —[(3/2)e + (5/4)e™* + (7/6)¢° + (9/8)e™" + -+ ]
— 1/n%(19/24)e”* + (71/192)¢™* + (61/216)¢™° + (379/1536)¢ ™"
14 0™
= —0.229 — 0.114n~° + O(n™%).

(5.5)

Similarly,

n‘ ot 4 3 2
= e—— 4n— — — ny=— 4
= —0.029 — 0.029~% + 0(n"4).

Later terms in I, can be computed in a similar way, but the numerical factors
diminish rapidly. Collecting terms from (5.2), (5.4), (5.5), (5.6), we get finally

(5.7 I, = logn + 0.990 — 0.358n7% 4+ O(n™").
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As an indication of the accuracy of this approximation, the value of I, , neg-
lecting terms of order n*, has been calculated. in Table I for several values of n.
It is not, of course, to be expected that the approximation will be very good
for small n, although it is actually quite close even for n = 3 and n = 4.

TABLE I
Length of axis of tube (Y = be™)

n Asymptotic value of I, . Exact value of [,
2 1.59 1.57
3 2.05 2.04
4 2.35 2.34
5 2.59 2.59
6 2.77
7 2.93
8 3.06
9 3.18

10 3.29

12 3.47

15 3.70

20 3.98

50 4.90

100 5.60

For the modified exponential equation, the above method is apparently not
practicable with the more complicated integral (4.3). However, it is possible
to obtain an approximate expression which will be valid for large n, although
the agreement with the numerical values for n = 3, 4, and 5 is not very close.

In terms of v = p/2, (4.3) may be written

N al, _ J1- n? sinh?® v(sinh 7o)~ 2]*
68 U= [ 2sinh2) [1 {n ey |

For values of » between 0 and 1/n, the integrand may be expanded in powers
of v and integrated term by term. The result is

(5.9) I, = 0500 — 1.08n7% + O(n™).

For any fixed u between 0 and 1, the function ¢ in (4.4) tends to (nu — 1)™
as n — o, 50 that the integrand in (4.3) tends to u™[1 — (nu — D7 However,
this approximation is clearly not useful for u near 1/n. But if we put v = k/n,
where £ is a fixed integer, then, for large n, ¢ tends to the value

ek _ e—k — 4k2(ek — e—-k)—l

(k — 1)e* + (k + 1*

(5.10) @ =
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For fairly large k, this is very close to (k — 1)™'. Thus for & = 7, it is 0.1667.
Hence from u = 7/n to 1 we can approximate ¢ asymptotically by (nu — 1),
and obtain

1 ¢ we

I, ~ f” 1 — (u— D) Pu" du = f [1 — sech w] dw,

n w1
where nu — 1 = cosh w and w;, we are the values of w corresponding to u =
7/n and u = 1 respectively. Hence

Iy ~ wy, — w; — tan™" sinh we + tan™ sinh w,
= —1.952 + logn + (1/4)n~ +00™% (> 7).

It remains to integrate between tanh (1/n) and 7/n.-From 1/n to 7/n, an
approximation may be obtained by quadrature, the ordinates being calculated
from (5.10) for values of k between 1 and 7 inclusive. This gives, by Simpson’s
rule, a value 1.573. A small correction may be made for the integral between
tanh (1/n) and 1/n. Since tanh (1/n) = 1/n — (1/3)n"", approximately, and
since for v = 1/n, u'[1 — o]} = 0.475n approximately, this integral will be
0.158n% neglecting terms of higher order.

Hence the final expression for the length of the axis of the tube is

(5.12) In = logn + 0.121 — 0.670% + O(n™).

Table II gives a few numerical values of I, , neglecting o).

(5.11)

TABLE II
Length of axts of tube (Y = a + be™)
Asymptotic value Correct value

" of I\, of I,
3 1.14 1.05
4 1.47 1.42
5 1.70 1.68
6 1.89
7 2.05
8 2.19
9 2.31

10 2.42

15 2.83

20 3.12

6. Curvature of the projected curve. It was shown by Hotelling [1] that to
avoid difficulties connected with local overlapping, or ‘“kinking”, of the tube
surrounding the projected curve, it is necessary and sufficient that sin § < p,



188 E. S. KEEPING

where 6 is the geodesic radius of the tube and p the radius of geodesic curvature
of its axis. In this section we show that the radius of curvature is always finite
and greater than 1/4/5 = 0.447. The statement by Hotelling (loc. cit., p. 452),
that the radius of curvature of the projected curve corresponding to ¥ = be*
becomes zero at p = = », appears to be in error.

The radius of curvature p with which we are dealing is defined by

p = Zo(dYo/ ds’)
(6.1) = (ds/dp)~[(ds/dp)’=(d'Y o/dp")’ + (d’s/dp’)’Z(dY «/dp)’
— 2ds/dp-ds/dp*E(dY o/dp-d’Y o/dp")].

Since .
2(dYa/dp)’ = (ds/dp)’, Z(dYa/dp-d'Ya/dp®) = ds/dp-d's/dp’,
this reduces to
(6.2) p~t = (ds/dp) (2(d'Yo/dp’)’ — (d's/dp")’].
In the present problem, Yo =A™ , 80 that

&Y, dp* = e (d°N/dp® + 2a dN/dp + o’N),
where

A7 = 28 = (P — 1) - 1)

After some reduction we obtain

2 2
Z(sz;/dp2)2= 3|: 1 ’ n :l

63) 16 | sinhk’p  sinb? np
el [3 +2 sinh®p p3 2 sinh® np].
8 sinht p sinh* np
From equation (3.7) we have, in terms of p = log ¢ as parameter,
(6.4) ds/dp = {(sinh p)~* — n’(sinh np) 7,
whence

(6.5) d’s/dp®-ds/dp = 3[—cosh p(sinh p)™ + 7° cosh np(sinh np) ™).
Therefore, from (6.2),

-3y 6 + 4 sinh’ p ot 6 + 4 sinh® np:”: I n? ]"2

©66) P sinh* p sinh? np sinh? p  sinh? np
' _4 |:cosh p _ n cosh np]z[ 1 ]‘3
sinh? p sinh® np sinh? p  sinh?np| °

Now as p — 0, the right hand side tends to 3 —[6(n’ + 1)|/[5(n* — 1)]. For
n = 2 this is 1, as it should be, and as n — o« it approaches the value 9/5. It
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may be shown also that for n > 4, pl—ob — 2¢727!
5 for moderate values of p.

If 4 = (sinh® p)™" — n? (sinh® np)~", the expression for p~* can be written as

asp — = 0, so that 1/p° =

6.7 pl=3— W + Wt
Hence
(6.8) A /dp = wBu? — dun'u”’ + wu'"].

By expanding in powers of ¢” it can be shown that the terms in ¢’” and the
constant term vanish, so that

d(p™")/dp = 0(™), »>0,

for n > 4. Hence p~ has no maximum or minimum at any point p, apart from
the minimum at p = 0. The radius of curvature is therefore finite and remains
between 1/4/5 and [(5n* — 5)/(9n* — 21)]}, i.e., between 0.447 and 0.745, for
any n > 4.

The condition for no local overlapping at any point of the tube is, therefore,
sin § < 0.447, or equivalently, cos 8 > 0.894, where 6 is the geodesic radius of
the tube.

For the modified exponential curve, (6.2) still holds, with Y., replaced by

= (g — f/n)? (¢*® — f/n). We now have

2 o4 o2 1|4 _ 1 — n’sinh® (p/2)(sinh np/2)”"
(6.9 (ds/dp)° = (4 sinh” p) [1 7 tanh (p/2) (tanh np/2)1 — 1].

I have not been able to obtain an explicit expression for the curvature of the
axis of the tube, similar to (6.6). However, for small values of p, Y. and ds/dp
may be expressed in series of powers of p, and I find after much algebraic cal-
culation that when p — 0,

s 19n* — 212n® + 544
(6.10) Ve = e + 112 °

For n = 3 this reduces to 1, as it should, since in this case the curve is an arc
of a unit circle.
Asn— o, p— (7/19)} = 0.607, so that the radius of curvature at the centre
of the axial curve of the tube lies between 0.607 and 1 for all values of n > 3.
To find the curvature at the ends of the axial curve we need the limit of 1/p
as p — = «. Since the curve is symmetrical about p = 0, it is sufficient to con-
sider p — . For n > 5, it may be shown that, as p — «,

2, 5n° — 35n* + 78n° — 108n — 12
(6.11) e n(n — Dn = 2¢

Asn — «©, p— 1/4/5 = 0.446, as for the simpler case treated above. For
= 6, p has the value 0.519.
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Intuitively, one would expect for Y = a + be®”, as we have shown for ¥ =
be®®, that the curvature of the projection would vary monotonically between
the centre and the ends. A proof of this would, however, be desirable. Assuming
that this statement is true, we have*as the condition for no local overlapping
that cos 6 > 0.894.

It is of interest to see how much of the length of the tube will have a radius
of curvature near to the minimum value 0.477, which corresponds to p = = .
Now, for n > 5, and for large p, equation (6.6) can be written

(6.12) pt =5 — 27+ 0@,

so that for | p | > 1, the first two terms may be considered a fair approximation.
If we take |p| = 2log 2 = 1.386, p° = 39/8, or p =_0.453, approximately.
The length of the part of the tube for which the radius of curvature lies between
0.447 and 0.453 is

1/4
2 j; A — ) — 2221 — 21 — ) du,

which equals 0.511 approximately for n > 5. Since for n = 5, the whole length
of the tube is 2.59, nearly one-fifth of this length has a radius of curvature be-
tween 0.447 and 0.453.

As n increases, the ratio of this part to_the total length diminishes to zero,
but for » = 100 it is still about 1/11. Hence it appears that local overlapping
may be serious for values of cos 6 appreciably less than the critical value.

Nonlocal overlapping will not occur. It is necessary for such overlapping that
the tube should bend around so that two points P; and P; of the axis are at a
geodesic distance apart less than twice the radius of the tube even though they
are separated by a considerably greater distance than this, measured along the
axis.

If P, and P, correspond to values ¢ and ¢; of the parameter ¢, the square of
the distance in Euclidean n-space between them is given by

(6.13) D =2 (\gs — Mgt
where

No= gl = ) - @) i=12
If we transform to polar coordinates 6, - -- , 6,— on the unit hypersphere and
let P; be the point (0,0, ---, 0) and P, the point (a, 0, --- , 0), then D =

2 — 2 cos « and the geodesic distance between P; and P, is . If, therefore, D
is the distance from a fixed point ¢; to a variable point g,

1— q”q{'{ (1—=¢)1 ~q) }*
6.14 D* =2 — 2 ,
(@19 T qa 0= )0 = )
and a minimum value of D* corresponds to a maximum value of
n _n\2 _ 2
cos’a = (1 g ql) ( gj)(l q;i .
1—-90/ 1—=¢"HA —¢")

(6.15)
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The ends of the axis of the tube are at a geodesic distance w/2 apart. One end
of the axis is at the point where the positive x; coordinate axis cuts the unit hyper-
sphere and the other end is at the point where the positive z, axis cuts it. The
axis of the tube lies wholly on that part of the surface of the hypersphere for
which all coordinates are positive, and so cannot spiral around the end points
or form an equatorial spiral around the sphere in the middle.

If there is nonlocal overlapping there must be at least three distinct roots aof
(6.15), considered as an equation in ¢ corresponding to a given ¢ and a given
a (less than twice the geodesic radius of the tube). Two of the roots will represent
neighbouring points on the axis, one on each side of ¢;, and the others, if they
exist, correspond to points on nonlocal portions of the axis. If the point ¢, is at
a geodesic distance less than « from either end of the axis of the tube, the existence
of two distinct roots would imply nonlocal overlapping.

Since the tube is symmetrical about the middle of its axis (at ¢ = 1) we can
assume 0 < ¢ < 1. Then ¢ can take any real value from 0 to « . By the condition
for the absence of local overlapping, cos’ a > 0.360.

If g1 = 0, the equation for ¢ becomes

(6.16) 14¢+¢+ -+ —sec’a=0,

and this, by Descartes’ rule of signs, has at most one real root. There is therefore
no nonlocal overlapping at the ends of the tube, for any value of n. This is also
true at the middle, where ¢, = 1.

For any finite n the geodesic distance 8 of ¢; from the end ¢ = 0 is given by
1 — ¢t = (1 — i) cos’ B. If there is to be no nonlocal overlapping, the equation
in g,

_ o n m\2 _ 2 2
6.17) (1 q ql) 1—q ) _ s a
1 —qq 1— g™ cos B
should possess only one real positive root if 8 < « and only two real positive
roots if 8 > a. If 8 = a, one root is ¢ = 0. The equation in this case becomes

(6.18) 1+¢+ -+ =0Q+gu+ - +¢ g

Writingy, = 1+ ¢+ - +¢" andy. = 1+ g + -+ + ¢" gt it
is clear that ¥, and y. and all their derivatives are nonnegative for all g, that y;
and y. are never zero, and that at ¢ = 0, ya > 0. The ¢éurve of y, as afunction
of g starts together with that of y; at ¢ = 0 and remains above the latter for
an interval of ¢ > 0. When ¢ tends to infinity, yo/y1 — ¢i"%, which is less than
1, so that the curves must eventually cross again. A real root of y, = y, greater
than zero therefore exists. We shall now show that this root is unique.

Since 31 < 47 < 2 for 0 < ¢ < ¢q1, we can confine our attehtion to the case
79> q.

If ¢ = 1, (6.18) clearly has no real root for ¢ > 0. Moreover, y. is a continuous
function of ¢q; . Hence, if for any ¢ , between 0 and 1, two real roots exist, there
must be some ¢ and some corresponding g such that (6.18) has a double root.
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It is sufficient therefore to show that such a double root cannot exist. The con-
ditions are

(6.19) n—y=0 yi—y =0,

Writing 1 = [n — ¢(1 + ¢ + -+ + ¢ /(1 — ¢) and ys = Vaaln —
(1l + gq + -+ + ¢" gt HI/(1 — qqu), the second condition of (6.19) gives

no@ g —gn 1 gg
n—gn—gg— - —qggt 1-—¢ = Vi

From the first condition,

(6.20)

N 1+¢@+ - + ¢ |
R T A N e i
Substituting for \/@ in (6.20), subtracting 1 from both sides, removing a common

factor ¢* — gg: , cross-multiplying and collecting terms, we arrive at an equation
of the form

A+ Bgg + Co'gt + -+ + Z¢" %I = 0,

where all the coefficients are positive. This can obviously not be satisfied for
positive ¢ and ¢, .

In the more general case of (6.17) the equation is ; = cy, , wherec¢ = cos’ 8/
cos’ a, and it is readily verified that the above argument holds for ¢ > 1. If
¢ < 1, the curve for cy, is below that for ¥, at ¢ = 0 and at ¢ = o, so that if a
real root exists at all there will be at least two roots. These roots cannot coincide,
since if they did we should have y; = ¢y, and y1 = cys simultaneously, which is
ruled out by the above argument. The same argument also shows that there
cannot be more than two roots. That there are at least two follows from the
fact that when y; = sec’B, say atx = b, cy» = sec’B sec’ a, so that y,/cy, =
1/sec® @ < 1. The curve for y; is therefore below that of cy, at z = b.

For the modified exponential curve the expression for cos’ a corresponding to

(6.15) is

e _[l=¢g"¢r _ (1—gDQ - q")}2
(6.21) cos’ « { T TR /fx,

f _ 1 _ q2n _ l 1 - qn>2
1—¢ n\1— ¢
and f, is the same expression with ¢ instead of g.

When ¢; = 1,
) n—1 <1 - qn>2/f
n+1\1—gq ’

where

SIwW

(6.22) cos’ a =
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which may be written

1+ _ 1 ‘_9;1{14-3@— 1) sec® a/(n + 1)}

1+4¢ 1 n
or ‘
2, . a1, 3(n—1)sec a> _ o
Q+9Q+¢+q¢ + +q )(ﬁ'l'm‘ﬁ— Q+44¢) =0

Since in this equation there are only two changes of sign, the factor

3(n — 1) sec’ &
n(n + 1)

more than two real positive roots. Hence there is no nonlocal overlapping near
the middle of the tube.
When ¢; = 0,

. _ n _ 1 - qn 2 /
(6.23) COos a = 1—][——_—_—1 {1 m} f.
It may be shown that the derivative of the right-hand side, considered as a
function of ¢, is negative for all values of ¢ > 0. Since the right-hand side is
equal to 1 for ¢ = 0 and to (n — 1)™* for ¢ = o, there is just one real positive
root for any admissible value of cos’ a. Therefore no nonlocal overlapping is
possible at the ends of the tube.

Moreover, it is readily shown that cos’ & in (6.22) has no maximum or minimum
for any value of ¢ except 0 or 1. That is, the geodesic distance from the midpoint
of the tube to a variable point P of the axis increases monotonically as P moves
away towards either end. The same conclusion follows from (6.23) as P moves
away from the end of the tube towards the middle. This circumstance, which of
course holds also for the simple exponential tube, suggests that the possibility
of nonlocal overlapping is effectively ruled out.

being less than 1 for admissible values of «, there cannot be

Ly
n

7. Probability formulas and tables. The ‘“volume” of a tube of geodesic
radius 6 surrounding the projected curve will be given by

(7.1) L™ sin™* 6/T (4n),

where 1, is a function of n evaluated in Section 5. For any value of n > 2 therg
will also be hemispherical “caps’ at the ends of the curve. The “volume” of a
complete cap of radius 9 surrounding a given point on the hypersphere is

21;(,,_2) 2rsin(0/2) /2
Ti(n — 2)] b f
= 27" sin™ (9/2)/T'(%n),

cos ¢ sin""* o do ds
(7.2)
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and we may consider this as the sum of the two hemispherical caps at the ends.
The probability that a random sample point will lie within the tube is there-

fore given by

(7.3) () = 2’-; sin™? 9 + sin™™ (6/2).

In terms of the correlation coefficient B, the probability of obtaining by chance

a value of R at least as great as R, is

(74) p(Ro) = 2%'-(1 —_ Rg)i(n—z) + {%(1 _ Ro)}}(w—l).

This, of course, is true only for values of R, > 0.894. It will often happen, how-
ever, that when the data suggest an exponential trend the correlation between
observed and fitted values will be high.

The value of R, corresponding to an assigned significance level can be cal-
culated from equation (7.4) for particular values of n. A few such values are
given in Table III, where it will be noted that in each column the last entry is
below the critical value.

TABLE III

Values of correlation coefficient corresponding to certain significance
levels (Y = be®™)

n Significance level
.05 .01 .001 .0001
3 .990 .9995 >.9999 >.9999
4 .938 .987 .999 .9999
5 .876 .958 .991 .9996
6 .923 .976 .992
7 .887 .956 .983
8 .935 .970
9 .912 .955
10 .889 .939
12 .906
15 .859

For the modified exponential, the probability of obtaining by chance a value
of the correlation coefficient R between observed and computed values of y
at least as great as R, , on the null hypothesis that b = 0 in the parent popula-
tion, is given by
A - -

(7.5) p(R) = 5= (1= RY™ + (301 — R},
for Ry > 0.894. This is the same formula as (7.4) with n — 1 instead of n, because
of the loss of one dimension in projection. Also, I\, is now given by (5.12), instead
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of (5.7). A short table, computed on the basis of this formula and assuming that
no overlapping exists, is appended as Table IV.

TABLE IV
Correlation coefficient corresponding to certain significance levels (Y = a + be®”)
Significance level
n
.05 .01 .001 .0001
4 .983 .999 .9999 .9999
5 .918 .983 .998 .9998
6 .849 .949 .989 .998
7 .910 .972 .991
8 .872 .951 .981
9 .904 .952
10 .881 .935
11 .918
12 .901

>

Note that for Table III the correlation coefficient is computed without elim-
ination of the means, whereas for Table IV the correlation coefficient is computed
in the usual way.

8. Methods of fitting curves. As 7 increases, smaller values of R become sig-
nificant at any given level, and for moderately large n these values of R, at the
lower levels, pass out of the region for which the calculation is valid. However,
the table may be useful in deciding whether an assumed exponential regression
is plausible, when the number of sample points available is fairly small.

Tables for use in fitting exponential curves may be found in Glover’s Tables
[3] but unfortunately these tables cover a very limited range of values of p
(from 0 to 0.0953, ¢” between 1.0 and 1.1). The exact solution by least squares
is laborious. Values of b and p are calculated from the equations
Sye®* = bZePe,

8.1) «
Zaye® = bZae’™",

Rough approximations to b and p may be found by fitting a $traight line to the
values of log y, and these approximations may be improved by Seidel’s method.

Villars [4] has recently given some approximate methods of fitting the modified
exponential equation y = a + be . In the first method the n observations (n even)
are divided into two groups, one including the 1st, 3rd, 5th, etc., and the other
the 2nd, 4th, 6th, etc. The relationship between the expectations of corresponding
members of the two groups is

(8.2) vi=h+ my;, j=1)21"'7n/2)
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where

83) ui = o b,
vi=4a + bezip,

and som = e, h = a(l — ¢). Hence if a straight line through the origin is fitted

to the observed u and v values, where u; = Y1, ¥; = ¥2; , both variables being

subject to error, the slope of this line will give an estimate of ¢” and its intercept

will give an estimate of a(1 — €”). An estimate of b can then be found from (8.5),

or alternatively both a and b can be found from (8.4) and (8.5), where

(8.4) Na + b2Zm® = Zy,
(8.5) aZm® 4 bIm’® = Zym®.

An alternative method, also given by Villars, is applicable whether n is odd
or even. It consists in treating y;and yj41,j = 1,2, - -+, n — 1, as pairs of cor-

responding % and v values, although, since each u except the last appears also
as a v, the pairs are clearly not independent.

A systematic method of calculating the exact least squares solution, starting
with an approximate value of p (or of ¢ = €*), has been presented by W. J.
Spillman [7]. This method utilises tables of ¢* for z between 2 and 20 and for
g at intervals of .01 between 0 and 1.

There is, of course, no point in fitting an exponential equation by least squares,
or by any more or less equivalent method, unless there is some reason to believe
that the underlying assumption of approximate uniformity in the variance of
y is valid. If log y is approximately normal with constant standard deviation,
as seems to be true for many data in the field of economics, the usual procedure
of fitting a straight line to the logarithms of the values of y is clearly justified.
On the other hand, if the standard deviation of y is constant, the effect of this
procedure is to give undue weight to the smaller values of y. Some data exist on
fertilizer trials in which the assumption of constant standard deviation of y
seems reasonable, and which suggest an exponential, or modified exponential,
trend.

9. Numerical illustrations. The data in Table V, referring to the mean girths
y of rubber trees in inches after various levels x of fertilizer treatment, I owe
to the courtesy of Mr. H. Fairfield Smith.

TABLE V
z | y Y
0 20.518 20.526
1 21.138 21.109
3 21.734 21.804
5 22.218 22.144
7 22.286 22.311
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It will be observed that the values of = are not equidistant. This makes the cal-
culations more awkward.

If the fitted equation is Y = a 4+ bq", where ¢ = €7, the least squares equations
for a, b, q are

5a+bll +q+d +d+dl=v+uy+u+ vt w,
al+g+¢+¢+dl+bl+¢+ ¢ +d°+¢"
9.1) = oo + yig + ¥sq" + ysg" + vrq's
all + 3¢" + 5¢" + 7¢°] + blg + 3¢° + 5¢" + 7¢"]
= y1 + 3y’ + 5ysg’ + Tyrg's
Approximate values for a, b, and ¢ were found by Cowden’s method [6]. A

curve was drawn by eye between the plotted points and a trial value of a cal-
culated from three equidistant ordinates, Yo, Y;, Y, , by the formula

YooY, — Y
©2) i A ) A

Values of Y — a were then plotted on semi-logarithmic paper, and the value of
a was adjusted by trial so that a straight line fitted the points reasonably well.
From this straight line, values of b and ¢ were obtained, b being the ordinate
at z = 0, and ¢ the ratio of the ordinates at z = 7 and z = 0. In this way the
following approximate values were calculated:

a = 22.5, by = —20, g = 0.70.

One application of Seidel’s method (solving linear equations in éa, 8b, dc) gave
the improved values

a=2247, b= —1045 ¢ = 0.7000.

Using these values, the calculated Y of Table V were obtained. The correlation
coefficient between observed y and computed Y is 0.99735, which corresponds
to n = 5. If, ignoring the slight deviation from uniformity in the z-intervals,
we use Table IV, we find that P is slightly >0.001. The null hypothesis of no
effect of the fertilizer is decisively rejected.

Villars [4] gave an illustration of the fitting of an exponential eurve to data
referring to a certain property of a rubber latex. By his first method he obtained
as the regression equation

(9.3) Y = 1.0009 — 0.2877¢ %%

where 2¢ = ¢ + 1 of his formula (4.1). By the second method he obtained the
equivalent of

(9.4) Y = 1.0000 — 0.2811¢7 %%,

If the correlation coefficients between Y and y are computed for both equations,
the values turn out to be 0.9560 and 0.9572, respectively, so that the second
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method gives a slightly better fit. The number of observations, however, is large
enough (sixteen) for such a coefficient of correlation to be very highly significant,
with reference to the null hypothesis.

For the purposes of illustration, we will use only the first six of Villars’ ob-
servations, given in the first two columns of Table VI.

TABLE VI
z y Y (method 1) Y (method 2)
1 0.776 0.7715 0.7742
2 0.852 0.8555 0.8415
3 0.850 0.8826 . 0.8754
4 0.869 0.8914 0.8924
5 0.939 0.8942 0.9010
6 0.904 0.8951 0.9053

By Villars’ first method the values of ¥ given in column 3 were calculated,
corresponding to the equation ¥ = 0.8955 — 0.38516_1"132%. The correlation
coefficient between y and Y is B = 0.871, so that from Table IV the departure
from the null hypothesis is barely significant. Villars’ second method gives the
values in column 4, corresponding to ¥ = 0.9088 — 0.2693¢ **", and in this
case B = 0.906. The fit is therefore appreciably better, and the regression ap-
pears to be significant at a level about midway between .01 and .05.

10. Acknowledgement. In conclusion, the author would like to express his
great indebtedness to Professor Harold Hotelling for having suggested the
problem and for helpful advice and criticism.
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