ESTIMATING LINEAR RESTRICTIONS ON REGRESSION COEFFICIENTS
FOR MULTIVARIATE NORMAL DISTRIBUTIONS!

By T. W. ANDERSON

Columbia University

Summary. In this paper linear restrictions on regression coefficients are
studied. Let the p X ¢. matrix of coefficients of regression of the p dependent
variates on ¢, of the independent variates be® B,. Maximum likelihood estimates
of an m X p matrix I' satisfying X”B, = 0 and certain other conditions arefound
under the assuraption that the rank of B, is p — m and the dependent variates
are normally distributed (Section 2). Confidence regions for I under various
conditions are obtained (Section 5). The likelihood ratio test of the hypothesis
that the rank of B, is a given number is obtained (Section 3). A test of the
hypothesis that I' is a certain matrix is given (Section 4). These results are
applied to the ‘“g-sample problem™ (Section 7) and ave extended for certain
econometric models (Section 6).

1. Introduction.

1.1. Unwvariate analysis of variance. A large number of problems of univariate
statistics can be put into the form of analysis of variance or regression analysis.
We assume that

(1.1) 8o = 324,

where 8 and z, are column vectors® of ¢ components, that &(z, — 8'2,)° = o,
and that z, is uncorrelated with 2, (a # v). On the basis of a sample, that is,
aset'x, -+, an; 2, - -, 2 (where there are ¢ linearly independent z,),
we may test hypotheses about 3, we may obtain point estimates of 3, or we may
find a confidence region for the vector 3. It is well known that this model is
sufficiently general to include the analysis of variance model for fixed effects.
The usual point estimate b of § is defined by

1 By invitation parts of this paper were presented to the Cleveland Meeting of the Insti-
tute of Mathematical Statistics, December 30, 1948. Some of these results were included
in the thesis [1] submitted to the Mathematics Department of Princeton University in par-
tial fulfillent of the requirements for the degree of Doctor of Philosophy, June, 1945; some
other results were included in dittoed papers at the Cowles Commission for Research in
Economics (of which organization the author is a research consultant). This paper will he
reprinted as Cowles Commission Paper, New Series, No. 50.

2 We use B to distinguish the capital “beta’ (a matrix of parameters) from B (a matrix
of estimates). Matrices are indicated by holdface capital letters, and vectors are indicated
by boldface lower case letters.

38’ is the transposc of §.

4 We use the same notation for observations as for random variables with the hope that.
the reader can easily distinguish hetween the uses on the basis of the context.
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N N
(1.2) b Y ZaZo = 2 TaZu.

a=1 a=1

The estimate s° of ¢° is given by

N N N
(1.3) (N = )s" = 2, (xa — b'22)" = >k - b <Z zazi,)b.
a=1 a=1 a=1
Consider testing the hypothesis 8, = 0, where 8 is a subvector of § with
¢: components; that is, 3’ = (81 B2). We partition b and z, similarly as b =
(b, by) and z = (21 Z2.). We use the statistic

!
(1.4) a— ?Egb}
Qs®
where
N , N , N , —-1 N ,
(1.5) Q = Zl ZzaZZa - Zl z2azla (Zl zlazla> Z zlaz2a-
a= a= a= a=1

This statistic has the F-distribution with g and N — ¢ degrees of freedom if the
null hypothesis is true and if {z.} are normally distributed. The above statistic
is equivalent to

N

] > (e — b'z2)°
(1.6) q = ;_l )
2 nd . */ 2
N‘;’_’”g F 41 az_—l (%o b, Zla)
where by is defined by
' N , N
(17) bf' Z 21021 = 2 a"az;a .
a==1 a=1

The numerator is proportional to the estimate of o® when we do not believe the
hypothesis to be true, and the denominator is proportional to the estimate of 7
when we do believe the hypothesis to be true. We reject the null hypothesis
when the observed F is greater than F,, v_o(e), the significance point of the
F-distribution with ¢ and N — q degrees of freedom corresponding to a sig-
nificance level e.

We can also test the hypothesis that 8, = B3 , any arbitrary given vector.
A confidence region for 8, consists of all those 82 such that the corresponding
hypothesis is not rejected on the basis of our sample.

1.2. Multivariate analysis of variance. Now let us turn to the generalization
of the analysis of variance to be used in the treatment of a vector variate. The
expected value of a vector variate x, with p components is assumed to be

(1.8) &x, = Bza,

where B is a p X ¢ matrix of regression coefficients. We further assume that
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(1.9) &(xe — Bzo)(xa — Bz, = X,

a positive definite matrix, and that x, is uncorrelated with x,(e # v). As in
the univariate case we may wish to estimate the regression coefficients. The
estimate of each row of B is of the form (1.2). Thus B, the estimate of B, is
defined by

N N
(1.10) BY ZaZo = 2 XaZn.

a=1 a=1

The estimate of S of X is given by
N

(1011) (N - Q)S = Z (xa - Bza)(xa - Bza),-
a=1

If {x.} are normally distributed, B has a normal distribution with mean B and
(N — ¢S = A has a Wishart distribution with £ covariance matrix and N — ¢
degrees of freedom. 3

To test the hypothesis B, = 0, where B, is the second submatrix in B =
(B: B,), we use a generalization of the statistic (N"qqu F + 1)‘1, which was

used in the univariate case, namely,

! i (o — Bza)(xa — Bz.)’

1

(1.12) U= ,
E (xa - B;.kza) (xa - B;kza),

N
a=1

where By is defined by
N , N ,
(1.13) Bl Y ZiZia = ), XaZia.
a=1 a=1

The matrix in the numerator of U is proportional to the estimate of = when the
null hypothesis is not believed true, and the matrix in the denominator of U is
proportional to the estimate of = when the null hypothesis is believed true. We
reject the hypothesis B, = 0 when the observed U is less than Uy, q5,5—4(€), the sig-
nificance point at significance level e. The distribution of U has been given by
Wilks in many special cases [16]; Rao has given an approximation to U,.q, y—o(€)
based on an asymptotic expansion of the distribution of log U [14]. The likeli-
hood ratio criterion is U*". .

We can also test the hypothesis that B, = B}, an arbitrary given matrix.
A confidence region for B, consists of all those B} such that the corresponding
hypothesis is not rejected on the basis of our sample.

1.3. Rank of the regression matriz; linear restrictions. If B, # 0, there enters
into the multivariate case a new feature which does not appear in theunivariate
case. There may be some of the rows of B, that are zero; that is, there may be
some components of x, that have expected values independent of z,,. More
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ﬂenually, all of the elements of B, may be different from zero, but the rank of
B. may be less than the maximum possible. That implies that it is possible
to take a linear combination of components of x. such that the expected value
of this linear combination is independent of 2y, . If the rank of B, is less than p,
there is a vector ¥ (of p components) such that

(1.14) vB, =0
From (1.8) we obtain
(115) Sy'x,, = Ylﬁla = ‘Y’Elzla .

In general, if r is the rank of B, there are p — r linearly independent vectors
~ satisfying (1.14).

In this paper we are primarily interested in estimating p — r linearly in-
dependent vectors satisfying (1.14). In Section 2 we find that the maximum
likelihood estimates of these vectors (under certain normalization conditions)
are the characteristic vectors of BZQB; in the metric of S. In Section 5 we find
confidence regions for these vectors using the theory summarized in Section 1.2.

1.4. Examples. A number of multivariate problems can be thrown into the
above form, some naturally, some a little unnaturally. As a simple example,
consider a sample Uy, ---, U, from N(u, ) and a sample of the same size
Vi, -+, V. from N(v, £), where N (2, £) denotes the normal distribution with
mean % and covariance matrix £. We can describe this by the above model.
Let Xo = Ua, Xnpa = Vol =1, -+ ,n). Let zia = 1, =1, ---,2n = N;
and let 2o = 1fora =1, --- ,n,and 2 = —1fora = n 4+ 1, -+, 2n. Then
the regression model holds with the first column of B being 4(u + v) and the
second being (u — v). The hypothesis u = v is transformed into the hypothesis
of the regression of x, on 2., being zero. In this case B: consists of one column
and is either of rank O or 1. The T” test that it is of rank 0 is a special case of
the tests given in Section 3. Estimation of linear restrictions on B. is trivial
and is a special case of the treatment in Section 2.

In a similar fashion we may treat certain three-sample problems. Suppose
we have samples of size n from N(u;, ), N(u:, £), and N(us, ). Then 214,
24 , and 23, can be chosen so that the three columns of Bare §; = w1 + w2 + us,
B2 = w — w2, B3 = w: — wus. If the means lie on a line, that is, if w1 — w2 =
k(uz — us) for some constant k, the rank of (8. 8s) is one instead of two. Insuch
a case there are p — 1 vectors that are annihilated by this p X 2 matrix. The
intersection of the planes perpendicular to these p — 1 vectors is, of course,
the line joining the means. This vector is simply proportional to one of the last
two columns of B. In Section 7 we give a more general consideration of “g-sample
problems.”

Now we shall consider a more elaborate problem that is naturally put into
this pattern. Suppose that the workings of the economic system are such that
the vector of economic variates x, has a mean Bz, , where z, consists of non-
cconomic variates. Bz, might be called the vector of “systematic parts” (or
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it is called the “reduced form”). Suppose there is a vector v such that y'B = 0.
Then the variate y’x, has mean zero. Under certain conditions the equation
Y'xo = v, is called a “‘structural equation.” In many such economic models one
would like to include in the z, “lagged’” values of x,. Although many of the
results in this paper apply to such a case, we shall exclude such considerations
in order to simplify the discussion.

2. Maximum likelihood estimates of the coefficients of the restrictions. We
assume that x, is normally distributed with mean (1.8), that is, €xo = Bi21. +

Bozoo(a = 1, -+ -, N). Since the {z,} are fixed, we can make the transformation
N , N , -1

(2.1) Vo = Z9a — Zl 228 21,9(; 215 z1ﬂ> Z1a,
B= =

N N -1
(2:2) Bl =B+ B, (ﬂzl 238 zis) (ﬂz: 2y ziﬂ) :
Then the expectation of x, is
(2.3) gxa = ﬁ]’.k Zja + E? va;

and z;, and v, are orthogonal (in our sample). We want to estimate the p X m
matrix T such that

(2.4) r'B; = 0.
In order to avoid trivial estimates we require
(2.5) I'sr = L

There is still an indeterminacy because (2.4) and (2.5) are satisfied if I" is replaced
by the product of I' on the right by an orthogonal matrix.

Before proceeding formally with the method of maximum likelihood, let us
consider a more intuitive approach. We can make an analysis of variance for a
linear combination ¢’x, . Then

N N
) (%) = 2, ¢'Xakuc

a= a=1

26) . .
=¢'Bf Y 21a21aBi'c + ¢'B: D vavwBic + (N — g)c'Sc,
a=] a=1
where By is defined by (1.13) and B., the usual estimate of B,, is given by
(1.10) or by

N
(2.7) By = X x.0.07,

a=1
where Q, given by (1.5), iS D we1Va ve.. The second term on the right in (2.6)
is the “sum of squares of the v effects” and the third term is the “error sum of
squares.” Since a restrietion s is such that the expected value of a ‘v effect”
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is 0, a good estimate of a v would seem to be the vector ¢ that minimizes the
“p effect sum of squares” relative to the “error sum of squares”, that is, the ¢
that minimizes

! !’
_ c BzQBgC
(2.8) = E'_(N——Q)SC
The minimum ratio is the smallest root of
29 | B.QB; — ¢4 =0,

where A = (N — ¢)S, and the vector ¢ is the corresponding characteristic
vector satisfying

(2.10) (B,QB; — ¢pA)c = 0.

If there are m linearly independent restrictions, we use the characteristic vectors
associated with the m smallest roots of (2.10) normalized by

(2.11) ¢’Ac = N.

THEOREM 1. Suppose x, (of p components) is distributed according to N (B,z,, +
Bszoo, B)(a = 1, -+, N). Suppose B, is of rank p — m. Then a set of mazimum
likelihood estimates of By, Ba, =, and T satisfying (2.4) and (2.5) are

(2.12) ﬁl = ; XoZia (; zlazla>-1 - ﬁz }ﬂ: 2257'{5(; Zla-’»{a)_l;

2.13) B, = (I — £ DB,

(2.14) £ = H+4 HI'(I + o*)o*{'H,

(2.15) T = (Fpomtr, = o5 o)

where B. is given by (2.7) or (1.10), H = [(N — q)/N]S s gwen by (1.11), ®* s
the diagonal matrixz whose nonzero elements (pp—m+1, *** , ¢p) are the m smallest

roots of (2.9), and ¥; are the corresponding vectors defined by (2.10) and normalized
by '?;H'?,- = 1/(1 + ¢:). T* may be multiplied on the right by any orthogonal matriz
to obtain another maximum likelithood estimate of T.

Proor. We shall maximize the logarithm of the likelihood function®

log I, = — 3Nplog 2r + iN log | =7*|

(2.16) N - - — —

- % Z (xa - B;kzla - B2 va), Eﬁl<xa - B;.kzla - B2 va)
a=1

with respect to £, Bf, By, and I, subject to restrictions (2.4) and (2.5). Let

® be an m X ¢, matrix, and W an m X m symmetric matrix of Lagrange multi-

pliers. We shall maximize

(2.17) f=1log L + tr(@B;r) + r[w(@’sr — I

5 The method is similar to that used in [3].
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by taking partial derivatives and setting these equal to zero (“tr” denoting
trace). The partial derivatives with respect to the elements of I' set equal to
ZETo are

A
A

(2.18) dB; + WwivE = 0.
Multiplication on the right by I gives
(2.19) BT + WIER = 0.

In view of (2.4) and (2.5), which are to be satisfied by By, T, and £, this shows
that ¥ = 0.

The partial derivatives of f with respect to the elements of =, B, B, and
I lead to

(220) Ni = Z (xa — E,*zm - ﬁzva)(xa - ﬁlea - §2va)’g
(2.21) 7Y xazia = £UBF Y 210214,

(2.22) 7D xavl — }3_1]_372 > vavy + I'd = 0,

(2.23) ®B; = 0.

The solution of (2.21) for Bf gives Bf. ¥rom (2.22) we obtain
(2.24) B, = Y 20,07 + 16O
Multiplication on the left by I and on the right by Q gives

(2.25) 0 =13 x,v, + IVETD.

Thus

(2.26) ® = —1V 3 x.v..

Substitution into (2.24) gives

A

(2.27) B, = (I — £1'D)B,.
In view of (2.26), (2.27), and (2.7), we derive from (2.23)
(2.28) (I — £11V)B, QBT = 0.

We now consider (2.20), which can be written

A A A

(2.29) NE = 4 + £P1VB,QB; I 1VE.

It is clear that if 1y, £, B, is one solution of (2.4), (2.5), (2.27), and (2.29),
another solution is T , £, By, where I’y = 4,0 and O is any orthogonal matrix.
In this class of solutions let us consider those which make
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(2.30) %,f'Bz QB.T = D,

say, diagonal. Then (2.29) can be written

(2.31) NE = A+ NESODIVE.
Multiplication on the right by I gives

(2.32) NED = AT + NEFD,

or 7

(2.33) NEQ(I — D) =

We can write (2.28) as

(2.34) B,QB:f* — N£f'D = 0.

Since D is diagonal, multiplication of (2.34) on the right by (I — D) gives
(2.35) B,QB.{*(I — D) — N£f*(I — D)D = 0.
Substitution from (2.33) gives

(2.36) B,QB,i"(I — D) — A'D =

or

(2.37) B,QB:i* = (B,QB; + ATD.
Thus, the columns of I satisfy

(2.38) [B.QB; — d(B,QB; + A)I% = 0,
where d is a root of

(2.39) | B.QB:; — d(B,QB: + A)| = 0.

Let the roots of (2.39) be d; > dz > --- > d, > 0. Each column of I* satisfies
(2.10), where ¢ is one of

— d‘
(2.40) ¢ = r— R
Let the solutions of (2.10), normalized by
(2.41) ciAc; = Né;

(where §;;is the Kronecker delta), be ¢;, -+« , ¢, . If ¢; ¢, , then (2.41) is satis-
fied automatically. Then ¥; = k;c;. To determine k;, multiply( 2.33) on the left.
by #: . Then

(2.42) N#:£0( — D) = kic;AD.
Thus
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(2.43) N%:£4;1 — d;) = k.ciAc;k; = Noijki

for ¢ and 7 being indices of 4; in T*. Since % is to be normalized by £, we have
k¥ =1 —d;. Thus

1
2.44 i = V1 — d; ¢ = TjEEEE gL
@44) ¥ V14 ¢
Now we wish to show that we should take the vectors corresponding to the
m smallest roots. Let C = (¢1, -++, €p), C* = (Cp—mi1, ', Cp)- From (2.29)
we obtain.

NE =4+ %,Af(l — D)'DU — D)4

(2.45) .
=4+ NAC*(I — D)7'DC¥A,
0P =C*(\1 =d;é:;)fori,j=p—m+1, -+, p. Then
0 0---0)
_ 0---0 1 0---0
0 0---0 ()0 0 1---0
(246) C'SC =1+ |1 0---0] o*
0 1---0
’ 0---0 0 0---1
0 0---1
1 0---0 0 0
0 1---0 0 0
=10 0---1 0 0 =F,
0 00 1+ ¢pmgr -~ 0
0 0---0 0 s 1A ¢y
say. Thus
A - 1 2
(247) [ gl=tlc™Fl=|54| II @+
{=p—m+1

‘The logarithm of the maximized likelihood function is
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r
vA|=wiog T (1440 —pN.
N i=p-—m+1
Thus log 7. is maximized by choosing the smallest ¢; . This completes the proof
of the theorem.

It should be pointed out that I can be normalized in other ways. Since ¥
was shown to be zero, it is clear that the maximum likelihood estimate of I’
under other such linear conditions can be obtained from (2.15).

In the process of estimating I" we obtained an estimate of B, of rank p — m.
This can be written as

(2.49) B, = £1*PvB,,

(2.48) log I, = —ipN log(27) —3iN log

where the columns of T are the vectors satisfying (2.10) for the p — m largest
roots of (2.9). Fisher [7] obtained the same result for a special problem (see
Section 7). The author has given a different proof of this in [1]. Tintner [15]
and Geary [8] have considered the problem for = known.

The joint asymptotic distribution of the characteristic roots and vectors
defined by (2.9), (2.10), %nd (2.11) has been given [2] under the general condi-

1
tions that ¢ > p and % > 2424 approaches a limit in such a way that, roughly
a=1

1o =
speaking, the multiplicities of the roots of NBQQB; — AX | = 0 are the samc
for all N (see [2] for the exact conditions). In particular, if the nonzero roots
= 1 -
of | By lim ]TTQBg — AZ | = 0 are all different, the limiting distribution of C*

is given. Since plimd; = 0¢ = p — m + 1, -+, p), it follows from the

N—00
theorems of Rubin quoted in [2] that the limiting distribution of I is the same
as that of C*.

3. The likelihood ratio criterion for testing the number of linear restrictions.
If the number of independent restrictions on B, is m, the rank of Byisr = p — m.
Testing the hypothesis that the rank of B, is 7, against the alternative that it is
not greater than r,(>r;) is equivalent to testing the hypothesis that the number
of restrictions on B, is my = p — 7, against the alternative that it is m, =
p — r(<my). The likelihood ratio criterion is the ratio of the likelihood maxi-
mized under the hypothesis of m; to that maximized under the hypothesis
of my. From (2.48) we see that the criterion is

72

D vy
B =TI a4+¢™/ II 0 +¢27" = II 0+ )7
t=r1+1 i=rg-+1 4=r1-+1
TruorkM 2. Suppose x. (of p components) is distributed according to N(B121a +
Bizoo . E)(@ = 1, -+, N). The likelihood ratio criterion for testing the hypothesis
that the rank of By is ry against the alternatives that it is r(> ry) is (3.1), where
{¢:} are the ordered roots (in descending order) of (2.10).



ESTIMATING LINEAR RESTRICTIONS 337

In particular, the criterion for r = r(m = m,) against all other possible
alternatives requires the product over all the p — r;(=m;) smallest roots. In this

case
P

(3.2) —2logA =N 2 log (1 + ¢2)

t=ry1+1

is for large samples approximately N Z ¢:, which has been suggested by

¢=ry+1

Fisher [7] and Hsu [ ], [10] for testing this hypothesis.
TaEOREM 3. Let = Q approach a nonsingular limit as N — oo, and suppose B, is

of rankry . Then —2 log A, where \ 1s the lzke_lzhood ratio criterion defined in Theorem
2 for testing the hypothesis that the rank of Bs is ry against the alternatives that it is
not greater than p, is asymptotically distributed like x* with (p — r)(gz — r1)
degrees of freedom.
p
Proor. Let 6; = N¢;. It has been shown by Hsu [10] that >, Ne¢; =

t=r1+41

Z 6; has an asymptotic x’-distribution with (p — r)(gz — ) degrees
t=r)+1
of freedom’. Let {6iv} be a sequence of real numbers such that 0y —> 0. for

yd p
each7. Then N > . log (1 + 6:w/N) — D 6i4. The proof is concluded
i=r i+ i=rq1+1
by applying the theorem of Rubin (see [2], Section 2).

It might be observed that Theorem 3 does not follow from the usual theorems
concerning the asymptotic distribution of —2 times the logarithm of a likelihood
ratio criterion. In fact, if r, < min(p, gz), then —2 log A does not have a limiting

x-distribution. HOV\ ever, as N — o, its distribution approaches the limiting

distribution of Z 0; . This distribution can be obtained from the limiting
i=r+1

distribution of {6;} [9], [2].

4. Testing hypotheses about the linear restrictions.
4.1. Case of one restriction. Suppose we wish 10 test the hypothesis that
(+.1) gB; =0,
where ¢ is a specified (p- dlmensmnal) vector. The (q2~d1mens10nal) vector
Bg is distributed according to N(Big, g'2gQ™"), where Q is given by (1.5).
When the null hypothesis is true, g’ B; has mean 0 and, therefore, g 'B,QB:g/g'=g
has a x’-distribution with Q2 degrees of freedom. From the analysis of variance of
gxa we see that g’Ag/g’'Eg is distributed independently and according to a
x-distribution with N — q degrees of freedom. When the null hypothesis is
true
@) ¢B:QBig N — g _ 1 ¢'B:OBig
- 9'Ag g e 9¢'Sy

o Th1s a]qo follows from [2] and an application of the theorem of Rubin mentioned before.
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has the F-distribution with ¢, and N — ¢ degrees of freedom. Therefore, we have
the following theorem.

TarEOREM 4. Let x, (with p components) be distributed according to N(Biz14 +
Bz, X), a = 1, -+, N. Define the (p X q) matriz B: by (1.10), Q by
(1.5), and S by (1.11). Then the criticol region of a test of the hypothesis (4.1) at
stgnaficance level € is
9'B:QByg
) 9:9'Sg
[t may be noticed that we do not need to put any condition on the rank of B. .
4.2. Case of several restrictions. Now consider testing the hypothesis that

(4.4) g:B; = 0, =1, -+ ,m,

(43) Z quw’v—q (6)-

where ¢1, ---, ¢, are given (p-dimensional) vectors. We shall assume that
(g1, -+, gn) = G is of rank m (otherwise some of (4.4) are redundant). The
(g-dimensional) vectors Big; are normally distributed with means Big: and
covariances

(4.5) &(Byg: — B1g:)(Bag; — Bagy) = ¢izg;07.
When the null hypothesis is true, the expected value of Bsg; is 0 and G’ B,Q B:G
is distributed according to W(G'EG, ¢,), that is, the Wishart distribution with

covariance matrix G’SG and ¢, degrees of freedom.” Also G’ AG is independently
distributed according to W(G'EG, N — ¢q). When the null hypothesis is true,

| G'B,QB;G + G'AG |
| G’AG |
has the U,,q,,n—¢ distribution. The following theorem results:

TuarorEM 5. Let x, (with p components) be distributed according to N(Bizy. +
B:z:., ®), a =1, -+, N. Define the (p X q) matriz B, by (1.10), Q by
(1.5), and S by (1.11). Then the critical region of a test of the hypothesis G'B, =
0, where G is m X p, at significance level € is

| G’AG |

| G'B.QBiG + GAG | S Umow-a (O

The above is the likelihood ratio test of hypothesis (4.4); this is based on
Wilks’ test for the general linear hypothesis. Another test based on the test
suggested by Lawley (and later by Hotelling) for the general linear hypothesis is
based on the statistic t2{G’ B.QB>G(G’AG)™]. The test (4.7) has the usual
properties of the likelihood ratio test; it is consistent; —2N times the logarithm
of (4.6) has approximately the x’-distribution with g, degrees of freedom

(4.6)

4.7

1 .
when N is large (under the assumption that NQ tends towards a nonsingular

limit).

T W (¥, r) is defined as the distribution of 21¥, Y., where ¥, are independently distributed
according to N(O, ¥).
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1.3. Approvimate test of rank. If the rank of B, is p, then (4.1) cannot be
satisfied for any vector g; that is, Byg must have a mean different from 0 for
every g. This suggests that if we are interested in testing the hypothesis that
the rank of B,is p — 1 against the hypothesis that it is p, a possible procedure
is to reject the hypothesis if (4.3) holds for every g. This will be true if the
minimum of the left hand side of (4.3) with respect to g is greater than F g, y.o(e).
The minimum is the smallest root of

(4.8)

The smallest reot is f, = [(N — q)/ql¢, . Thus a critical region for this test is
(4-9) fp > F42.N~—q(e)-

This test is “‘conservative’’; that is, the probability is less than e of rejecting
the null hypothesis when it is true.

We can usc the results of Section 4.2 to generalize this technique. Only if
B, is of rank p — m can (4.4) be true for m linearly independent g, . A possible
test of the hypothesis that Bs is of rank p — m against alternatives that the rank
is greater consists of rejecting the hypothesis when (4.7) holds for all G of rank
m, that is, if (4.7) holds when G is chosen to maximize the left hand side. The
maximum is obtained by taking as columns of G the vectors satisfying

(4.10) [4 — ¢(B:QB; + A)x = 0
corresponding to the m largest roots of

(4.11) | A — y(B.,QB, + 4)| = 0.
Let these roots be Yy > ¢ > -+ > ¢, . Then

| G'4G | 1
[GB.QB.G + GAG | — 12 ¥+

(4.12)

It is easily seen that_ Y: = 1/(1 4+ ¢,_:). Therefore, a critical region for testing
the hypothesis that B, has rank p — m is

4.13) I (4607 < Unapwea ©.

t=p~—m+1

In other words, Uu,g,~-o(€) is an approximation to the significance point for
the criterion at significance level e.

6. Confidence regions for the coefficients of the restrictions.
5.1. Case of onc restriction. If By is of rank p — 1, there is one vector y satisfying

(5.1) v'B, =0
and a normalization, say

(5.2) Y@y =1
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(with the rank of (B, ®) being greater than that of By). If @ is a given (known)
matrix, then a confidence region for v, given the statistics B, and 4 (and Q),
consists of the vectors g (satisfying g¢’®g = 1) for which the test in Section 4.1
does not lead to rejection. If ® = = then we make use of the fact that in this
case v’ B,Q' Byy and v’ Ay have independent x ®-distributions.

TureoreM 6. Let x, (wzth p components) be distributed according to N (Biz1a +
B.z., %), a =1, , N. Define the p X g, matriz B, by (1.10), the non-
singular Q by (1.5), and S by (1.11). If the normalization of v is (5.2) for @
known, then a confidence region for ~ defined by (5.1) with confidence coefficient
1 — e consists of the vectors g satisfying

IB BI
53) 2ﬁ%§€gF“%da
and
(5.4) g®g = 1.

If the normalization is ¥'Ey = 1, then a confidence region of confidence (1 — &)
(1 — e) 1s the intersection of

(5.5) 9'B:QB3g < xi, (a1)
and
(5.6) Xi—o(e) < g'Ag < Xi—o(e),

where x5,(e1) is chosen so that the probability of (5.5) is 1 — & when g = ¥ and
Xy—q(&2) and xu—q(e:) are chosen so that the probability of (5.6) is 1 — e when

= 7.

These kinds of confidence regions were developed by Rubin and the author in
[3] following a suggestion by Girshick. Bartlett [5] has used this method in
treating an econometric problem.

5.2. Case of several restrictions. When B, is of rank p — m, there are sets of m
linearly independent vectors yp—m+1, = , vp satisfying

(5.7) viB, = 0.

Of course, if we take a set of m linearly independent linear combinations of
, ¥p We obtain another set of vectors satisfying (5.7). We can take

Yp—m+tl, *°°

out some of the indeterminacy in the definition of ¥p—m41, **+ , vp by requiring
(5.8) YiZy; = bij .

However, I' = (Yp_mi1, ' , Y») can still be multiplied on the right by an arbi-

trary orthogonal matrix. Let us suppose that there are m(m — 1)/2 more inde-
pendent restrictions on I,

(5.9) fo(T) = 0, v=1 - ,mm—1)/2,
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with f,(I") being a completely specified function. We assume that (5.7), (5.8),
and (5.9) determine T uniquely.?

If go—i = i, then giB:QBsg. is distributed as x* with ¢, degrees of freedom
and independently of ¢;B;QBsg; (i ¥ 7). The matrix (g;Ag;) is independently
distributed according to W(I, N — ¢). Then a confidence vegion may consist of

the sets of vectors g1, -+ -, g satisfying (5.9) with G for T,
(5.10) 9:B:QBig: < x3,(ed), t=1-,m,
(611 . dii(e) < giAg; < dij(e),

where d;;(¢) < 8;; < d;;(e) are chosen so that the probability of (5.11) for all ¢
andjis 1 — e when G’SG = I. The confidence coefficient is (1 — ¢)(1 — e) - - -
(1 — €)1 — €). Unfortunately, since the Wishart distribution has not been
tabulated, the intervals (5.11) could be obtained from present tables only for
m = 2, in which case one could use the distribution of the variances and the
correlation coefficient.

The confidence region defined by (5.10) and (5.11) has the same confidence
coefficient as the region which is the intersection of this and (5.9). If we do not
impose the conditions (5.9), there is the indeterminacy of orthogonal trans-
formations in the regions; that is, if G is in the region, GO is in the region if O
is orthogonal (for most G’s). If one is interested simply in estimating the linear
subspace spanned by v mi1, - , ¥» , then this region (not imposing (5.9)) is
adequate.

Under the restrictions imposed here we could replace (5.10) by

(5.12) Z{ g: B2 OB1g: < Xmgy(€¥),

and obtain a region with confidence coefficient (1 — €*)(1 — ¢). Other regions
could also be constructed by replacing (5.12) by other inequalities which take
into account that g;B, are normally distributed with mean 0 when g: = ..
For example, (5.12) could be replaced by

(5.13) | G’B:QBG | < Vo w—ge¥),

where [1/(N — @)™V m.n—q(€¥) is the €* significance point of the distribution of
the generalized variance of m dimensions and N — ¢ degrees of freedom (for
covariance matrix I).

Another kind of sets of restrictions is

(5.14) YiZy; = 0, P,

and (5.9) forv = 1, -+, m(m + 1)/2. When G = T, g;:B.QB;g:/g:%g; has a
x-distribution with ¢, degrees of freedom and independent of g;B.QBag; (i 5 7)
and g;Ag: . Thus [¢};B,QBg:/g:Ag:]-[(N — ¢)/g.] has the F-distribution with

8 This problem of ‘‘identification” has been studied by Koopmaus, Rubin and Teipnik
in [12].
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¢ and N — ¢ degrees of freedom. Moreover, the set of m(m — 1)/2 random
variables g:Ag,/\/giAg:g, Ag; (i # j) is independently distributed like the
set of correlation coefficients r;; (¢ % 7;4,5 =1, --- ,m)basedon N — ¢ + 1
observations from N(0, I) using deviations from the sample mean. Define
rii(e) < 0 < r”(e) for 7 5% 7 such that the probability rs;(e) < 7i; < 7ij(e) (2 #
Jji4, j =1 ---,m)is 1 — & Then a confidence region with coefficient
1 - 61) (1 — €n)(1 — ¢€) is the intersection of

IB B T

(5.15) g—ig—gji < @ F gy n—gles),

9: Ag; L
5.16) 135(e) < === < Fg(e), (EaW
( ]() '\/g.Aglg]Ag, J(E 7
and f,(G) = O forv = 1, ---, m(m + 1)/2. If one imposes f,(I') = 0 (v =
1, -+, m) only for normahzation of the vector y;, there is the indeterminacy
of orthogonal transformations. In this case a confidence region may be the inter-
section of (5.15), (5.16), and f,(G) = 0,v = 1, - -- , m. If there are no restric-

tions f,(I') = 0, the vectors y; are not normalized. A confidence region then
may consist of the intersection of (5.15) and (5.16).

Now let us suppose that equation (5.14) does not hold. Instead, suppose the
matrix I is determined uniquely by restrictions (5.9) forv = 1, --- , m’. Then,
in general, g;B,QByg. is not distributed independently of g;B.QB:g; (i = 7).
We now make use of the theory given in Section 4.2. A confidence region with
confidence coefficient 1 — e is given by the intersection of

| G'AG |
(5.17) lGIB“ QBzG + G,AGI = Um,q2.N~(1(€)
and f,(G) = 0 forv = 1, --- , m’. If the restrictions f,(I') = 0 are less than

enough for unique 1dent1ﬁcat10n, (5.17) together with the restrictions imposed
on G constitute a confidence region with coefficient 1 — e.

Let us summarize the above results for the cases of unique identification:

THEOREM 7. Let x, (with p components) be distributed according to N(B,z,, +
B:zoo , ), a = 1, -+, N. Define the p X ¢, matriz B, by (1.10), the nonsingular
Qby (1.5),and S = [1/(N — ¢)]4 by (1.11). (a) A confidence region for them X p
matriz T, the unique solution of ©'By = 0, T'ET = I, and f,(T) =0 (v = 1,

, m(m — 1)/2) with confidence coefficient (1 — ¢) -+ (1 — ex)(1 — €) con-

sists of matrices G satisfying (5.11), (5.10), and fv(G) = 0; a region of confi-
dence (1 — €*)(1 — €) consists of the set of matrices G satisfying (5.11), (5.12),
and f,(G) = 0, or the set of mairices G satisfying (5.11), (5.13), and f,(G) =
(b) A region for T, the uniqusz solution of T'B, = 0, T'ET bzing diagonal, and
fo) = 0@ =1, -~ , mim + 1)/2) of confidence (1 — &) --- (1 — e€n)
(1 — € consists of the matrices G satisfying (5.15), (5.16), and f,(G) =
(¢) A region of confidence 1 — € for T, the unique solution of I'B, = 0 and
f(T) =0 (v = 1, --- , m") consists of the matrices G satisfying (5.17) and

fﬂ(G) =
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In this section we have assumed that the restrictions on I'" were just sufficient
to take out indeterminacy in the definition. If there are more restrictions (i.e.,
some restrictions are redundant), they may all be applied to the matrices G
which define the confidence regions.

It might be mentioned in passing that a confidence region for B, under the
restriction that the rank of B, is 7 is given by the set of all matrices (p X g»)®*
of rank r satisfying

[4]
| (B, — ®*)Q(B, — %)’ + 4| =
5.3. Consistency of confidence regions. It is clear from the preceding discussion

that there are many ways of constructing confidence regions for I'. One desirable
property of a confidence region is that it is consistent. By consistency of a con-

(5.18) Up,qz,)v..q(é).

1
fidence region we mean that if ]'\;Q approaches a nonsingular limit (as N — )

the confidence region for I' is arbitrarily small with arbitrarily high probability
for N large enough.

It is easy to verify that if there are restrictions on I' sufficient for identifica-
tion the regions given in Sections 5.1 and 5.2 are consistent. Consider, for ex-
ample, the first region given in Section 5.2. The inequalities (5.10) can be written

(519) gc B2 QBz g: < qu (61)

1
=N
For N sufficiently lartre the right hand side of (5.19) is arbitrarily small, Q is
arbitrarily near lim — N Q, and B, is arbitrarily near B, with probablhty arbi-

N=»c0
tarily near one. If GB, ## 0, then N can be chosen large-enough so that G B, will
have an arbitrarily small probability of satisfying (5.19).

As a matter of fact, consistency of the regions holds even if the assumptions,
such as normality of x. , are relaxed. Moreover, the confidence coefficient has
approximately the value given here if N is sufficiently large although some of
the conditions are not fulfilled.®

6. Econometric models.

6.1. Point estimates for certain “shock’ models. In many econometric models
the relations between variables may be expressed in terms of a system of sto-
chastic linear equations

(6.1) Ox; + Wz, = eh

% . . . . .

where x, is a vector of p* endogenous (economic) variables and z, is a vector of
. . % . . .

g exogenous (noneconomic) variables, and e, is a vector of p* disturbances. This

model has been called a “shock model” [13]. For @ square and nonsingular we

9 See [4] for the treatment of the special case m = 1.
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can solve (6.1) for™ x%,

(6.2) = —o Wz, + @ ek .

The distribution of &} for fixed z, induces the distribution of x% . Let
(6.3) —o 7w = B¥

(6.4) @7'el = ni.

Equation (6.2) is the so-called ‘“reduced form.”

Suppose there are m rows of ® that are known to contain only p components
of x% ; let the vector of these p components be x, , and let these m rows and p
columns of ® consitute a submatrix I". Suppose that of these m rows of W there
are only ¢q; columns different from zero; let the subvector of z. with nonzero
coefficients be 214 , and let the m rows and ¢; columns of W constitute the matrix
0. Let the remaining components of z, constitute z,, . Thus we have partitioned
® and I as /

r o ® 0
(6.5) O = , ¥ = .
Dy Dy Ty Wy

The m equations we are primarily interested in are
(6.6) 'x, + Oz, = &,.
The part of (6.2) involving x, is
(6.7) Xa = Bizia + Bozoa + na .

We shall assume that n, is distributed according to N (0, ). Since the coeffi-
cients of zz, in (6.6) are zero,
(6.8) I'B; = 0,
(69) l"]—31 = —"@
In order that (6.8) have a unique solution for I except for premultiplication
by an arbitrary nonsingular m X m matrix, we shall assume that ¢ > p — m
and that the rank of B, is p — m. Then the block of m equations is identified.
To completely determine I' we may require that the columns v, satisfy some
normalization conditions, for example,
(6.10) YoZv, = 1,
and that there are m — 1 coefficients in each row of (I ®) that are specified
to be zero. It has been shown that a given equation is then identified if the rank
of the matrix formed from (I ®) by taking the columns containing the zero

coefficients is m — 1 and if the rank of the (p* — m) X (p* — p + ¢.) matrix
(‘Dgg ‘ngg) iS p* — m. ’

1 This could also be considered as an “‘error model”” with d)“lc: the error part of x:: and
z, not subject to error.
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Suppose we have observations (Xe, %10, 224), @ = 1, -+ , N. Then we can
obtain an estimate I** of I'* satisfying the restrictions of Section 2 by the method
described in Section 2. We similarly have

(6.11) O* = —f‘*’ﬁl = —1¥ B}

To obtain I' satisfying the restrictions above we must find a matrix D such
that

(6.12) (1 &) = D(P¥ 6%

satisfies these restrictions. The identifying restrictions make D unique. Suppose
a given row of (I'®) is (v/, 0, ¢’, 0) where there are m — 1 coefficients 0. Let
(f** @*) be partitioned similarly into

(6.13) (Y 137 0 87).
Then the corresponding row d of D must satisfy
(6.14) 0 0) = d(f*; 7).

The matrix on the right is of rank m — 1, and the solution of d is unique except
for a proportionality constant. That is determined by the sample equivalent of
(6.10).

The type of shock model considered in this section seems special. However,
the method of estimation may be useful if a block of m equations is identified
even though the restrictions on (I” ®) are more than enough to identify each
equation within the set of m. One could ignore the surplus restrictions.

In time series analysis the index a denotes the time. In many models com-
ponents of z, may be components of X4, Xo—2, * -+ (i.e., lagged values). The
estimates given above are nevertheless maximum likelihood estimates.

6.2. Confidence regions for coefficienis in ‘‘shock models.” The shock models
treated in Section 6.1 are of a special sort in that a block of 0 coefficients is re-
quired to be given by a priori conditions. The idea of confidence regions con-
sidered in Section 5 can be used, however, in more general circumstances. We
shall now discuss this subject in greater generality. For convenience we shall
modify the notation of Section 6.1. Let x, be the (p-component) vector of all
the endogenous variables and z, the (¢g-component) vector of all exogenous vari-
ables, and let us write the set of ‘“‘structural” equations as

(6.15) Px, - Wz, = g,.
Let ® ' = — B and @ "¢, = n, . Then the “reduced form” of (6.15) is
(6.16) Xo = Bz, + ..

We assume n, to be distributed according to N (0, ). We are interested in the
first m rows of @, which we shall call IV, and the first m rows of ¥ which we shall
call @.

We shall suppose that the restrictions for effecting identification are of one of
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the three alternative kinds: (1) I'EI' = Iand v;; = 0, 6; = O for certain pairs
(2, 7) and (k, 1); (2) T'ET diagonal, v;; = 0 and 6, = 0 for certain pairs (¢, 7)
and (k, 1), and f,(T) = Oforv = 1, --- , m (for normalization); and (3) vy:; = 0,
6x: = O for certain pairs (¢, j) and (k, 1), and f,(T) = O forv = 1, -+ , m (for
normalization). These kinds of restrictions have been studied extensively [12].

In any case the (m X ¢) matrix "B (where B is defined by (1.10)) has a nor-
mal distribution with expected value I'B = —@; the covariance between the
i, jth element of I"B and the k, Ith element is y;Eywm®, where (m™) = M
and

N
(6.17) M= 2:1 ZaZy.
Thus (I'B — ®)M(B'T — @) is distributed according to W(I'ET, q). Further-
more I' AT is independently distributed according to W(I'EI', N — ¢).

Let 8; be the 7th row of @, and let 0 consist of the qf components of 0; which
are not specified to be 0. Let B} be composed of the columns of B corresponding
to the components of 0F so that y; Bf = —oF. Let B be composed of the
other qf* columns of B; then v;Bf* = 0. If BY and B are formed similarly
from B, then vy By ™, -+, vnBr* are jointly normally distributed with means
0, and the covariances involve only T, =, and M.

Cask 1. Since I"ET" = I, the distribution W(I, ¢) of (I'B — @)M(B'T — @’)
and the distribution W(I, N — q) of I'” AT have all parameters known. A con-

fidence region for I' and ® of confidence (1 — €)(1 — &) -+ (1 — €n) consists
of all G and T satisfying
(6.18) (9:B — t)M(B'g; — £;) < xa(<)

and (5.11) and the identification conditions. It is understood that in g; and ¢;
above we set those coefficients equal to 0 that are so specified in y; and 0, ,
respectively, by the a priori identification restrictions. A confidence region of
confidence (1 — €)(1 — ¢€*) is the intersection of

(6.19) tr(G'B — TYM(B'G — T') < xio(e®)

and *(5.11) with the identification conditions imposed on G and T. Thirdly, a
confidence region of confidence (1 — €)(1 — ¢*) is the intersection of

(6.20) | (G'B — T)M(B'G — T') | £ Vaun—oe*)

and (5.11) with the identification conditions imposed on G and T.

We can also construct confidence regions for I' alone. A region of confidence
(1 — e)(1 — &) -+ (1 — ex) consists of g; satisfying (5.11), the identification
conditions on ¥; , and
(6.21) g:BI*Q:Bfg; < X+ (€q),

where Q7' is composed of the rows and columns of M~ according to the way
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BF* is composed of the columns of B. A region of confidence (1 — €)(1 — €*)
consists of g, satisfying (5.11) ,the identification conditions, and

(6.22) 2 9:BITQiBI g < i ().

Case 2. Since IVET is diagonal, (vi B — 6,)M(B'y; — 03)/v:S+: is distributed
according to the x’-distribution with ¢ degrees of freedoma independently of
(viB — 0,)M(B'y; — ;) and of vilyi/viZv: , the latter being distributed
according to the x’-distribution with N — ¢ degrees of freedom. A confidence
region of confidence coefficient (1 — €)(1 — ¢) --- (1 — €n) consists of G and
T satisfying the identification conditions (including f,(G) = 0), (5.16), and

(yﬁB — t)M(B'g; — ti)'N -

gidg; q
If identification is effected by the restrictions v;; = 0, 0;; = 0, and f,(I") = 0,
then (5.16) is unnecessary.

A confidence region for I alone of confidence (1 — €)(1 — &) -+ (1 — €m)
consists of G satisfying the identification conditions, (5.16), and

7 > gy N—q \&).
giAg; i
Casg 3. In this case a region of confidence 1 — e consists of G and T satisfying
the identification conditions and

| G’AG | S
| (GB—T)M(B'G — T') + G'AG | =

A region for T alone could be given, but since it is more complicated than the
above we shall not write it here.

It is clear that there are many ways of obtaining confidence regions. For other
combinations of identification conditions we could give similar kinds of confi-
dence regions. A property that all the regions given in this section have is con-
sistency (except the region involving (6.20)). In fact, if some of the assumptions,
such as that of normality of n, , are relaxed, the regions are nevertheless con-
sistent (see [4]). Furthermore, as shown in [4], the confidence coefficients of the
regions given above when m = 1 approach 1 — e as N — o under certain condi-
tions even though the variables are not normally distributed and even though
some of the components of z, are “lagged” values of components of x, . Simi-
larly, it can be shown for m greater than 1 that if the regions are used when the
assumptions are relaxed in certain ways one can have confidence about 1 — e if
N is large enough. Sufficient conditions are given in Theorem 6 of [4].

It might be remarked in passing that if the number of 0 coefficients in (v: 0;)
are more than enough for identification some columns can be dropped from
Bf*;if p — 1 columns remain one can determine confidence regions for y; or

(6.23) 4 < Fony (&)

(6.24)

(6.25) Unm,g,5—q (€).
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(y: 0). It will also be noted that regions can easily be constructed when the
identification equations are of other kinds. In any case they are simply imposed
directly on G and T (as long as the restrictions do not involve X).

6.3. An ‘“‘error” model. In an error model we consider each observed variable
as composed of a “systematic part” and an “error.” If x, is the vector of ob-
served values, £, the vector of systematic parts, and v, the vector of errors,
then x, = &, + v, . The m linear relations are taken to hold on the systematic
parts, that is,

6.26) g, = 0.

We shall assume that v, is distributed according to N (0, £), and that ¥, is
l(ﬁxed'77

If = is known, Tintner [15] has suggested estimating the columns of I" as the
vectors (or linear combinations of the vectors) satisfying

(6.27) <§Nj XaXe — m) c=0

a=l

corresponding to the m smallest roots of

(6.28)

N
Z:lxaxﬁ, - )\2| = 0.
The obvious shortcoming of this procedure is that usually £ is unknown.

As a modification of this procedure Bartlett [5] in a special case and Geary
[8] when X is known have suggested that £, be represented as Bz, , where the
components of z, are given functions of time (preferably orthogonal functions).
It is clear that the methods proposed here can be used in these circumstances.

7. Another example; a g-sample problem. Consider ¢ multivariate normal
distributions N(wx, ) (k = 1,---, ¢) with common covariance matrix. The
means may be represented as ¢ points in a p-dimensional space. We may ask
whether these points lie in an r-dimensional linear subspace, or we may ask what
is this r-dimensional subspace. Fisher [7] considered a related problem; a theory
about gene structure of three varieties of iris led to a hypothesis that the means
of three populations were on a line. (Since the relative distances on the line were
also specified, Fisher’s hypothesis could be reduced to a hypothesis specifying

rank zero.)
Suppose we have a sample {x®}(a = 1, ---, Ni) from each population
1
(7.1) v =5 N+ - + Nawd),

where N = N; + --- + N, . The hypothesis that the w lie in an r-dimensional
space is equivalent to testing the hypothesis that

(7.2) (m—wye—y ",y —w
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is of rank 7. It is well known (Hsu [11], for example) that this model can be put
into the form of (1.8). Thus we can apply Theorem 2 for deriving a test function.
Let

(7.3) =2 xP/N,,
g Ng
(7.4) =23 PN,

(7.5) 4= zf P — )P — x)".

k=1 a=1

Then Z, = /N % is distributed according to N(A/Nzu: , =). Let F be an orthog-
onal matrix with first row (A/Ny/N, -+ , v/N,/N). Let

q
(7.6) Y, = ’;f,kzk.
Then
(7.7) &Y, = D fuV/Nate = vi,

say. The ¥; are independently distributed according to N(v;, =). We have
vi = v/Ny and

(7'8) vy = Zflk\/]v;c(yk - v)) l= 2) oy

and the rank of (v;, --- , v,) is that of (7.2).

For the purposes of testing rank, a model equivalent to the one above is a
model with N random variables, ¥; , --- , ¥, , and N — ¢ others independently
distributed according to N(0, X). Let the lth coordinate of z; be &, and let
B = (v, -+, v). Then this model is that of Sections 2 and 3. B =
(Y1, ---,Y,)and B,QB; is

q—1 q q
VY = 2 YiYe — WYy = O Nukuir — Nix'
Je=2 k=1 k=1
(7.9) . ;
=2 Ni (Fx — %) (& — %)".
k=1
Then A is as defined in Section 1. The ¢; (¢ = 1, --- , p) are the characteristic
vectors of
2 .
(7.10) (kz; Ne(Fe — ) (% — %) — ¢u4)c =0
satisfying
(7.11) C:;ACJ' = Né;j,

where ¢; is the 7th ordered root of

(7.12) 'Z; Ni(Zp — %) (% — %) — ¢Ai = 0.
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The estimate of u = \_/ﬁ v is

x. Let
(7.13) R=¢ (Z cic) —L—)
=1 14+ ¢/’
where £ is given by (2.14). Then
(7.14) vi = RY,, l=2 -,q

Since F is orthogonal, we have

o q q
vV Nife = lz;czfzk = R;;Ylfzk + Y1 fu

(7:15) .

= R; Yifu + (I — RY.fu = R\/Nir + I — R)\/Nx.
Thus
(7.16) ur = R(%, — %) + %.

The likelihood ratio criterion for testing the hypothesis that the rank of
(v2, -+, ¥), that is, the rank of (7.2), is r is given by

yd

(7.17) .H’L1 1+ ¢,
where ¢,41, - -+ , ¢p are the p — r smallest roots of (7.10).

An interesting example of the g-sample problem has been discussed by Coch-
ran [6]. Let z{¥) be a measurement on the ath replicate under the kth treatment,
measured on scale 7. Among other questions concerning comparisons of the
scales, there is the problem of whether the scales are linearly related. This is
exactly the problem considered above.
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