SOME TESTS BASED ON DICHOTOMIZATION

By NiLs Bromqvist

University of Stockholm and Boston University

1. Summary. Some methods for testing independence between the components
of a random vector are discussed. The basic principle in the construction of the
tests is dichotomization of each component variable. The distributions are
obtained under randomization. Other applications of the tests are mentioned
(Section 2). Certain limiting distributions are derived (Section 4). The exact
distribution of the test statistic in a special case is tabulated (Section 5). A
brief study of an alternative test is made (Section 6).

2. Introduction. Consider a random sample of n vectors from an m-dimensional
population with unknown distribution. It is desired to have a nonparametric
test of independence between the m random variables. Solutions applicable to
this problem were given by E. J. G. Pitman [1], who studied the conditional
distribution of a certain statistic under permutations of the actual observa-
tions, and by M. Friedman [2] and M. G. Kendall and B. Babington Smith {3]
using the method of ranks. At least in the latter method the absence of ties is
essential, so that the observations of each component variable can be ordered.
The present paper deals with the opposite situation, where the n observations
of each variable are so heavily tied that it is possible to distinguish only between
two groups, one higher and one lower, say. The situation can also be described
as a dichotomization of distinct observations in order to simplify calculations,
in situations where such simplifications (and loss of efficiency) can be afforded.

If all observations belonging to a higher group are replaced by scores one and

the others by scores zero, and if the numbers of score one are ny , 1, , <+ + 1 (0 <
n; <n,i = 1,2, -+ m), respectively, then the observations may after the dichot-
omization be represented by the following matrix
totals

T X vt Tim W

Loy Xog  Xom Y2
(1)

Tn1 Tp2 Tnm Yn

totals Mmoo Mg o M

where each x;; is equal to either one or zero.
. . n\ 5. .
Since the sample is assumed to be random, all ( ) different assignments of

J

seores in the jth (7 = 1, 2, --- , m) column of (1) have the sume probability.
Denote the comnion expectation of the y’s by P = p; 4+ p» 4 -+ 4 ., where
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n; = np; ( = 1, 2, - -+, m). Under the (null) hypothesis of independence we
expect all ¢’s to be in the neighborhood of P. It seems, therefore, appropriate
to base a test of independence upon the deviations from these expected values.
Accordingly, we define

8 =2 (y:i— P)
i=1

as a test function and consider large values significant.

It should be observed that the test based on S can be applied also in situa-
tions,other than the one considered above. First, when independence between
the column vectors is assumed, we make the null hypothesis that all assignments
of scores in a column are equally probable. In such a case we are dealing with
tests of homogeneity between the rows of matrix (1). This situation has been
considered by W. G. Cochran [4], whose statistic @ is the same as the one in
Theorem 4 of the present paper. Cochran gave a nonrigorous proof of this the-
orem. For the sake of completeness the rigorous proof is given here. Secondly,
let the mn values be observations in a two-way classification with one observa-
tion in each cell and assume that there are no column effects, in the sense of the
analysis of variance. After choosing appropriate p-values the test S can be used
to test the absence of row effects. This problem was studied by A. M. Mood and
G. W. Brown ([5], p. 399) in the important special case when all p-values equal
1, that is, when each column is dichotomized by the median. Theorems 3 and
4 in this paper are generalizations of results already given in [5], p. 399.

The p-values are considered nonrandom. This seems to be a proper assumption
in the continuous case, since it is always possible to have the columns in (1)
dichotomized by fixed quantiles. In the discrete case the test will be conditioned
by this assumption.

No attempts have been made in this paper to investigate the power of tests
considered. Consequently, all statements refer to the situation when the null
hypothesis holds true.

3. Basic covariances. Before entering into discussion of the tests based on S
we will introduce some notation and give some results for the case m = 2.
Let
tix = Z Tk
=1
be the number of rows in the matrix (1) 'having score one both in the jth and
in the kth column and define

1< 2
) g = -2 @i —p)-@a — p) = 2 = pime
N =1 n

as the basic covariance between the two columns.

In a previous paper [6] the author has studied a test of independence between
two random variables, based on the statistic ¢i» , for the special case p; = py =
1. Some of these vesults are generalized here.
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Dichotomization of the jth and kth column is equivalent to constructing the
following 2 X 2 table:

Number of scores

\\ Column k&
~__ 0 1 Totals
Column j \
0 n—=n; —ng+v ng — v n — n;
1 n; —v v n;
Totals. ......... n — n /2 n

From this table the exact distribution of any ¢; and, consequently, g is ob-
tained:

@) Plty = v} = <1f} ' @ki‘:?)

G)

max {0, n; + n — n} < v < min {n;, n}.
Ed

where

The first two moments of the distribution of ¢;. are obtained from (3):
E(gn) = 0,
o*(gi) = pips(l — P — p)/(n — 1).

From formula (3) also some asymptotic forms of the distribution of ¢ (and
t;x) can be derived. The derivations are straightforward applications of Stirling’s
formula, wherefore we will give only the final results here.

TuaroreM 1. If p; and py remain fized as n — o, then q;x has in the limit a
normal distribution with mean and standard deviation as given in (4).

THEOREM 2. If \/np; — \j and \/npi — \i as n — o, then t; has in the limal
a Potsson distribution with parameter N \; .

4)

4. Limiting distributions of S. We shall proceed to study the asymptotic
behavior of the S-distribution under various assumptions regarding m, n and
the p-values. From a practical point of view the case of large n should be most
important when we are dealing with tests of independence between the columns
in (1). In the case of testing for homogeneity between rows, however, large
m-values become of main interest. Accordingly, we shall investigate both these
cases and also the case when the p-values are small and n large.

TuroreM 3. If m and all p-values remain fixed as n. — « , then S is asymptotically
normally distributed with mean

n Z; pi(l — p;)



TESTS BASED ON DICHOTOMIZATION 365

and variance

— 1 Z pipe(l — p) (1 — pa).

Proov. It follows from the definition of S and ¢, that

{5 @ - )

=] =1

=n 2 p(l —p)+ 2 2 g,
i=1 i<k

S

I

6

which proves that S essentially depends only upon the sum of the basic covari-
ances. Furthermore,

Lige, -+ gn-im) = ;k Vool = p) (1 — pi)-
=+n—1. Z ik
i<k

is a fixed (in n) linear form in the random variables

qirNv'n —i
V(1 — p) (1 — pr)

grV/n — 1 G,k =1,2 - myj = k.
Vo — p)(1 = pi)

For large n these variables, according to Theorem 1, tend in probability to
standardized normal variables. The linear form L tends to the same linear form
in the limiting variables. Hence L is in the limit normally distributed. It is
readily seen that the variables ¢;. are pairwise independent, from which it
follows that also the limiting variables are pairwise independent. Consequently,

EL) = 0,
(L) = Z:k pipe(l — p)) (A — p)

also in the limit. The theorem follows from (5).
TrEOREM 4. If n and all p-values remain fixed as m — o, then

n—1 S
" ;pj(l—l’i)

has in the limit a x'-distribution with n — 1 degrees of freedom, subject to the con-
dition that

. 1 m
lim — Z p;(1 — p;) # 0.

m—o0 N j=1

Proor. The random vector (y — P, y» — P, -+, yn — P) is a sum of m
independent vectors with zero mean vectors and variances and covariances
(J) = E(le pi)2 = pJ(l - pl) (’L = 17 2; e 7n)a

pj(l_pJ) (i7k=1)2""7n;i¢k;

) e Bge: — Ds L — ) = —
ik E(xy; p:)(ka 5 n — 1 i=12 ---,m).
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Since all these vectors are uniformly bounded with probability one, the Linde-
berg condition for the gencralized central limit theorem ([7], p. 113) is fulfilled.
It follows that the vector

1

\/m(lh—] Jz‘“P yn—P)

has a limiting n-dimensional normal distribution with zero mean vector and
variances and covariances
’ ’ .
mii = A (7': L, 2, ""n)y
’ . .
Mir = "A/(?l—l) (7’7 ko= 1,‘27”' 7n;%¢k))

where

A = lim - ij(]

m—>00 m j=1

(From the assumptions made in Section 2 it follows that 4 # 0.) Hence the

vector
/‘/ (yl-—Pyy?“Pr"')yn_P)

has a limiting normal distribution with zero mean vector and variances and co-
variances

6 Mg = (’I’L"" 1)/”’ (;: ]-)27 ,n),
© pir = —1/n (4, k=1,2,-+-,n;7 5 k).

The covariance matrix constructed from (6) has n — 1 characteristic numbers
equal to one and one characteristic number equal to zero. Consequently ([8], p
314),

n:—l- Z (g — Py = = L3 n DS
mn
has a limiting X2-diStI‘lbut10n with n — 1 degrees of freedom, which proves the
theorem.

The next theorem concerns the case when all p-values tend to zero as n ap-
proaches infinity. A practical example where this situation becomes of interest
is the following. Suppose that a large number (n) of persons are given some
(m) psychological tests and we want to investigate whether or not these tests
are independent of each other. For each person (z) and test (j), passing (z:; = 1)
or not passing (x;; = 0) is registered. If then the number (n;) of persons passing
the jth test (j = 1,2, -+ - , m) is small as compared with 7, it seems preferable
to use the approach of the following theorem to that of Theorem 4.

Since now most of the y-values in the sum column of matrix (1) will equal zero
or one, it seems intuitively desirable to transform the test function S in such a
wayv that the few y-values exceeding one are separated. Putting

T =2 tu,

i<k
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we may write the expansion (5)
S = nP(1l — P) + 2T.

T depends only upon those y-values that exceed one, which follows from the
fact that, if the number of y’s equal to 7 is denoted by r; , then

@ T=2 (2’) i,
a formula that can be used in computing 7. We proceed to prove the following
theorem on the limiting distribution of 7', when the p-values tend to zero as
—1/2
n
TueoREM 5. If m remains fived and A/np;—\; (j = 1,2, -+ ,m) asn —
o, then T has in the limit a Poisson distribution with parameter Y i<k A\

k—1
Proor. Let Tk = 2 t3. Then

j=1
®) T=T+Ts+ -+ Tn.
The main part of the proof of the theorem will be to show that, if we add an

extra column to the matrix (1), then 7,4, is in the limit Poisson distributed and
independent of 7.

As above, let 7;(¢ = 0, 1, --- , m) be the number of y’s equal to 7. It is easily
seen that 7',.4; depends upon 7T only through the r-values. Since the columns
of matrix (1) are independent, the conditional distribution of T,.;, given
To, 71, "y Tm, 18

o) Pl ool = £(2 ) 17,

Nmt1 i=0 \Zq,

where the summation is extended over all z’s such that

m
E Ti = Nmi1,

=0
(10) Z 'L.)Jz = ,jym.;.l,
=0
0<z;: <7, =01, ---,m).
We now let n — x and nj/v/n — N\ (j = 1,2, ---, m) while m and T 1
remain fixed. Because of (10) z;, @2, - -+ , T, are bounded and zy = npyq —
> @ is of the order /7.
Because of (7), 7,73, -+, rn are bounded. Furthermore, since
Z rs = n,
=0

m m
Z iy = Z Ny,

1=0 =1
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it is true that 7, is of the order n and r, of the order \/n. Applying Stirling’s
formula to the summand in (9) we obtain after some caleulations

—A ATmH1
) n -1 m r e T ; for $1=Tm+l,x2=x3="' = I, = 0,
hm H = m+1+
n—ow \NMm+1 i=0 \Ti .
0 otherwise,

where
A = App 2‘1 A
=

Hence, according to (9),

. A AT
lim P{Tm+1|ro,r1,---,r,,.} = e 1
n—»0 Tm,-{.1.

Since the r-values completely determine T, it follows that T',,,4 is in the limit
independent of 7' and Poisson distributed with parameter A. Applying Theorem

TABLE I
P{S = S
n=4 n=4
m T o \ m
s 6 8 N 3 5 7

0 | 1.000 1.000 1.000 So N\
2 031  .960 .973 1

4 486 .651  .745 3 583 .761  .840
6 356 .540  .663 5 361 .576  .696
8 134 .302  .435 9 0278 .236  .399
10 0787 .225 .355 11 109 .237
12 117 .237 13 0471 147
14 102 .213 17 0162 .0896
16 .0046 .0400 .109 19 .0410
18 0315 0971 21 .0290
20 .0109 .0563 25 .0008 .0110
22 .0379 27 .0060
24

26

30

32

34

36

38

40

50

1.000 1.000 1.000

.0299 29 .0024
.0032 .0239 | 37 .0006
.0078 T T e
.0030
.0025
.0001 .0017
.0013
.0005
.0001
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TABLE I—Continued
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n=6 n=6 n=§ "
N 4 N, ™ s s \m 5 .
0 |1.000 So\_ S N\
2 .988 1.5 1.000 1.000 0 1.000 1.000
4 .813 3.5 .768  .907 2 1.000 .998
6 .543 5.5 .498  .752 4 .870  .947
8 .358 7.5 .160  .489 6 .634 .759
10 179 9.5 .070 .383 8 316 .572
12 .0710 11.5 .209 10 .140  .353
14 -0350 13.5 .0025 .132 12 .0296 .208
16 -0080 15.5 .0675 14 .0100 .0912
18 .0046 17.5 .0360 16 .0474
24 .0001 19.5 .0113 18 .0002 .0156
21.5 .0090 20 .0055
23.5 .0031 22 .0020
25.5 .0008 24 .0003 -
29.5 .0003 26 .0002
TABLE I—Continued
n=10 n=10 n=12 n=14 n=16
Y m T XNITL \ m \ m T X_ m o
4 3 AN 3 AN 3 3
0 |1.000 2.5 |1.000 3 [1.000 3.5 [1.000 0 [1.000
2 [1.000 4.5 | .927 5 | .959 5.5 | .977 2 {1.000
4 | .987 6.5 | .747 7 | .831 7.5 | .890 4 [1.000
6 | .903 8.5 | .467 9 | .600 9.5 | .709 6 | .987
8 | .747 || 10.5 | .241 11 | .359 || 11.5 | .479 8 | .929
10 | .562 || 12.5 | .0847|| 13 | .165 || 13.5 | .264 10 | .793
12 | .370 | | 14.5 | .0280| | 15 | .0639 | 15.5 | .121 12 | .591
14 | .221 || 16.5 | .0043| | 17 | .0172|| 17.5 | .0432|| 14 | .372
16 | .117 || 18.5 | .0012/ | 19 | .0045|| 19.5 | .0133|| 16 | .197
18 | .0552] — 21 | .0005| | 21.5 | .0029|| 18 | .0858
20 | .0249 23 | .0001| | 23.5 | .0006/| 20 | .0314
22 | .0084 25.5 | .0001|| 22 | .0091
24 | .0037 24 | .0023
26 | .0009 26 | .0004
28 | .0003 28 0001
30 | .0001 —_—
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2 for the case m = 2, we now proceed step by step to obtain the desired result
that T is in the limit Poisson distributed with parameter

m k—1
,;)"‘ SThM = 20 A\

1=1 i<k

This completes the proof of the theorem.

5. The exact distribution of S in a special case. In the important special case
when all p-values are equal to 3 it follows from Theorem 3 and 4 that S is asymp-
totically normally distributed with mean mn/4 and variance n*-m(m — 1)/8(n — 1)
asn— o, and that 4(n — 1)8/mn is asymptotically x*-distributed withn — 1 degrees
of freedom as m — . These limiting distributions may be used as approxima-

TABLE II
Comparison between exact and approzimate distribution of S at the 59, point
P{S = 8o}

n m So

exact x2-approx. |normal approx.
4 8 22 .038 044 .017
6 5 17.5 .036 .042 .017
8 4 16 .048 .060 .029
10 4 20 .025 .038 014
12 3 17 .017 .039 .013
14 3 17.5 .043 .063 .037
16 3 20 .031 .050 .025

tions when n or m is large. For small values of » and m the exact distribution of
8§ is needed. This is given in Table I for the following cases:

n 4 6 8§ 10 12 14 16
m 38 35 34 34 3 3 3.

The case n = 2 needs no consideration here since the test then reduces to the
standard sign test. The case m = 2 is also excluded since it has already been
tabulated in [6].

In Table II some comparisons are made between the exact distribution given
in Table I and the approximations given in the paragraph above. The normal
approximation has been applied after usual correction for continuity. For each
pair (n, m) in Table II the best approximation has been underlined, which might
serve as a guide in the choice of appropriate approximation.

6. Another test. Although it has not been mentioned explicitly agaiﬂst what
alternative hypothesis the S-test is designed, it is clear that we have had in
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mind the case when all m compouent variables of the random vector studied
are positively correlated. We do not intend to enter into a detailed discussion
of the difficult question of alternatives. However, one case more shall be briefly
mentioned. If about half of the variables are positively correlated with each
other but negatively correlated with the rest of the variables, it is intuitively
seen that the S-test will lose its power. Instead, a test should be used that is not
based upon the algebraic sum of the basic covariances (5), but takes into account
their absolute values. For example, a test based on the sum of the squares of
the basic covariances might serve our purpose. In this connection we shall prove
the following limiting theorem.
TaeoreM 6. If m and all p-values remain fixed as n — «, then

(n — I)Q?k
i<k pive(l — p;) (1 — &)

has in the imit a x*-distribution with <72n> degrees of freedom.

Proor. In the proof of Theorem 3 it was stated that the random variables

grVn —1
Voipd = p)(1 — pi)
are pairwise independent and, as n — «, normally distributed with zero mean

and unit standard deviation. Hence, in the limit they are totally independent.
The theorem follows.

(]3k= 1727,m,.7?£k)

The author expresses his indebtedness to Professor Frederick Mosteller of
Harvard University for suggesting the original problem and for many helpful
discussions. Miss Elizabeth Shuhany of Boston University has kindly assisted
in the construction of tables.
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